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Abstract
We consider the task of automatically
extracting DNA methylation events from
the biomedical domain literature. DNA
methylation is a key mechanism of epige-
netic control of gene expression and impli-
cated in many cancers, but there has been
little study of automatic information ex-
traction for DNA methylation. We present
an annotation scheme following the repre-
sentation of the recent BioNLP’09 shared
task on event extraction, select a set of
200 abstracts including a balanced sam-
ple of all PubMed citations relevant to
DNA methylation, and introduce man-
ual annotation for this corpus marking
nearly 3000 gene/protein mentions and
1500 DNA methylation and demethylation
events. We retrain a state-of-the-art event
extraction system on the corpus and find
that automatic extraction can be performed
at 78% precision and 76% recall. The in-
troduced resources are freely available for
use in research from the GENIA project
homepage.1

1 Introduction

During the previous decade of concentrated study
of biomedical information extraction (IE), most
efforts have focused on the foundational task of
detecting mentions of entities of interest and the
extraction of simple relations between these enti-
ties, typically represented as undifferentiated bi-
nary associations (Pyysalo et al., 2008). However,
in recent years there has been increased interest
in biomolecular event extraction using representa-
tions that capture typed, structured n-ary associa-
tions of entities in specific roles, such as regula-
tion of the phosphorylation of a specific domain

1http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA

of a particular protein (Ananiadou et al., 2010).
The state of the art in such extraction methods
was evaluated in the BioNLP’09 Shared Task on
Event Extraction (below, BioNLP ST) (Kim et al.,
2009), and event extraction following the BioNLP
ST model has continued to draw interest also af-
ter the task, with recent work including advances
in extraction methods (Miwa et al., 2010a; Poon
and Vanderwende, 2010), the release of extraction
system software and large-scale automatically an-
notated data (Björne et al., 2010) and the develop-
ment of additional annotated resources following
the event representation (Ohta et al., 2010).

Of the findings of the BioNLP ST evaluation,
it is of particular interest to us that the highest-
performing methods include many that are purely
machine-learning based (Kim et al., 2009), learn-
ing what to extract directly from a corpus anno-
tated with examples of the events of interest. This
implies that state-of-the-art extraction methods for
new types of events can be created by providing
annotated resources to an existing system, with-
out the need for direct development of natural lan-
guage processing or IE methods. Here, we apply
this approach to DNA methylation, a specific and
biologically highly relevant entity type not consid-
ered in previous event extraction studies.

In the following, we first outline the biological
significance of DNA methylation and discuss ex-
isting resources. We then introduce the event ex-
traction approach applied, present the new anno-
tated corpus created in this study, and event extrac-
tion results using a method trained on the corpus.

2 DNA Methylation

The term epigenetics refers to a set of molecu-
lar mechanisms “beyond genetics” – i.e. without
change in DNA sequence – that are today under-
stood to play an important role in several biolog-
ical processes, including genetic program for de-
velopment, cell differentiation and tissue specific



gene expression. DNA methylation was first sug-
gested as an epigenetic mechanism for the con-
trol of gene activity during development in 1975
(Riggs, 1975; Holliday and Pugh, 1975), and the
role of DNA methylation in cancer was first re-
ported in 1987 (Holliday, 1987). DNA methyla-
tion of CpG islands in promoter regions is now
understood to be one of the most consistent ge-
netic alterations in cancer, and DNA methylation
is a prominent area of study.

Chemically, DNA methylation is a simple re-
action adding a methyl group to a specific posi-
tion of cytosine pyrimidine ring or adenine purine
ring. While a single nucleotide can only be
either methylated or unmethylated, in text the
overall degree of promoter methylation is often
reported as hypo- and hyper-methylation, with
hyper-methylation implying that the expression of
a gene is silenced. Because of the precise defini-
tion of the phenomenon and the relatively specific
terms in which it is typically discussed in publi-
cations, we expected it to provide a well-defined
target for annotation and automatic extraction.

2.1 DNA Methylation in PubMed

We follow common practice in biomedical IE in
drawing texts for our corpus from PubMed ab-
stracts. Currently containing more than 20 million
citations for biomedical literature (over 11M with
abstracts) and growing exponentially (Hunter and
Cohen, 2006), the literature database provides a
rich resource for IE and text mining.

To facilitate access to documents relevant to
specific topics, each PubMed citation is manually
assigned terms that identify its primary topics us-
ing MeSH, a controlled vocabulary of over 25,000
terms. MeSH contains also a DNA Methylation
term, allowing specific searches for citations on
the topic. Figure 1 shows the number of citations
per year of publication matching this term con-
trasted with overall citations, illustrating explosive
growth of interest in DNA methylation, outstrip-
ping the overall growth of the literature. Partic-
ular increases can be seen after the introduction
of DNA microarrays for monitoring gene expres-
sion (Schena et al., 1995) and the introduction of
high-throughput screening methods (Kononen et
al., 1998; MacBeath and Schreiber, 2000). The to-
tal number of PubMed citations tagged with DNA
Methylation at the time of this writing is 15456
(14350 of which have an abstract). The large num-

 300000

 350000

 400000

 450000

 500000

 550000

 600000

 650000

 700000

 1985  1990  1995  2000  2005
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

A
ll 

P
ub

M
ed

 c
ita

tio
ns

D
N

A
 M

et
hy

la
tio

n 
ci

ta
tio

ns

All
DNA Methylation

Figure 1: Citations tagged with the MeSH term
DNA Methylation compared to all citations in
PubMed by publication year. Note different
scales.

ber of documents tagged for the DNA methyla-
tion MeSH term and the human judgments assur-
ing their relevance make querying for this term
a natural choice for selecting text. However, di-
rect PubMed query as the only selection strategy
would ignore significant existing resources, dis-
cussed in the following.

2.2 DNA Methylation Databases

A growing number of databases collating infor-
mation on DNA methylation are becoming avail-
able. The first such database, MethDB (Amor-
eira et al., 2003), was introduced in 2001 and
remains actively developed. MethDB contains
PubMed citation references as evidence for con-
tained entries, but no more specific identifica-
tion of the expressions stating DNA methylation
events. The methPrimerDB (Pattyn et al., 2006)
database provides additional information on PCR
primers on top of MethDB, but does not add fur-
ther specification of the methylated gene or text-
bound annotation. PubMeth (Ongenaert et al.,
2008) is a database of DNA methylation in can-
cer with evidence sentences from the literature.
This database stores information on cancer types
and subtypes, methylated genes and the experi-
mental method used to identify methylation, as
well as evidence sentences. MeInfoText, (Fang et
al., 2008) is a database of DNA methylation and
cancer information automatically extracted from
PubMed documents matching the query terms
human, methylation and cancer using term co-
occurrence statistics. Of the DNA Methylation
resources, only PubMeth and MeInfoText contain
text-bound annotation identifying specific spans of
characters containing the gene mention and ex-



a) MS-PCR revealed the [methylation] of the [p16] gene in 10(34%)of 29 [NSCLCs]
b) 30% (27 of 91) of [lung tumors] showed [hypermethylation] of the 5’CpG region of the [p14ARF gene]
c) [Promotor hypermethylations] were detected in [O6-methylguanine-DNA methyltransferase (MGMT), RB1,

estrogen receptor, p73, p16INK4a, death-associated protein kinase, p15INK4b, and p14ARF]
d) The promoter region of the [p16INK4] gene was [hypermethylated] in the tumor samples of the primary or metastatic site

Table 1: Examples of PubMeth evidence sentence annotation. Annotated spans delimited by brackets
and statements expressing methylation underlined, gene mentions shown in italics, and cancer mentions
in bold.

pressing DNA methylation in evidence sentences
supporting database entries. In this study, we con-
sider specifically PubMeth as a source of reference
text-bound annotations due to availability and the
ability to redistribute derived data.

Initial text-bound annotations in PubMeth were
generated using keyword lookup, but the database
annotations are manually reviewed. Table 1 shows
example evidence sentences from PubMeth and
their annotated spans. While the PubMeth annota-
tion differs from the BioNLP ST representation in
a number of ways, such as not separating coordi-
nated entities (Table 1c) and not annotating methy-
lation sites (Table 1d), it provides both a refer-
ence identifying annotation targets from a biologi-
cally motivated perspective and a potential starting
point for full event annotation.

3 Annotation

For annotation, we adapted the representation ap-
plied in the BioNLP ST on event extraction with
minimal changes in order to allow systems devel-
oped for the task to be applied also for the newly
annotated corpus. Documents were selected fol-
lowing the basic motivation presented above, with
reference to the requirements specified by the an-
notation scheme, and some automatic preprocess-
ing was applied as annotator support. This section
details the annotation approach.

3.1 Entity and Event Representation
For the core named entity annotation, we thus pri-
marily follow the gene/gene product (GGP) an-
notation criteria applied for the shared task data
(Ohta et al., 2009). In brief, the guidelines spec-
ify annotation of minimal contiguous spans con-
taining mentions of specific gene or gene product
(RNA/protein) names, where specific name is un-
derstood to be one allowing a biologist to identify
the corresponding entry in a gene/protein database
such as Uniprot or Entrez Gene. The annotation
thus excludes e.g. names of families and com-
plexes. A single annotation type, Gene or gene

Figure 2: Event annotation for phosphorylation.

product, is applied without distinction between
genes and their products. In addition to the iden-
tification of the modified gene, it is important to
identify the site of the modification. We marked
mentions of sites relevant to the events as DNA
domain or region terms following the original GE-
NIA term corpus annotation guidelines (Ohta et
al., 2002).

For representing DNA methylation events, the
annotation applied to capture protein phosphory-
lation events in the BioNLP ST task 2 closely
matched the needs for DNA methylation (Fig-
ure 2). While the Site arguments of the ST Phos-
phorylation events are protein domains, machine-
learning based extraction methods should be able
to associate this role with DNA domains given
training data. We thus adopted a representa-
tion where DNA methylation events are associated
with a gene/gene product as their Theme and a
DNA domain or region as Site. Each event is also
associated with a particular span of text expressing
it, termed the event trigger.2 We further initially
marked catalysts using Positive regulation events
following the BioNLP ST model, but dropped this
class of annotation as a sufficient number of exam-
ples was not found in the corpus.

The event types of the BioNLP ST are drawn
from the GENIA Event ontology (Kim et al.,
2008), which in turn draws its type definitions
from the community-standard Gene Ontology
(GO) (The Gene Ontology Consortium, 2000). To
maintain compatibility with these resources, we
opted to follow the GO also for the definition of

2Annotators were instructed to always mark some trigger
expression. We note that while we do not here specifically
distinguish hypo- and hyper-methylation, the trigger anno-
tations are expected to facilitate adding these distinctions if
necessary.



the new event type considered here. GO defines
DNA methylation as

The covalent transfer of a methyl group
to either N-6 of adenine or C-5 or N-4
of cytosine.

We note that while the definition may appear re-
strictive, methylation of adenine N-6 or cytosine
C-5/N-4 encompasses the entire set of ways in
which DNA can be methylated. This definition
could thus be adopted without limitation to the
scope of the annotation.

3.2 Document Selection
The selection of source documents for an anno-
tated corpus is critical for assuring that the cor-
pus provides relevant and representative material
for studying the phenomena of interest. Domain
corpora frequently consist of documents from a
particular subdomain of interest: for example, the
GENIA corpus focuses on documents concerning
transcription factors in human blood cells (Ohta et
al., 2002). Methods trained and evaluated on such
focused resources will not necessarily generalize
well to broader domains. However, there has been
little study of the effect of document selection on
event extraction performance. Here, we applied
two distinct strategies to get a representative sam-
ple of the full scope of DNA methylation events in
the literature and to assure that our annotations are
relevant to the interests of biologists.

In the first strategy, we aimed in particular to
select a representative sample of documents rel-
evant to the targeted event types. For this pur-
pose, we directly searched the PubMed literature
database. We further decided not to include any
text-based query in the search to avoid biasing
the selection toward particular entities or forms
of event expression. Instead, we only queried for
the single MeSH term DNA Methylation. While
this search is expected to provide high-prevision
results for the full topic, not all such documents
necessarily discuss events where specific genes are
methylated. In initial efforts to annotate a random
sample of these documents, we found that many
did not mention specific gene names. To reduce
wasted effort in examining documents that contain
no markable events, we added a filter requiring a
minimum number of (likely) gene mentions. We
first tagged all 14350 citations tagged with DNA
Methylation that have an abstract in PubMed us-
ing the BANNER tagger (Leaman and Gonzalez,

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  5  10  15  20  25  30  35  40

N
um

be
r 

of
 d

oc
um

en
ts

Number of gene/protein mentions

Figure 3: Number of citations with given number
of automatically tagged gene/protein mentions.

2008). We found that while the overwhelmingly
most frequent number of tagged mentions per doc-
ument is zero, a substantial mass of abstracts have
large mention counts (Figure 3).3 We decided af-
ter brief preliminary experiments to filter the ini-
tial selection of documents to include only those
in which at least 5 gene/protein mentions were
marked by an automatic tagger. This excludes
most documents without markable events without
introducing obvious other biases.

In the second strategy, we extended and com-
pleted the annotation of a random selection of
PubMeth evidence sentences, aiming to leverage
existing resources and to select documents that
had been previously judged relevant to the inter-
ests of biologists studying the topic. This provides
an external definition of document relevance and
allows us to estimate to what extent the applied an-
notation strategy can capture biologically relevant
statements. This strategy is also expected to select
a concentrated, event-rich set of documents. How-
ever, the selection may also necessarily carry over
biases toward particular subsets of relevant docu-
ments from the original selection and will not be a
representative sample of the overall distribution of
such documents in the literature.

For producing the largest number of event an-
notations with the least effort, the most efficient
way to use the PubMeth data would have been to
simply extract the evidence sentences and com-
plete the annotation for these. However, view-
ing the context in which event statements occur
as centrally important, we opted to annotate com-
plete abstracts, with initial annotations from Pub-
Meth evidence sentences automatically transferred
into the abstracts. We note that not all PubMeth

3The tagger has been evaluated at 86% F-score on a
broad-coverage corpus, suggesting this is unlikely to severely
misestimate the true distribution.



evidence spans were drawn from abstracts, and
not all that were matched a contiguous span of
text. We could align PubMeth evidence annota-
tions into 667 PubMed abstracts (approximately
57% of the referenced PMID number in PubMeth)
and completed event annotation for a random sam-
ple of these.

3.3 Document Preprocessing

To reduce annotation effort, we applied auto-
matic systems to produce initial candidate sen-
tence boundaries and GGP annotations for the cor-
pus. For sentence splitting, we applied the GE-
NIA sentence splitter4, and for gene/protein tag-
ging, we applied the BANNER NER system (Lea-
man and Gonzalez, 2008) trained on the GENE-
TAG corpus (Tanabe et al., 2005). The GENETAG
guidelines and gene/protein entity annotation cov-
erage are known to differ from those applied for
GGP annotation here (Wang et al., 2009). How-
ever, the broad coverage of PubMed provided by
the GENETAG suggests taggers trained on the cor-
pus are likely to generalize to new subdomains
such as that considered here. By contrast, all an-
notations following GGP guidelines that we are
aware of are subdomain-specific.

We note that all annotations in the produced cor-
pus are at a minimum confirmed by a human an-
notator and that events are annotated without per-
forming initial automatic tagging to assure that no
bias toward particular extraction methods or ap-
proaches is introduced.

4 Results

4.1 Corpus Statistics

Corpus statistics are given in Table 2. There
are some notable differences between the subcor-
pora created using the different selection strate-
gies. While the subcorpora are similar in size,
the PubMeth GGP count is 1.4 times that of the
PubMed subcorpus5, yet roughly equal numbers
of methylation sites are annotated in the two. This
difference is even more pronounced in the statis-
tics for event arguments, where two thirds of Pub-
Meth subcorpus events contain only a Theme ar-
gument identifying the GGP, while events where
both Theme and Site are identified are more fre-

4http://www-tsujii.is.s.u-tokyo.ac.jp/∼y-matsu/geniass/
5The differences in the number of GGP annotations may

be affected by the PubMeth entity annotation criteria.

PubMeth PubMed Total
Abstracts 100 100 200
Sentences 1118 1009 2127
Entities
GGP 1695 1195 2890
Site 240 234 474
Total 1935 1429 3364
Events
Theme only 660 214 874
Theme and Site 323 297 620
DNA methylation 977 485 1462
DNA demethyl. 6 26 38
Total 983 511 1494

Table 2: Corpus statistics.

quent in the other subcorpus.6 As the extraction of
events specifying also sites is known to be partic-
ularly challenging (Kim et al., 2009), these statis-
tics suggest the PubMed subcorpus may repre-
sent a more difficult extraction task. Only very
few DNA demethylation events are found in ei-
ther subcorpus. Overall, the PubMeth subcorpus
contains nearly twice as many event annotations as
the PubMed one, indicating that the focused doc-
ument selection strategy was successful in identi-
fying particularly event-rich abstracts.

4.2 Annotation Quality

To measure the consistency of the produced anno-
tation, we performed independent double annota-
tion for a sample of 40% of the abstracts selected
from the PubMed subcorpus; 20% of all abstracts.
As the PubMed subcorpus event annotation is cre-
ated without initial human annotation as reference
(unlike the PubMeth subcorpus), agreement is ex-
pected to be lower on this subcorpus. This exper-
iment should thus provide a lower bound on the
overall consistency of the corpus.

We first measured agreement on the gene/gene
product (GGP) entity annotation, and found very
high agreement among 935 entities marked in to-
tal by the two annotators: 91% F-score using exact
match criteria and 97% F-score using the relaxed
“overlap” criterion where any two overlapping an-
notations are considered to match.7 We then sep-
arately measured agreement on event annotations

6The number of annotated sites is less than the number
of events with a Site argument as the annotation criteria only
call for annotating a site entity when it is referred to from an
event, and multiple events can refer to the same site entity.

7The high agreement is not due to annotators simply
agreeing with the automatic initial annotation: the F-score
of the automatic tagger against the two sets of human an-
notations was 65%/66% for exact and 85%/86% for overlap
match.



for those events that involved GGPs on which the
annotators agreed, using the standard evaluation
criteria described in Section 4.4. Agreement on
event annotations was also high: 84% F-score
overall (85% for DNA methylation and 75% for
DNA demethylation) over a total of 442 annotated
events.

The overall consistency of the annotation de-
pends on joint annotator agreement on the GGP
and event annotations. However, in experimental
settings such as that of the BioNLP ST where gold
GGP annotation is assumed as the starting point
for event extraction, measured performance is not
affected by agreement on GGPs and thus arguably
only the latter factor applies. As this setting is
adopted also in the present study, annotation con-
sistency suggests a human upper bound no lower
than 84% F-score on extraction performance.

Estimates of the annotation consistency of
biomedical domain corpora are regrettably seldom
provided, and to the best of our knowledge ours is
the first estimate of inter-annotator agreement for
a corpus following the event representation of the
BioNLP ST. Given the complexity of the annota-
tion – typed associations of event trigger, theme
and site – the agreement compares favorably to
e.g. the reported 67% inter-annotator F-score re-
ported for protein-protein interactions on the ITI
TXM corpora (Alex et al., 2008) and the full event
agreement on the GREC corpus (Thompson et al.,
2009).

4.3 Event Extraction Method

To estimate the feasibility of automatic extrac-
tion of DNA methylation events and the suitabil-
ity of presently available event extraction meth-
ods to this task, we performed experiments using
the EventMine event extraction system of (Miwa
et al., 2010b). On the task 2 of the BioNLP
ST dataset, the benchmark most relevant to our
task setting, the applied version of EventMine was
recently evaluated at 55% F-score (Miwa et al.,
2010a), outperforming the best task 2 system in
the original shared task (Riedel et al., 2009) by
more than 10% points. To the best of our knowl-
edge, this system represents the state of the art for
this event extraction task.

EventMine is an SVM-based machine learning
system following the pipeline design of the best
system in the BioNLP ST (Björne et al., 2009),
extending it with refinements to the feature set,

the use of a machine learning module for com-
plex event construction, and the use of two parsers
for syntactic analysis (Miwa et al., 2010b). We
follow Miwa et al. in applying the HPSG-based
deep parser Enju (Miyao and Tsujii, 2008) using
the high-speed parsing setting (“mogura”) and the
GDep (Sagae and Tsujii, 2007) native dependency
parser, both with biomedical domain models based
on the GENIA treebank data (Tateisi et al., 2006).

For evaluation, we applied a version of the
BioNLP’09 ST evaluation tools8 modified to rec-
ognize the novel DNA methylation event type.

4.4 Evaluation Criteria
We followed the basic task setup and primary eval-
uation criteria of the BioNLP’09 ST. Specifically,
we followed task 2 (“event enrichment”) criteria,
requiring for correct extraction of a DNA methy-
lation event both the identification of the modi-
fied gene (GGP entity) and the identification of
the modification site (DNA domain or region en-
tity) when stated. As in the shared task, human
annotation for GGP entities was provided as part
of the system input but other entities were not, so
that the system was required to identify the spans
of the mentioned modification sites.

The performance of the system was evalu-
ated using the standard precision, recall and F-
score metrics for the recovery of events, with
event equality defined following the “Approxi-
mate span” matching criterion applied in the pri-
mary evaluation for the BioNLP’09 ST. This cri-
terion relaxes strict matching requirements so that
a detected event trigger or entity is considered to
match a gold trigger/entity if its span is entirely
contained within the span of the gold trigger, ex-
tended by one word both to the left and to the right.

4.5 Experimental Setup
We divided the corpus into three parts, first setting
one third of the abstracts aside as a held-out test
set and then splitting the remaining two thirds in a
roughly 1:3 ratio into a training set and a develop-
ment test set, giving 100 abstracts for training, 34
for development, and 66 for final test. The splits
were performed randomly, but sampling so that
each set has an equal number of abstracts drawn
from the PubMeth and PubMed subcorpora.

The EventMine system has a single tunable
threshold parameter that controls the tradeoff be-

8http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/SharedTask/downloads.shtml



Event type prec. recall F-score
DNA methylation 77.6% 77.2% 77.4%
DNA demethylation 100.0% 11.1% 20.0%
Total 77.7% 76.0% 76.8%

Table 3: Overall extraction performance.

Test set
Training set PubMed PubMeth Both
PubMed 64.9% 71.2% 71.6%
PubMeth 62.9% 80.0% 74.0%
Both 66.2% 82.5% 76.8%

Table 4: F-score by subcorpus.

tween system precision and recall. We first set
the tradeoff using a sparse search of the parame-
ter space [0:1], evaluating the performance of the
system by training on the training set and evaluat-
ing on the development set. As these experiments
did not indicate any other parameter setting could
provide significantly better performance, we chose
the default threshold setting of 0.5. To study the
effect of training data size on performance, we per-
formed extraction experiments randomly down-
sampling the training data on the document level
with testing on the development set. In final exper-
iments EventMine was trained on the combined
training and development data and performance
evaluated on the held-out test data.

4.6 Extraction performance

Table 3 shows extraction results on the held-out
test data. While DNA methylation events could
be extracted quite reliably, the system performed
poorly for DNA demethylation events. The latter
result is perhaps not surprising given their small
number – only 38 in total in the corpus – and indi-
cates that a separate selection strategy is necessary
to provide resources for learning the reverse reac-
tion. Overall performance shows a small prefer-
ence for precision over recall at 77% F-score. We
view this level of performance very good as a first
result.

To evaluate the relative difficulty of the extrac-
tion tasks that the two subcorpora represent and
their merits as training material, we performed
tests separating the two (Table 4). As predicted
from corpus statistics (Section 4.1), the PubMed
subcorpus represents the more challenging extrac-
tion task. When testing on a single subcorpus, re-
sults are, unsurprisingly, better when training data
is drawn from the same subcorpus; however, train-
ing on the combined data gives the best perfor-
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Figure 4: Learning curve for the two subcorpora
and their combination. Both subcorpora used for
training. Average and error bars calculated by
10 repetitions of random subsampling of training
data, testing on the development set.

mance for all three test sets, indicating that the
subcorpora are compatible.

The learning curve (Figure 4) shows rela-
tively high performance and rapid improvement
for modest amounts of data, but performance im-
provement with additional data levels out rela-
tively fast, nearly flattening as use of the training
data approaches 100%. This suggests that extrac-
tion performance for this task is not primarily lim-
ited by training data size and that additional an-
notation following the same protocol is unlikely
to yield notable improvement in F-score without
a substantial investment of resources. As perfor-
mance for the PubMed subcorpus (for which inter-
annotator agreement was measured) is not yet ap-
proaching the limit implied by the corpus annota-
tion consistency (Section 4.2), the results suggest
further need for the development of event extrac-
tion methods to improve DNA methylation event
extraction.

5 Related Work

DNA methylation and related epigenetic mech-
anisms of gene expression control have been
a focus of considerable recent research in
biomedicine. There are many excellent reviews of
this broad field; we refer the interested reader to
(Jaenisch and Bird, 2003; Suzuki and Bird, 2008).

There is a wealth of recent related work also
on event extraction. In the BioNLP’09 shared
task, 24 teams participated in the primary task and
six teams in Task 2 which mostly resembles our
setup in that it also required the detection of mod-
ified gene/protein and modification site. The top-



performing system in Task 2 (Riedel et al., 2009)
achieved 44% F-score, and the highest perfor-
mance reported since that we are aware of is 55%
F-score for EventMine (Miwa et al., 2010b). The
performance we achieved for DNA methylation is
considerably better than this overall result, essen-
tially matching the best reported performance for
Phosphorylation events, which we previously ar-
gued to be the closest shared task analogue to the
new event category studied here. Nevertheless, di-
rect comparison of these results may not be mean-
ingful due to confounding factors. The only text
mining effort specifically targeting DNA methy-
lation that we are aware of is that performed for
the initial annotation of the PubMeth and MeIn-
foText databases (Ongenaert et al., 2008; Fang et
al., 2008), both applying approaches based on key-
word matching. However, neither of these stud-
ies report results for instance-level extraction of
methylation statements.

The present study is in many aspects simi-
lar to our previous work targeting protein post-
translational modification events (Ohta et al.,
2010). In this work, we annotated 422 events
of 7 different types and showed that retraining
an existing event extraction system allowed these
to be extracted at 42% F-score. Our approach
here clearly differs from this previous work in its
larger scale and concentrated focus on a particu-
lar event type of high interest, reflected also in
results: while extraction performance in our pre-
vious work was limited by training data size, in
the present study notably higher extraction perfor-
mance was achieved and a plateau in performance
with increasing data reached.

6 Discussion and Future Work

We have presented a study of the automatic ex-
traction of DNA methylation events from litera-
ture following the BioNLP’09 shared task event
representation and a state-of-the-art event extrac-
tion system. We created an corpus of 200 publica-
tion abstracts selected to include a representative
sample of DNA methylation statements from all of
PubMed and manually annotated for nearly 3000
mentions of genes and gene products, 500 DNA
domain or region mentions and 1500 DNA methy-
lation and demethylation events. Evaluation using
the EventMine system showed that DNA methy-
lation events can be extracted simply by retrain-
ing an off-the-shelf event extraction system at 78%

precision and 76% recall. The learning curve sug-
gested that the corpus size is sufficient and that in
future efforts in DNA methylation event extraction
should focus on extraction method development.

One natural direction for future work is to ap-
ply event extraction systems trained on the newly
introduced data to abstracts available in PubMed
and full texts available at PMC to create a detailed,
up-to-date repository of DNA methylation events
at full literature scale. Such an effort would re-
quire gene name normalization and event extrac-
tion at PubMed scale, both of which have recently
been shown to be technically feasible (Gerner et
al., 2010; Björne et al., 2010). Further combining
the extracted events with cancer mention detection
could provide a valuable resource for epigenetics
research.

The newly annotated corpus, the first re-
source annotated for DNA methylation using
the event representation, is freely available
for use in research from from the GENIA
project homepage http://www-tsujii.is.
s.u-tokyo.ac.jp/GENIA.
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