Transformer大模型实战:使用BERT模型执行提取式摘要任务
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
1. 背景介绍
1.1 问题的由来
摘要任务在信息检索、文本阅读理解、新闻摘要生成等领域具有广泛的应用。提取式摘要任务旨在从长篇文档中提取关键信息,生成简洁、连贯的摘要,使读者快速了解文档的主要内容。随着深度学习技术的快速发展,基于Transformer的大模型如BERT在自然语言处理领域取得了显著的成果,为提取式摘要任务提供了新的思路和解决方案。
1.2 研究现状
近年来,提取式摘要任务的研究主要围绕以下几个方向:
基于规则的方法:通过设计一系列规则,对文本进行分词、词性标注、句法分析等操作,然后根据规则生成摘要。这类方法可解释性较好,但规则设计复杂,难以适应不同的数据分布。
基于统计的方法:利用统计模型,如隐马尔可夫模型(HMM)、条件随机场(CRF)等,对文本进行建模,然后根据模型预测生成摘要。这类方法对数据量要求较高,且难以捕捉长距离依赖。
基于深度学习的方法:利用深度神经网络,如循环神经网络(RNN)、长短期记忆网络(LSTM)等,对文本进行建模,然后根据模型预测生成摘要。这类方法能够有效捕捉长距离依赖,但