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Abstract. In this work we investigate the consensus between
individuals in a social network of bottlenose dolphins by simulat-
ing the OCR (Opinion Changing Rate) model recently proposed by
Pluchini et al. in ref [1]. This model is a social adaptation of the
Kuramoto one in which the concept of opinion changing rate, i.e, the
natural tendency to change opinion, transforms the usual problem
of opinion consensus into a class of synchronization. We study the
emergence of synchronized groups of individuals both in terms of
natural frequency rates and central positions in the network.
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1 Introduction

The study of complex network has attracted a lot of attention in
the scientific community in recent years |2-5|. Indeed, many natural,
technological, biochemical and social systems can be conveniently
modeled as networks made of a large number of highly interconnec-
ted units. In general terms a network can be represented formally
as a graph: a set of generically called nodes (vertices) connected by
links representing some relationship. Recent studies have revealed
that such systems are all characterized by a number of distinctive
topological properties: relatively small characteristic distances bet-
ween any two nodes, high clustering properties, power-law degree
distribution and presence of community structure.

In social networks, the nodes are people, and ties between them
are friendship, political alliance or professional collaboration. The
structure of interaction network describing who is interacting with
whom, how frequently and with which intensity, reflects the import-
ance of topology in social dynamics. On the other hand, consensus is



a key aspect of social group dynamics. Everyday life presents many
situations in which it is necessary for a group to reach shared decisi-
ons. Consensus makes a position stronger, and amplifies its impact
on society. So the analysis of this social network under a particular
topology from numerical simulation of opinion dynamics models is
an important issue to understand the social group dynamics.

In this work, we deal with the problem of consensus formation in
animal social network with known community structure simulating
the OCR (Opinion Changing Rate) model proposed in ref |1|. The
network we study was constructed from observation of a community
of 62 bottlenose dolphins living in Doubtful Sound, New Zealand [9.
Ties between dolphin pairs were established by observation of sta-
tistically significant frequent association. The paper is organized as
follow. First, we review the main features of the Kuramoto and OCR
models. Then we describe a dolphin social network in terms of their
natural divisions using betweenness-based algorithm of Newman and
Girvan [7]. In the second part, we discuss the results of numerical
simulations of the OCR model on the network. Also, we investigate
the influence of particular individuals in maintaining the cohesion of
communities.

2 From Kuramoto model to the OCR model

Originally, the Kuramoto model was motivated by the study of
collective synchronization, a phenomenon in which a large number of
coupled oscillators spontaneously locks to a common frequency, de-
spite the differences in their natural frequencies [6,8]. The dynamics
of the Kuramoto model is given by:

N
. 1 )
bi(t) = wit ; Kijsin(6; — 6;), (1)

where 0;(t) denotes the phase of the oscillator ¢ at instant ¢t and w;
its natural frequency. The frequencies w; are distributed according
to some probability density g(w). K;; represents the coupling force
between units. The original model studied by Kuramoto assumed



mean-field interactions K;; = K,Vi7,j. The dynamics of this mo-
del depends only on two factors: the coupling force K whose effect
tends to synchronize the oscillators, and the frequency distribution
that drive them to stay away each from other by running at different
natural frquency. When the coupling is sufficiently weak, the oscilla-
tors run incoherently, whereas beyond a certain threshold collective
synchronization emerges spontaneously. The existence of such a cri-
tical threshold for synchronization is very similar to the consensus
threshold found in the majority of the opinion formation models.
Based on this concept, Pluchini et al.[1] define the OCR model as a
set, of coupled ordinary differential equations governing the rate of
change of agents’ opinions. The dynamics of a system of N agents is
given by:

K N
Ti(t) = E Z asin(r; — x;)e elwiml, (2)

where z;(t) €] —oo+ 00| is a real number that represents the opinion
of the ith agent at time t. The w;’s corresponding to the natural
frequencies of the oscillators in the Kuramoto model represent here
the so-called natural opinion changing rates (ocr), i.e., the intrinsic
inclinations of the agents to change their opinions. The values w;’s are
distributed in a uniform random way with an average wy. According
to this, we can simulate conservative individuals with values of w; <
wy, flexible ones with w; ~ wy and more flexible ones with w; > wy.
K > 0 is the coupling force, d; is the degree of each agent and
A;; is the adjacency matrix . The exponential factor in the coupling
term ensures that, for opinion difference higher than a certain thres-
hold, controlled by the parameter a (we typically adopted o = 3),
opinions will no more influence each other. This is perhaps the main
contribution of the OCR model with respect to the Kuramoto model.
Thus, to study the opinion dynamics of the OCR model we solve
numerically the system given by equation (2) for a given distribution
of the w’s and for a given coupling force K. As reported in [1], in
order to measure the degree of opinions coherence, we use an order
parameter related to the standard deviation of the opinion changing



rates defined as R(t) =1 — \/% S.(#5(t) — X ())2. Here X (t) is the
average over all agents of #;(t). Values of R approaching unity would
imply a high degree of opinions coherence, while low values indicate
a incoherently regime.

3 Dolphin social network

Bottlenose dolphins communities have been described as a fission-
fusion societies and therefore individuals (or agents) can make deci-
sions to join or leave a group. Two social groups (or clusters) were
identified in this population. The community structure of this net-
work, obtained using betweenness-based algorithm of Newman and
Girvan [7], is shown in Fig. 1, and the distribution of agents in each
group is reported in Tablel.

Table 1. List of agents in each final group as resulting from using
the Newman and Girvan algorithm |7] for a partition in two clusters.

Cluster Agents in each cluster

1(21) 2,6,7,8,10,14,18,20,23,26,27,28,32,33,40,42,49,55,57,58,61

2 (41) 1,3,4,59,11,12,13,15,16,17,19,21,22,24,25,29,30,31,34,35,
36,37,38,39,41,43,44,45,46,47,48,50,51,52,53,54,56,59,60,62

In order to measure the quality of a particular division of a net-
work into communities, we have used the measure known as Modula-
rity () introduced in ref [7]. Given a particular partition of a network
into n groups (or clusters), it is possible to define a n x n size sym-
metric matrix e whose element e;; is the fraction of all edges in the
network that link vertices in group i to vertices in group j. According
to this, the trace of this matrix Tre = ), e;; gives the fraction of
edges in the network that connect vertices in the same group, and
therefore a good division into groups should have a high value of
this trace. On the other hand, the sum of any row (or column) of the
matrix e, namely a; = > ; €ij, give the fraction of edges connected
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Fig. 1. Community structure in the bottlenose dolphins of Doubtful
Sound, extracted using the Newman and Girvan algorithm [7]. The
square and circles denote the primary split of the network into two

groups.
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to group 7. So, the expected number of intra-group edges is just a;a;.
Finally, the modularity @ is given by:Q = >_,(e;; — a?).

Values of () approaching unity,which is the maximum, would im-
ply a strong community structure. If we take the whole network as a
single group, or if the network is a random one, ) = 0. For the parti-
tion into two groups reported in Table 1., the modularity () = 0, 38.

This network is made of N = 62 vertex and [ = 159 edge; each
vertex represents an individual and each edge represents association
between dolphin pairs occurring more often than expected by chance
[19].

4 Numerical results

In this section, we integrate the system of equation 2 over the
bottlenose dolphins network. In the model variable x(t)’s represent
decisions of the 62 agents, and the w’s their natural decision changing



rate dcr. For the numerical results we fix the coupling force K = 2.2
and the w’s are randomly chosen from a uniform distribution in the
range [—0.5,0.5] with average wy ~ 0. We set z;(t = 0) = 0, V4, i.e,
in the initial state all dolphins share the same decision changing rate
values. The results are presented in Fig. 2. Panels (a) and (b) show
the decision changing rate (4(¢)) and the order parameter R(t) overs
100 time steps in a logarithmical scale for the abscise axe.

As it can be appreciated, as soon as we start the simulation, the
system enters in a short unstable transient regime in which agents
tend to synchronize their activities due to the coupling force (see
Fig. 2(a)). This regime is characterized by maximum values of the
order parameter R(t) (see Fig. 2(b)). Immediately after, the sys-
tem rapidly clusterizes resulting in two final clusters in which agents
share common dcr values. This situation reflect community structure
present, in bottlenose dolphins society. The distribution of agents in
each final clusters is reported in Table 2.

Table 2. Distribution of agents shown in Fig. 2(a) as resulting
from the simulation of OCR model over the bottlenose dolphins com-
munity for K = 2.2. Elements in parentheses represent the numbers
of agents in each final clusters.

Cluster Agents in each cluster

1(21) 2,6,7,8,10,14,18,20,23,26,27,28,31,32,33,42,49,55,57,58,61

2 (41) 1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25,29,30,34,35,36,
37,38,39,40,41,43,44,45,46,47,48,50,51,52,53,54,56,59,60,62

As it can be verified, the distribution of agents in Table 2. is al-
most the same as obtained in Table 1. Only two agents, the vertices
31(w = —0.29) and 40(w = 0.20), have exchange clusters. In the
dolphin network this two vertices fall in the boundary between the
communities of the network (see Fig 1). Therefore, depending on
their natural decision changing rate, can joint or leave a particular
group. In this case, the modularity is () = 0.3799 for this split into
2 clusters.



It is important to stress that, in this region of the coupling
strength, agents in each final group, tend to maintain a synchro-
nized regime despite their different natural decision changing rates.
This is due to the strong influence of the community structure pres-
ents in the network which affect notably the decision of agents to
join or leave a group. While a subsequent increases in the value of
the coupling strength force a completely synchronized regime.

decision changing rate (dcr)

time

Fig. 2.Decision dynamics of clusters synchronization in the OCR model
on the Dolphins Network for k£ = 2.2 and w € [-0.5,0.5].

In the other hand, centrality measure (betweenness) |10] for each
individual of the network show that vertices 2(w = —0.5) and 37(w =
0.17) have high betweenness values. Betweenness is a measure of the
influence of individuals in a network over the flow of information
between others. So, this two individuals represent a potentially in-
formation brokers in this dolphin society. In Fig. 2, panel (a), we have
represented, in bold markers, the dcr variables associated to this two
individuals. According to their natural decision changing rate, ver-
tices 2 (w = —0.5) and 37(w = 0.17) represents more conservative
and flexible individuals respectively.



To test how central individuals influence the other members of
society in the decision-making process, we have considered two si-
tuation concerning the vertex 2 (the same analysis can be realized
for the vertex 37).

The first one is when this central agent have natural decision
changing rate set to zero value (w(2) ~ 0) simulating a flexible agent.
Results are shown in Fig. 3. As it can be appreciated, two new single
groups formed by vertices 29 and 48 merge. It correspond to individu-
als with high absolute value of w: w(29) = 0.41 and w(48) = —0.47.
For this split into 4 clusters, the modularity is () = 0.3822. Details
of that Distribution of agents is reported in Table 3.

Table 3. Distribution of agents shown in Fig. 3(a) as resulting
from the simulation of OCR model over the bottlenose dolphins com-
munity for K = 2.2 and w(2) = 0.

Cluster Agents in each cluster
1(1) 48
2(21) 26,7,8,10,14,18,20,23,26,27,28,32,33,40,42,49,55,57,58,6 1
3(39) 1,3,459,11,12,13,15,16,17,19,21,22,24,25,30,34,35,36,
37,38,39,40,41,43,44,45,46,47,50,51,52,53,54,56,59,60,62
4 (1) 29

The second situation simulates a more flexible individual that
tends to anticipate the others members of society, i.e, w(2) = 0.5,
which represents a maximum value of w. Simulation results are re-
presented in Fig. 4 over 200 time steps.

Table 4. Distribution of agents shown in Fig. 4(a) as resulting
from the simulation of OCR model over the bottlenose dolphins com-
munity for K = 2.2 and w(2) = 0.5.
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Fig. 3.Decision dynamics of clusters synchronization in the OCR model
on the Dolphins Network for & = 2.2 and w(2) = 0. Central individuals
are represented in bold marker.

Cluster Agents in each cluster

1(1) 48
2 (5)  7,10,14,33,57
3(3) 82031

4(6) 18,23,26,27,28,32
5(38)  1,3,4,5,9,11,12,13,15,16,17,19,21,22,24,25.30,34,35,36,
37,38,39,41,43,44,45 46,47,50,51,52,53,54,56,59,60,62

6(1) 29
7(7)  2,6,40,42,49,55,58
$(1) 61

In Fig. 4(a) we can see that the system reaches a transient com-
pletely synchronized regime (R(t) = 1 in Fig. 4(b)) in which all
individuals run a the same dcr value, generally the average of all
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Fig. 4.Decision dynamics of clusters synchronization in the OCR model
on the Dolphins Network for £ = 2.2 and w(2) = 0.5. Central individuals
are represented in bold marker.

the w. After, we observe that the group containing initially the in-
dividual 2 (see Tables 2) is divided into several subgroups. As in
the previous situation, individuals with high absolute value of w run
alone in single groups. Details of that distribution are reported in
Table 4. Compared with the initial configuration of Table 2, we see
that the group 2 is quite stable. Apart from vertex 40 that leave this
group to join another one (see Table 4). Moreover, the modularity @
(Q = 0.3189) shows a significant decrease, indicating that the par-
tition obtained, does not correspond to the natural partition of the
network.

It is important to stress that changing the distribution of the
natural decision changing rate, the evolution of each individual can
change, but qualitatively the behavior of the system is the same.

5 Conclusions

This work provide evidence that network topology is fundamen-
tally important in decision-making dynamics allowing individuals to
join or to leave particular groups depending on their positions in the



network. On the other hand, the natural decision changing rate of
central individuals is determinate in clusters formation process.
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