利用DeepSeek与Python自动生成测试用例!

在当今快节奏的软件开发领域,自动化测试已然成为保障软件质量的中流砥柱。传统手动编写测试用例的方式,非但耗时费力,还极易遗漏关键场景。

所幸,AI 技术的飞速发展为我们带来了全新的解决方案。今天,就让我们一同探索如何借助 DeepSeek 与 Python 的 pytest 框架,实现测试用例的智能生成,从而大幅提升测试效率。

一、DeepSeek+Python:自动生成测试用例分工

1.1 DeepSeek:作为自动生成测试用例的 “大脑”

DeepSeek 作为一款强大的 AI工具,它能理解软件的功能需求,自动生成测试用例框架。就像一个经验丰富的测试专家,能快速梳理出各种可能的测试场景。比如,对于一个用户登录功能,它能想到正常登录、密码错误、用户名不存在、账号被锁定等多种情况,并生成相应的测试用例结构,为后续测试提供基础。

1.2 Python:灵活实现测试的 “万能钥匙”

Python 作为一种功能强大且灵活的编程语言,在测试领域应用广泛。结合 pytest 框架,它能将 DeepSeek 生成的测试用例框架转化为可执行的测试脚本。利用pytest框架不仅能方便地组织和运行测试用例,还提供了丰富的插件和功能,像参数化测试、测试夹具等,让测试工作更加高效和便捷。

二、具体实现步骤与代码示例

2.1 环境搭建

首先,确保你已经安装了 Python 环境。然后,通过 pip 安装 pytest 和 deepseek 库(假设 deepseek 库已存在并可安装)。如果要进行覆盖率分析,还需安装 coverage.py ,命令如下:

pip install pytest deepseek pytest-cov
2.2 使用 DeepSeek 生成基础测试用例

以测试一个简单的用户登录接口为例,假设接口地址为https://api.example.com/login,接收 JSON 格式的用户名和密码,返回登录结果。代码如下:

import pytest
from deepseek import DeepSeek  
import requests

# 初始化 DeepSeek
deepseek = DeepSeek()

def test_user_login():
    """测试用户登录接口"""
    # 利用 DeepSeek 生成用户登录接口的测试用例
    test_cases = deepseek.generate_test_cases('user_login')
    
    for case in test_cases:
        # 发送 POST 请求至登录接口
        response = requests.post("https://api.example.com/login", json=case['input'])
        
        # 断言响应状态码与预期相符
        assert response.status_code == case['expected']['status_code'], \
            f"Expected status code {case['expected']['status_code']}, but got {response.status_code}"
        
        # 断言响应内容与预期一致
        assert response.json() == case['expected']['response'], \
            f"Expected response {case['expected']['response']}, but got {response.json()}"
2.3 扩展测试用例:自动生成边界值测试用例

为了提高测试用例的覆盖率,我们可以结合 Python 手动扩展一些边界值测试用例。比如,对用户名和密码的长度限制进行测试:

def generate_boundary_test_cases():
    """生成用户登录接口的边界值测试用例"""
    return [
        # 输入用户名过短、密码过短的边界情况
        {'input': {'username': 'a', 'password': '1'}, 'expected': {'status_code': 400, 'response': {'error': 'Invalid username or password'}}},
        
        # 输入用户名过长、密码过长的边界情况
        {'input': {'username': 'abcdefghijklmnopqrstuvwxyz', 'password': '1234567890'}, 'expected': {'status_code': 400, 'response': {'error': 'Username too long'}}},
        
        # 输入正常用户名、密码的常规情况
        {'input': {'username': 'validUser', 'password': '123456'}, 'expected': {'status_code': 200, 'response': {'message': 'Login successful'}}}
    ]

@pytest.mark.parametrize("test_case", generate_boundary_test_cases())
def test_user_login_boundary(test_case):
    """测试用户登录接口的边界值"""
    response = requests.post("https://api.example.com/login", json=test_case['input'])
    
    # 断言响应状态码与预期相符
    assert response.status_code == test_case['expected']['status_code'], \
        f"Expected status code {test_case['expected']['status_code']}, but got {response.status_code}"
    
    # 断言响应内容与预期一致
    assert response.json() == test_case['expected']['response'], \
        f"Expected response {test_case['expected']['response']}, but got {response.json()}"
2.4 用例覆盖率分析:精准评估测试效果

为了精准评估测试用例对代码的覆盖程度,我们可以借助 coverage.py 这一实用工具。它能够清晰地呈现哪些代码路径已被测试覆盖,哪些尚未涉及。

# 安装 coverage.py 及其 pytest 插件
# pip install pytest-cov

# 运行测试并生成覆盖率报告
# pytest --cov=your_module_name tests/

def test_user_login():
    """测试用户登录接口"""
    test_cases = deepseek.generate_test_cases('user_login')
    for case in test_cases:
        response = requests.post("https://api.example.com/login", json=case['input'])
        assert response.status_code == case['expected']['status_code']
        assert response.json() == case['expected']['response']

if __name__ == "__main__":
    pass  # pytest 会自动发现并运行测试函数

也可以直接在在命令行运行以下命令:

pytest --cov=your_module_name tests/

其中,your_module_name是你要测试的模块名,tests/是测试脚本所在的目录。这会生成一份覆盖率报告,帮助你找出哪些代码路径还没有被测试覆盖,从而针对性地补充测试用例。

3、小结

本文中内容,为了照顾新手,没有写太复杂的应用场景,小白也能看得懂,这个不是难点,重点是思路。要学会善用借助一系列辅助工具来提升测试工作的效率与质量的思路。

据我了解,使用 DeepSeek 与 Python 自动生成测试用例的组合方案,在一些公司实际项目中已经取得了不错的成效。

不过,在使用过程中也有一些注意事项。虽然 DeepSeek 能生成大部分常见的测试用例,但对于一些复杂的业务逻辑和特定的场景,可能还需要手动调整和补充。而且,自动生成的测试用例也需要进行验证,确保其准确性和有效性。

大家可以尝试将这些方法应用到自己的项目中!如果在实践过程中有任何问题或心得,欢迎添加老师微信交流:762357658,当然,也可以直接在评论区留言分享。

### 如何使用 DeepSeekPython 自动生成测试用例 #### 利用语义搜索和知识推荐能力生成基础测试用例 通过集成 DeepSeek 的强大语义搜索能力和知识推荐引擎,可以从需求文档中提取关键信息来创建初步的测试框架。这一步骤能够显著减少手动编写基本测试逻辑的时间成本。 ```python import deepseek as ds def generate_base_test_cases(requirement_doc_path): """基于需求文档生成基础测试用例""" client = ds.Client(api_key='your_api_key') requirements = client.extract_requirements_from_document(requirement_doc_path) test_cases = [] for req in requirements: case_template = f"# 测试 {req['feature']}\n" case_template += f"def test_{ds.utils.slugify(req['description'])}():\n" case_template += " pass\n\n" test_cases.append(case_template) return ''.join(test_cases) ``` [^1] #### 复用已有用例并补充新的测试案例 为了提高效率,在现有项目基础上复用已有的测试用例是非常重要的策略之一。借助于 DeepSeek 对相似度匹配的支持,可以在历史版本或其他模块中的测试集中找到可重复利用的部分,并针对当前项目的特定情况进行调整和完善。 ```python from difflib import SequenceMatcher def find_similar_tests(new_req, existing_tests): """查找新需求最接近的历史测试用例""" best_match = None highest_ratio = 0 for et in existing_tests: ratio = SequenceMatcher(None, new_req.lower(), et.description.lower()).ratio() if ratio > highest_ratio and ratio >= 0.7: # 设置阈值以过滤不相关项 highest_ratio = ratio best_match = et return best_match existing_tests = [...] # 假设这里是从数据库加载的一系列旧版测试实例对象列表 new_requirement_text = "用户登录成功后应跳转至首页." similar_case = find_similar_tests(new_requirement_text, existing_tests) if similar_case is not None: print(f"发现类似测试:\n{similar_case.code}") else: print("未找到合适的模板.") ``` #### 分析边界条件和异常场景,增强测试覆盖范围 除了正常流程外,还需要特别关注程序可能遇到的各种极端情况以及错误输入的可能性。DeepSeek 可帮助识别潜在的风险点,并指导开发者设计更加严谨细致的验证方案。 ```python def analyze_edge_cases_and_exceptions(feature_description): """根据特性描述分析其边界条件及异常处理要求.""" edge_conditions = [ ("空字符串", ""), ("极大整数", int(9e18)), ("-1作为负索引", -1), ... ] exceptions_to_handle = ["TypeError", "ValueError"] analysis_result = { 'edge': [], 'exception': [] } for cond_name, value in edge_conditions: try: eval(f"{feature_description}(value)") # 这里仅作示意用途;实际应用时需谨慎评估安全性风险. continue except Exception as e: if type(e).__name__ in exceptions_to_handle: analysis_result['exception'].append((cond_name, str(type(e)))) return analysis_result ``` #### 构建用例数据库以便后续维护和支持团队协作 最后,将所有生成或优化后的测试用例存储在一个易于访问的位置对于长期维护至关重要。考虑到不同成员之间可能存在交流障碍,建立统一标准格式化的仓库不仅有助于内部沟通协调,也方便外部审计人员审查工作成果。 ```sql CREATE TABLE IF NOT EXISTS TestCases ( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT UNIQUE NOT NULL, content BLOB NOT NULL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, updated_at TIMESTAMP ON UPDATE CURRENT_TIMESTAMP ); ``` ```python class TestCaseRepository(): def __init__(self, db_connection_string="sqlite:///testcases.db"): self.conn = sqlite3.connect(db_connection_string) cursor = self.conn.cursor() create_table_query = """ CREATE TABLE IF NOT EXISTS TestCases( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT UNIQUE NOT NULL, content BLOB NOT NULL, created_at DATETIME DEFAULT (datetime('now', 'localtime')), updated_at DATETIME ON CONFLICT REPLACE ); """ cursor.execute(create_table_query) self.conn.commit() def add(self, title, code_content): insert_stmt = '''INSERT INTO TestCases(title,content) VALUES (?,?)''' with closing(sqlite3.connect(":memory:")) as conn: cur = conn.cursor() cur.execute(insert_stmt,(title,pickle.dumps(code_content))) conn.commit() def get_all_titles(self): select_stmt = '''SELECT DISTINCT title FROM TestCases ORDER BY created_at DESC;''' results = pd.read_sql(select_stmt,self.conn)['title'] return list(results.values) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测试开发技术

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值