
Consensus dynami
s in a dolphin so
ial networkAbdelmalik Moujahid1, Blan
a Cases1 and Fran
is
o JavierOlasagasti11 Computational Intelligen
e Group. Dept. of ComputationalS
ien
e and Arti�tial Intelligen
e, University of Basque Country.Abstra
t. In this work we investigate the 
onsensus betweenindividuals in a so
ial network of bottlenose dolphins by simulat-ing the OCR (Opinion Changing Rate) model re
ently proposed byPlu
hini et al. in ref [1℄. This model is a so
ial adaptation of theKuramoto one in whi
h the 
on
ept of opinion 
hanging rate, i.e, thenatural tenden
y to 
hange opinion, transforms the usual problemof opinion 
onsensus into a 
lass of syn
hronization. We study theemergen
e of syn
hronized groups of individuals both in terms ofnatural frequen
y rates and 
entral positions in the network.Key words: So
ial networks, Syn
hronization, Community stru
-tures1 Introdu
tionThe study of 
omplex network has attra
ted a lot of attention inthe s
ienti�
 
ommunity in re
ent years [2-5℄. Indeed, many natural,te
hnologi
al, bio
hemi
al and so
ial systems 
an be 
onvenientlymodeled as networks made of a large number of highly inter
onne
-ted units. In general terms a network 
an be represented formallyas a graph: a set of generi
ally 
alled nodes (verti
es) 
onne
ted bylinks representing some relationship. Re
ent studies have revealedthat su
h systems are all 
hara
terized by a number of distin
tivetopologi
al properties: relatively small 
hara
teristi
 distan
es bet-ween any two nodes, high 
lustering properties, power-law degreedistribution and presen
e of 
ommunity stru
ture.In so
ial networks, the nodes are people, and ties between themare friendship, politi
al allian
e or professional 
ollaboration. Thestru
ture of intera
tion network des
ribing who is intera
ting withwhom, how frequently and with whi
h intensity, re�e
ts the import-an
e of topology in so
ial dynami
s. On the other hand, 
onsensus is



a key aspe
t of so
ial group dynami
s. Everyday life presents manysituations in whi
h it is ne
essary for a group to rea
h shared de
isi-ons. Consensus makes a position stronger, and ampli�es its impa
ton so
iety. So the analysis of this so
ial network under a parti
ulartopology from numeri
al simulation of opinion dynami
s models isan important issue to understand the so
ial group dynami
s.In this work, we deal with the problem of 
onsensus formation inanimal so
ial network with known 
ommunity stru
ture simulatingthe OCR (Opinion Changing Rate) model proposed in ref [1℄. Thenetwork we study was 
onstru
ted from observation of a 
ommunityof 62 bottlenose dolphins living in Doubtful Sound, New Zealand [9.Ties between dolphin pairs were established by observation of sta-tisti
ally signi�
ant frequent asso
iation. The paper is organized asfollow. First, we review the main features of the Kuramoto and OCRmodels. Then we des
ribe a dolphin so
ial network in terms of theirnatural divisions using betweenness-based algorithm of Newman andGirvan [7℄. In the se
ond part, we dis
uss the results of numeri
alsimulations of the OCR model on the network. Also, we investigatethe in�uen
e of parti
ular individuals in maintaining the 
ohesion of
ommunities.2 From Kuramoto model to the OCR modelOriginally, the Kuramoto model was motivated by the study of
olle
tive syn
hronization, a phenomenon in whi
h a large number of
oupled os
illators spontaneously lo
ks to a 
ommon frequen
y, de-spite the di�eren
es in their natural frequen
ies [6,8℄. The dynami
sof the Kuramoto model is given by:
θ̇i(t) = ωi +

1

N

N
∑

j=1

Kijsin(θj − θi), (1)where θi(t) denotes the phase of the os
illator i at instant t and ωiits natural frequen
y. The frequen
ies ωi are distributed a

ordingto some probability density g(ω). Kij represents the 
oupling for
ebetween units. The original model studied by Kuramoto assumed



mean-�eld intera
tions Kij = K, ∀i, j. The dynami
s of this mo-del depends only on two fa
tors: the 
oupling for
e K whose e�e
ttends to syn
hronize the os
illators, and the frequen
y distributionthat drive them to stay away ea
h from other by running at di�erentnatural frquen
y. When the 
oupling is su�
iently weak, the os
illa-tors run in
oherently, whereas beyond a 
ertain threshold 
olle
tivesyn
hronization emerges spontaneously. The existen
e of su
h a 
ri-ti
al threshold for syn
hronization is very similar to the 
onsensusthreshold found in the majority of the opinion formation models.Based on this 
on
ept, Plu
hini et al.[1℄ de�ne the OCR model as aset of 
oupled ordinary di�erential equations governing the rate of
hange of agents' opinions. The dynami
s of a system of N agents isgiven by:
ẋi(t) = ωi +

K

di

N
∑

j=1

Aijαsin(xj − xi)e
−α|xj−xi|, (2)where xi(t) ∈]−∞+∞[ is a real number that represents the opinionof the ith agent at time t. The ωi's 
orresponding to the naturalfrequen
ies of the os
illators in the Kuramoto model represent herethe so-
alled natural opinion 
hanging rates (o
r), i.e., the intrinsi
in
linations of the agents to 
hange their opinions. The values ωi's aredistributed in a uniform random way with an average ω0. A

ordingto this, we 
an simulate 
onservative individuals with values of ωi <

ω0, �exible ones with ωi ≃ ω0 and more �exible ones with ωi > ω0.
K ≥ 0 is the 
oupling for
e, di is the degree of ea
h agent and

Aij is the adja
en
y matrix . The exponential fa
tor in the 
ouplingterm ensures that, for opinion di�eren
e higher than a 
ertain thres-hold, 
ontrolled by the parameter α (we typi
ally adopted α = 3),opinions will no more in�uen
e ea
h other. This is perhaps the main
ontribution of the OCR model with respe
t to the Kuramoto model.Thus, to study the opinion dynami
s of the OCR model we solvenumeri
ally the system given by equation (2) for a given distributionof the ω's and for a given 
oupling for
e K. As reported in [1℄, inorder to measure the degree of opinions 
oheren
e, we use an orderparameter related to the standard deviation of the opinion 
hanging



rates de�ned as R(t) = 1−
√

1

N

∑

i(ẋi(t) − Ẋ(t))2. Here Ẋ(t) is theaverage over all agents of ẋi(t). Values of R approa
hing unity wouldimply a high degree of opinions 
oheren
e, while low values indi
atea in
oherently regime.3 Dolphin so
ial networkBottlenose dolphins 
ommunities have been des
ribed as a �ssion-fusion so
ieties and therefore individuals (or agents) 
an make de
i-sions to join or leave a group. Two so
ial groups (or 
lusters) wereidenti�ed in this population. The 
ommunity stru
ture of this net-work, obtained using betweenness-based algorithm of Newman andGirvan [7℄, is shown in Fig. 1, and the distribution of agents in ea
hgroup is reported in Table1.Table 1. List of agents in ea
h �nal group as resulting from usingthe Newman and Girvan algorithm [7℄ for a partition in two 
lusters.Cluster Agents in ea
h 
luster1 (21) 2,6,7,8,10,14,18,20,23,26,27,28,32,33,40,42,49,55,57,58,612 (41) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,29,30,31,34,35,36,37,38,39,41,43,44,45,46,47,48,50,51,52,53,54,56,59,60,62In order to measure the quality of a parti
ular division of a net-work into 
ommunities, we have used the measure known as Modula-rity Q introdu
ed in ref [7℄. Given a parti
ular partition of a networkinto n groups (or 
lusters), it is possible to de�ne a n × n size sym-metri
 matrix e whose element eij is the fra
tion of all edges in thenetwork that link verti
es in group i to verti
es in group j. A

ordingto this, the tra
e of this matrix Tre =
∑

i eii gives the fra
tion ofedges in the network that 
onne
t verti
es in the same group, andtherefore a good division into groups should have a high value ofthis tra
e. On the other hand, the sum of any row (or 
olumn) of thematrix e, namely ai =
∑

j eij, give the fra
tion of edges 
onne
ted



Fig. 1. Community stru
ture in the bottlenose dolphins of DoubtfulSound, extra
ted using the Newman and Girvan algorithm [7℄. Thesquare and 
ir
les denote the primary split of the network into twogroups.to group i. So, the expe
ted number of intra-group edges is just aiai.Finally, the modularity Q is given by:Q =
∑

i(eii − a2

i ).Values of Q approa
hing unity,whi
h is the maximum, would im-ply a strong 
ommunity stru
ture. If we take the whole network as asingle group, or if the network is a random one, Q = 0. For the parti-tion into two groups reported in Table 1., the modularity Q = 0, 38.This network is made of N = 62 vertex and l = 159 edge; ea
hvertex represents an individual and ea
h edge represents asso
iationbetween dolphin pairs o

urring more often than expe
ted by 
han
e[19℄.4 Numeri
al resultsIn this se
tion, we integrate the system of equation 2 over thebottlenose dolphins network. In the model variable x(t)'s representde
isions of the 62 agents, and the ω's their natural de
ision 
hanging



rate d
r. For the numeri
al results we �x the 
oupling for
e K = 2.2and the ω's are randomly 
hosen from a uniform distribution in therange [−0.5, 0.5] with average ω0 ≃ 0. We set xi(t = 0) = 0, ∀i, i.e,in the initial state all dolphins share the same de
ision 
hanging ratevalues. The results are presented in Fig. 2. Panels (a) and (b) showthe de
ision 
hanging rate (ẋ(t)) and the order parameter R(t) overs
100 time steps in a logarithmi
al s
ale for the abs
ise axe.As it 
an be appre
iated, as soon as we start the simulation, thesystem enters in a short unstable transient regime in whi
h agentstend to syn
hronize their a
tivities due to the 
oupling for
e (seeFig. 2(a)). This regime is 
hara
terized by maximum values of theorder parameter R(t) (see Fig. 2(b)). Immediately after, the sys-tem rapidly 
lusterizes resulting in two �nal 
lusters in whi
h agentsshare 
ommon d
r values. This situation re�e
t 
ommunity stru
turepresent in bottlenose dolphins so
iety. The distribution of agents inea
h �nal 
lusters is reported in Table 2.Table 2. Distribution of agents shown in Fig. 2(a) as resultingfrom the simulation of OCR model over the bottlenose dolphins 
om-munity for K = 2.2. Elements in parentheses represent the numbersof agents in ea
h �nal 
lusters.Cluster Agents in ea
h 
luster1 (21) 2,6,7,8,10,14,18,20,23,26,27,28,31,32,33,42,49,55,57,58,612 (41) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,29,30,34,35,36,37,38,39,40,41,43,44,45,46,47,48,50,51,52,53,54,56,59,60,62As it 
an be veri�ed, the distribution of agents in Table 2. is al-most the same as obtained in Table 1. Only two agents, the verti
es31(ω = −0.29) and 40(ω = 0.20), have ex
hange 
lusters. In thedolphin network this two verti
es fall in the boundary between the
ommunities of the network (see Fig 1). Therefore, depending ontheir natural de
ision 
hanging rate, 
an joint or leave a parti
ulargroup. In this 
ase, the modularity is Q = 0.3799 for this split into2 
lusters.



It is important to stress that, in this region of the 
ouplingstrength, agents in ea
h �nal group, tend to maintain a syn
hro-nized regime despite their di�erent natural de
ision 
hanging rates.This is due to the strong in�uen
e of the 
ommunity stru
ture pres-ents in the network whi
h a�e
t notably the de
ision of agents tojoin or leave a group. While a subsequent in
reases in the value ofthe 
oupling strength for
e a 
ompletely syn
hronized regime.
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Fig. 2.De
ision dynami
s of 
lusters syn
hronization in the OCR modelon the Dolphins Network for k = 2.2 and ω ∈ [−0.5, 0.5].In the other hand, 
entrality measure (betweenness) [10℄ for ea
hindividual of the network show that verti
es 2(ω = −0.5) and 37(ω =
0.17) have high betweenness values. Betweenness is a measure of thein�uen
e of individuals in a network over the �ow of informationbetween others. So, this two individuals represent a potentially in-formation brokers in this dolphin so
iety. In Fig. 2, panel (a), we haverepresented, in bold markers, the d
r variables asso
iated to this twoindividuals. A

ording to their natural de
ision 
hanging rate, ver-ti
es 2 (ω = −0.5) and 37(ω = 0.17) represents more 
onservativeand �exible individuals respe
tively.



To test how 
entral individuals in�uen
e the other members ofso
iety in the de
ision-making pro
ess, we have 
onsidered two si-tuation 
on
erning the vertex 2 (the same analysis 
an be realizedfor the vertex 37).The �rst one is when this 
entral agent have natural de
ision
hanging rate set to zero value (ω(2) ≃ 0) simulating a �exible agent.Results are shown in Fig. 3. As it 
an be appre
iated, two new singlegroups formed by verti
es 29 and 48 merge. It 
orrespond to individu-als with high absolute value of ω: ω(29) = 0.41 and ω(48) = −0.47.For this split into 4 
lusters, the modularity is Q = 0.3822. Detailsof that Distribution of agents is reported in Table 3.Table 3. Distribution of agents shown in Fig. 3(a) as resultingfrom the simulation of OCR model over the bottlenose dolphins 
om-munity for K = 2.2 and ω(2) = 0.Cluster Agents in ea
h 
luster1 (1) 482 (21) 2,6,7,8,10,14,18,20,23,26,27,28,32,33,40,42,49,55,57,58,613 (39) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,30,34,35,36,37,38,39,40,41,43,44,45,46,47,50,51,52,53,54,56,59,60,624 (1) 29The se
ond situation simulates a more �exible individual thattends to anti
ipate the others members of so
iety, i.e, ω(2) = 0.5,whi
h represents a maximum value of ω. Simulation results are re-presented in Fig. 4 over 200 time steps.Table 4. Distribution of agents shown in Fig. 4(a) as resultingfrom the simulation of OCR model over the bottlenose dolphins 
om-munity for K = 2.2 and ω(2) = 0.5.
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Fig. 3.De
ision dynami
s of 
lusters syn
hronization in the OCR modelon the Dolphins Network for k = 2.2 and ω(2) = 0. Central individualsare represented in bold marker.Cluster Agents in ea
h 
luster1 (1) 482 (5) 7,10,14,33,573 (3) 8,20,314 (6) 18,23,26,27,28,325 (38) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,30,34,35,36,37,38,39,41,43,44,45,46,47,50,51,52,53,54,56,59,60,626 (1) 297 (7) 2,6,40,42,49,55,588 (1) 61In Fig. 4(a) we 
an see that the system rea
hes a transient 
om-pletely syn
hronized regime (R(t) = 1 in Fig. 4(b)) in whi
h allindividuals run a the same d
r value, generally the average of all
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Fig. 4.De
ision dynami
s of 
lusters syn
hronization in the OCR modelon the Dolphins Network for k = 2.2 and ω(2) = 0.5. Central individualsare represented in bold marker.the ω. After, we observe that the group 
ontaining initially the in-dividual 2 (see Tables 2) is divided into several subgroups. As inthe previous situation, individuals with high absolute value of ω runalone in single groups. Details of that distribution are reported inTable 4. Compared with the initial 
on�guration of Table 2, we seethat the group 2 is quite stable. Apart from vertex 40 that leave thisgroup to join another one (see Table 4). Moreover, the modularity Q(Q = 0.3189) shows a signi�
ant de
rease, indi
ating that the par-tition obtained, does not 
orrespond to the natural partition of thenetwork.It is important to stress that 
hanging the distribution of thenatural de
ision 
hanging rate, the evolution of ea
h individual 
an
hange, but qualitatively the behavior of the system is the same.5 Con
lusionsThis work provide eviden
e that network topology is fundamen-tally important in de
ision-making dynami
s allowing individuals tojoin or to leave parti
ular groups depending on their positions in the



network. On the other hand, the natural de
ision 
hanging rate of
entral individuals is determinate in 
lusters formation pro
ess.A
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