User Interaction Design for Secure Systems

Ka-Ping Yee

Report No. UCB/CSD-02-1184
May 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Supported by NSF award #EIA-0122599
ITR/SI: Societal Scale Information Systems:
Technologies, Design and Applications

User Interaction Design for Secure Systems

Ka-Ping Yee
ping@zesty.ca
Computer Science Department
University of California, Berkeley

Abstract

The security of any computer system that is configured
and operated by human beings critically depends on the
information conveyed by the user interface, the decisions
of the computer users, and the interpretation of their
actions. We establish some starting points for reasoning
about security from a user-centred point of view, by
modelling a system in terms of actors and actions and
introducing the concept of the subjective actor-ability
state. We identify ten key principles for user interaction
design in secure systems and give case studies to
illustrate and justify each principle, describing real-world
problems and possible solutions. We anticipate that this
work will help guide the design and evaluation of secure
systems.

1. Introduction

Security problems are often attributed to software
errors such as buffer overruns, race conditions, or weak
cryptosystems. This has focused a great deal of attention
on assuring the correctness of software implementations.
However, the correct use of software is just as important
as the correctness of the software itself. For example,
there is nothing inherently incorrect about a program
that deletes files. But when such a program is instructed
to delete files against our wishes, we perceive a security
violation. In a different situation, the inability to
command the program to delete files could also be a very
serious security problem.

It follows that the security properties of any system
can only be meaningfully discussed in the context of the
system’s expected behaviour. Garfinkel and Spafford
give the definition: “A computer is secure if you can
depend on it and its software to behave as you expect”
[Garfinkel96]. Notice that the property of “being secure”
is necessarily dependent on the meaning of “you” in this
definition, which refers to the user. It is impossible to
even describe security without addressing the user
perspective.

Perhaps the most spectacular class of recent security
problems is the e-mail virus, which is a good real-life
example of a security violation in the absence of software
errors. At no point in the propagation of the virus does
any application or system software do anything other
than exactly what its programmers would expect: the e-
mail client correctly displays the message and correctly
decodes the attached virus program; the system correctly
executes the virus program. Rather, the problem has
occurred because the expectations of the programmer
became inconsistent with what the user would want.

Our purpose here is to present a way of thinking about
this type of issue. Usability issues are often considered to
“trade off” against security. Among many designers,
there is the pervasive assumption that improving security
necessarily degrades usability, and vice versa; the
decision of whether to favour one or the other is typically
seen as a regrettable compromise. In the end, these
judgement calls are made somewhat arbitrarily because
there seems to be no good answer. We believe that
usability and security goals rarely need to be at odds with
each other. In fact, often it is rather the opposite: a
system that’s more secure is more predictable, more
reliable, and hence more usable. One of the significant
contributions we hope to make with this paper is a
coherent model for thinking about user interaction that
clarifies the design process and helps one make these
decisions consistently.

We have examined a variety of existing systems and
have had the opportunity to discuss design challenges
and user experiences at length with the designers and
users of software intended to be secure. After much
debate and several iterations of refinement, we have tried
to distill the most productive lines of reasoning down to a
succinct set of design principles that cover many of the
important and common failure modes.

2. Related Work

We know of relatively few projects in computer
security [Holmstrom99, Zurko99, Jendricke00] that have
seriously emphasized user interaction issues. The Adage

project [Zurko99], a user-centred authorization service, is
probably the largest such effort to date. There have been
some important usability studies of security applications
[Karat89, Mosteller89, Adams99, Whitten99] that
demonstrate the tremendous (and often devastating)
impact that usability issues can have on the effectiveness
of security measures. However, to our knowledge, this
paper is the first attempt to propose a structured
framework for design thinking and to bring together
widely applicable statements about secure user
interaction as opposed to studying a single specific
application or mechanism.

We acknowledge that simultaneously addressing all
ten of the principles we present is a significant design
challenge. But, lest they seem too idealistic to be
satisfiable by a real system, it is worth mentioning that
there is ongoing work on designing a secure desktop
environment for personal computers that aims to meet all
of these principles [Walker99], as well as an
independently developed working prototype of a secure
desktop environment that does a reasonable job of
meeting eight of the ten principles [CapDesk].

3. Design Principles

Our criterion for admitting something as a basic
principle is that it should be fairly obvious that violation
of any principle leads to a security vulnerability. Our
priority was to achieve good coverage, so some of the
principles do overlap somewhat. They were not intended
to be axioms, but rather a set of guidelines for a designer
to keep in mind.

Saltzer and Schroeder’s principle of least privilege
[Saltzer75] is a basic starting point for reasoning about
most of these interaction design principles. So, it may be
difficult to imagine how one could meet all these
principles in current operating systems that were not
designed to work in a least-privilege style. It will make
more sense to consider these principles in the context of
a system aimed at supporting least privilege. A
language-based system for enforcing security, such as
Java’s “sandbox”, is an example of the kind of model in
which one could hope to satisfy these principles. Some
platforms designed around the least-privilege concept
include the E scripting language [E], KeyKOS
[Hardy85], and EROS [Shapiro99].

First, we’ll present just the design principles
themselves, and then build up a structured set of concepts
that allows us to explain the thinking behind each of
them in more detail. In the statement of these principles,
we have used the term “actor” to mean approximately
“user or program”, but we will need to define this term
more precisely below. When we say “authority”, we just
mean the ability to take a particular action.

Path of Least Resistance. To the greatest extent
possible, the natural way to do any task should also be
the secure way.

Appropriate Boundaries. The interface should
expose, and the system should enforce, distinctions
between objects and between actions along boundaries
that matter to the user.

Explicit Authority. A user’s authorities must only be
provided to other actors as a result of an explicit action
that is understood by the user to imply granting.

Visibility. The interface should allow the user to
easily review any active authority relationships that
would affect security-relevant decisions.

Revocability. The interface should allow the user to
easily revoke authorities that the user has granted
wherever revocation is possible.

Expected Ability. The interface must not generate
the impression that it is possible to do something that
cannot actually be done.

Trusted Path. The interface must provide an
unspoofable and faithful communication channel
between the user and any entity trusted to manipulate
authorities on the user’s behalf.

Identifiability. The interface should enforce that
distinct objects and distinct actions have unspoofably
identifiable and distinguishable representations.

Expressiveness. The interface should provide enough
expressive power (a) to describe a safe security policy
without undue difficulty; and (b) to allow users to express
security policies in terms that fit their goals.

Clarity. The effect of any security-relevant action
must be clearly apparent to the user before the action is
taken.

3.1. The User and the User Agent

Thus far, we have mentioned “the user” several times,
so it is necessary to precisely define what we mean by the
user. For the purpose of the rest of this discussion, the
user is a person at a computer using some interface
devices such as a keyboard, mouse, and display.’

We are concerned with the software system that is
intended to serve and protect the interests of the user,
which we will call the “user agent”. On a single-user

! It is sometimes important to be able to consider an organization, rather
than an individual, "the user" of a piece of software. It is interesting to
re-examine the above design principles from the perspective of an
organization, although some of the issues raised might not be addressed
by what one would typically call a user interface. It is also interesting to
look at the design principles from the perspective of a software program.
Although some principles might not apply (because programs do not
have fallible memories and perception systems like people do), many of
them still make sense (the ability to make decisions still depends on the
availability of sufficient information, the principle of least privilege still
holds, and so on).

system, the user agent is the operating system shell
(which might be a command line or a graphical shell),
through which the user interacts with the arena of
entities on the computer such as files, programs, and so
on. On a multi-user system, that arena expands to
include other users, using their own user agents to
interact within the same arena.

When the system is networked, say to the rest of the
Internet, there is a new, second level of interaction.
Now, the arena of the single computer is nested within
the larger arena of the Internet. A new kind of user
agent (such as an e-mail client or a Web browser) now
represents the user’s interests in that larger arena of
interacting entities (which again includes other users
with their own user agents). But in the smaller arena of
the single computer, a Web browser is merely one of the
participants, and the user’s interactions with it are
mediated by the lower-level user agent, the system shell.
The Web browser might be used to contact yet a third
user agent, such as a Web-based interface to a bank,
operating in yet a third arena (of financial transactions
among account holders), and so on.

We point out this distinction here mainly to help
avoid confusion. We will not directly address the issue
of communicating through multiple levels of user agents
here; it’s simpler to select an arena and think within the
context of just one level at a time. The rest of this paper
discusses the design of any user agent serving a user.
The interaction design principles we present can apply to
all kinds of users, including not just end users of
application software, but also system administrators and
programmers, using whatever software they use for their
tasks. Different users will have different expectations
and needs, so the design of any secure system must begin
with a clear understanding of those needs. This is why
the principles are stated in terms of what the user
perceives and what the user expects.

3.1.1. Principle of the Path of Least Resistance

In the real world, there is often no relationship
between how safe or unsafe actions are, and how easy or
hard they are. (It takes much more concentration to use
a hammer safely than unsafely, for example.) We have
to learn, by being told, by observing others, and often by
making many painful mistakes, what ways of doing
things are safe. Sometimes, through the design of our
tools, we can make it a little easier to do things safely.
Most food processors have a switch that allows them to
operate only when the lid is closed. On power drills, the
key for opening the drill chuck is often taped to the
power cord so that unplugging the drill becomes a
natural prerequisite to changing the drill bit. In both of
these cases, a bit of cleverness has turned a safety

precaution into a natural part of the way work is done,
rather than an extra easily forgotten step.

Most users do not spend all their time thinking about
security; rather, they are primarily concerned with
accomplishing some useful task. It is human nature to be
economical with the use of physical and mental effort,
and to tend to choose the “path of least resistance”. This
can sometimes cause the user to work against security
measures, either unintentionally or intentionally. If the
user is working against security, then to a large extent
the game is already lost. Hence, the first consideration is
to keep the user’s motivations and the security goals
aligned with each other.

There are a number of aspects to this. First, observe
that the ultimate path of least resistance is for the user to
do nothing; that is, to leave the system in its default state.
Therefore, the default settings for any software should be
secure (this is Saltzer and Schroeder’s principle of “fail-
safe defaults” [Saltzer75]). It is unreasonable to expect
users to read documentation in order to learn that they
need to change many settings before they can run
software safely.

Second, consider how a user might work against
security measures unintentionally. The user interface
leads users to do things in a certain way by virtue of its
design, sometimes through visual suggestion, and
sometimes in other ways. The word “affordance” was
introduced by J. J. Gibson [Gibson77] to refer to the
properties of things that determine how they can be
interacted with. Don Norman applied this concept to
interaction design [Norman88]. In computer user
interfaces, the behaviour of users is largely guided by
what affordances they perceive. They decide what
actions are available to them by observing whether
particular things appear as though they ought to be
clicked or dragged or typed at, and so on. For example,
suppose an icon of a lock can be clicked to request
detailed security information. If the icon is not made to
look like something that’s supposed to be clicked, the
user might never notice that this was an available action,
eliminating the usefulness of the feature.

Third, consider whether a user might subvert security
intentionally. If operating securely requires too much
effort, users might decide to circumvent or ignore
security measures even while completely aware that they
are doing so. Therefore, there is a security risk in a
system where the secure patterns of usage are
inconvenient: each added inconvenience increases the
probability that the user will decide to operate the
software unsafely.

All of these aspects can be summarized by the
principle of the path of least resistance: the natural
way should be the secure way.

Sometimes the desire to make things easy and natural
may seem to be in conflict with the desire to make things
secure. However, these goals are truly in conflict less
often than one might think, as shown by the file browser
example we will explain in Section 3.5.1.

Making security tighter usually has to do with getting
more specific information about what goal the user wants
to accomplish so we can do it more carefully. Often this
information is already available in the user’s actions; it
just needs to be applied consistently to improve security.
There remain a few situations where, for the sake of
security, it may be absolutely necessary to introduce a
new inconvenience. When this is the case, provide a
payoff to offset the cost of the new inconvenience, by
making productive use of the extra information the user
is asked to provide.

For example, consider a multi-user system that
requires people to log in with a username and a password
before they can do anything. Logging in is an extra step
that is necessary for security, but has little to do with the
user’s intended task. However, we can use that extra
information to personalize the user’s experience—
providing them with their own custom desktop, menu of
favourite programs, and so on—to justify the added
inconvenience. This helps to keep the user from trying
to circumvent the login process (or choosing to use a
software system that doesn’t have one).

3.2. Objects, Actors, and Actions

Before explaining the next few principles, we need to
introduce a few more concepts.

In order to productively interact with the world
around us, we build a mental model of how it works.
This model enables us to make predictions about the
consequences of our actions, so that we can make useful
decisions. In the model, most concepts fall within the
two fundamental categories of objects and actions. This
division is reflected in the way that practically all
languages, natural or invented, draw the distinction
between nouns and verbs.

Some objects are relatively inert. The way they
interact with other things is simple enough to be
modelled with physical laws. For instance, if I shove a
mug off the edge of a table, I expect it to fall to the
ground. In Dennett’s terminology, my model adopts the
“physical stance” [Dennett87] toward the mug. It is
usually straightforward to work with such objects because
we can predict quite precisely what they will do. On a
computer, one might consider a text file an example of
such an object. We can do things to the text file (say,
copy it or delete it) that have simple, predictable
consequences, but the file takes no actions of its own.

Some objects have their own behaviours; we will call
such objects actors, since they are capable of taking
actions of their own. Even though such objects exist in
the physical world and still follow physical laws in
principle, their behaviour is too complex to model using
only physics. It is impossibly difficult to predict exactly
what an actor will do; instead, we can only proceed by
estimating reasonable bounds on what the actor will do.

To a computer user, an application program is an
actor. There are some expectations about what the
program will do, and some established limits on what it
should be able to do, but no user could know in detail
exactly what program instruction is being executed at a
given moment. Even though the operation of the
program may be completely deterministic, we cannot
take a physical stance toward it because it is too complex.
Instead, we must model the program based on our
understanding of the purpose for which it was designed
(this is taking the “design stance” [Dennett87]).

Other users are also actors. However, rather than
having been designed for a purpose, their behaviour is
directed by their own motivations and goals. As they are
conscious entities, we model their behaviour in terms of
our knowledge of their beliefs and intentions; that is, we
adopt the “intentional stance” [Dennett87] toward such
entities.

Incomplete knowledge of the design, beliefs, or
intentions of an actor produces uncertainty. We limit
this uncertainty by applying the physical stance: while I
am inside a locked house, for example, I have no need to
model the intentions of any people outside the house
because I am relying on the physical properties of the
house to keep them out of my model.

Building models of actors is something we humans
are very good at, since we have been learning how to do
it all our lives. Bruce and Newman have examined in
detail how the comprehension of “Hansel and Gretel”
requires us to model actors, actors’ models, actors’
models of other actors’ models, and so on, many levels
deep [Bruce88]—yet such complex modelling is a
routine skill for young children. There is also significant
evidence from computer-human interaction research that
people perceive computers as “social actors” [Nass94]
even though machines do not actually possess human
motivations. Both of these reasons suggest that we
indeed form our mental models of computers in terms of
actors and actions.

Given this foundation, we can now formulate a more
precise interpretation of Garfinkel and Spafford’s
definition of computer security. Our new definition is:
“A system is secure from a given user’s perspective if the
set of actions that each actor can do are bounded by what
the user believes it can do.”

3.3. The System Image and the User Model

When a designer creates a system, the designer does
so with some model in mind. But the designer doesn’t
get to communicate directly with the user. Rather, the
designer decides how the system will work, the system
presents an image to the user, and the user builds a
model from interacting with the system. Communication
of the model occurs only via this system image.

Figure 1 illustrates this flow of information. In the
next few sections, we’ll look at some important features
of the system image and the user model.

design model .ﬁ
O

[o

o

designer

system image

Figure 1. Designer, system, and user (from [Norman88]).

3.4. Aggregation

The actual working of a computer system is extremely
complex and involves a tremendous number of small
components and operations. There may be many
thousands of objects involved and an unlimited variety of
possible actions. To make the system comprehensible,
the system image aggregates these objects and actions
into a smaller number of units.

Objects may be grouped by related concept or purpose.
All the individual bytes of a file are usually taken
together, given a single name, and presented as a single
manipulable object. Actions may be grouped by concept,
by locality in time, or by causality relationships. For
example, while a request to open a Web page may
involve many steps (looking up a hostname, opening a
network connection, sending a request, downloading the
response, parsing the response, and then proceeding to
do the same for any embedded images), it is presented as
a single action. (The modelling notation in [Bruce88]
includes an abbreviation called “ByDoing” for this kind
of aggregation.)

Most user interfaces allow the user to control some
grouping in order to reduce their own mental effort. For
instance, in most desktop operating systems, one can
move a collection of files into a directory, and then move,
copy, or delete the entire directory with a single

operation. The grouping is up to the user: that is, one
can perform subjective aggregation [Miller00] on the file
objects. Systems that support end-user programming
features, such as macros, allow the subjective
aggregation of several actions into a single action.

3.4.1. Principle of Appropriate Boundaries

Aggregation is important because it defines the terms
in which authorities can be expressed. The user’s model
deals with concepts such as “actor X is capable of
performing action Y to object Z”. The boundaries of the
objects and actions are defined by observing the system
image. The system image conveys these boundaries
through the ways that the user can identify objects,
communicate with actors, take actions, and so on.

Here is an example to demonstrate the significance of
choosing these boundaries. Consider the basic intuition
that a secure operating system should allow the user to
control the granting of authorities to applications. If an
application program spawns multiple processes, does this
then mean that the user must separately grant authorities
to each process? Or if a program relies on software
modules or shared libraries to take care of work on its
behalf, should the user have to separately control the
authorities of every module? No: we resolve this
apparent usability crisis by declaring that the boundaries
in the system image (which are also the boundaries of
authority control) should be consistent with distinctions
the user actually cares about. Any boundary that could
have meaningful security implications to the user should
be visible, and those that do not should not be visible.

In short, this is the principle of appropriate
boundaries: the interface should distinguish objects and
actions along boundaries that matter to the user. If the
distinctions are too detailed, there is an increased risk
that users will overlap or leave out specifications. On the
other hand, if the boundaries are too few, users will be
forced to give away more authority than they intend. The
right distinctions can be discovered by asking oneself if
there are situations where the user would ever want to
manipulate one authority independently of another, to
grant an authority to one actor but not another, to permit
access to one resource but not another, and so on.

Supporting good distinctions sometimes places
requirements on the software system behind the user
interface. In the case of our example, since it would be
infeasible to insist on separate control of authorities for
each software component, the system should support the
safe aggregation of software components into useful
conceptual units (that is, applications), such that
reasoning about the authorities of an application as a unit
still holds valid. The system image should present
boundaries between different applications; consequently,

whenever two applications use the same software
module, that module should be unable to convey
authority between the applications.

3.5. The Actor-Ability State

Among other things, the user model contains
knowledge about all the actors’ abilities. ~ More
specifically, at any point in time, the user knows of a
finite set of actors A = { Ay, Ay, A,, ... A, } that can
have an effect on the system, where A, is the user and
there are n other actors. Each actor A; is associated with
an alleged set of potential actions, P;, One can think of
P; as the user’s answer to the question, “What can this
actor do that would affect something I care about?” The
knowledge of actors and abilities then consists of
<A={A0,A1,A2,. . .An},P={P0,P1,P2,. . .Pn}>.
We will call this subjective information the user’s actor-
ability state.

Since the user believes that Py is the set of available
actions he or she can perform, the user will always
choose to do actions from that set. In order for the user
to choose things that are actually possible to do, P
should be a subset of the user’s actual abilities.

Since the user believes that P; (for i > 0) is the set of
available actions some other actor A; can perform, the
user expects that any action taken by A; will be a member
of P;. Therefore, to uphold this expectation, P; must be a
superset of that actor’s actual abilities.

3.5.1. Principle of Explicit Authority

It is essential to keep the actor-ability state in the
user’s model accurate at all times, since the user will
make security-relevant decisions based on this state. To
stay synchronized with reality, the user must be in
control of any changes that would affect the actor-ability
state. This is the principle of explicit authority: an
explicit action must be taken to grant new authorities to
other actors. More precisely, since the user’s actor-
ability state is a set of bounds on each actor’s abilities
(rather than a precise enumeration of each specific
ability), we require an explicit action to be taken in order
for the set of available actions for any actor to come to
exceed the bounds in the user’s current actor-ability
state. Or, in other words, we must maintain the
constraint that P; is a superset of the actual abilities of A;,
for all other actors (that is, for i > 0).

Explicit authority is perhaps the most basic
requirement for controlling authority in any system. In
current systems, applications often have authorities to
resources such as the network and filesystem without
ever having been explicitly granted these authorities.
Explicit authority is a direct descendant of Saltzer’s

principle of least privilege. Requiring each authority to
be explicitly granted increases the likelihood that actors
will operate with the least authority necessary. Without
such a restriction, the user becomes responsible for
finding a potentially unlimited set of implicitly granted
authorities to disable before the system is safe to use.

At first glance, it may seem that the principle of
explicit authority is in conflict with the principle of the
path of least resistance. Does the principle of explicit
authority mean that we must now constantly intercept the
user with annoying security prompts to confirm every
action? In fact, most of the time, we do not need to ask
for extra confirmation; the user already provides plenty
of information in the course of performing the task. We
merely need to make sure that the system honours the
manipulations of authority that are already being
communicated. For example, if the user asks an
application to open a file and selects a file from a file
browser, it is already clear that they expect the
application to read the file. No further confirmation is
necessary. The single act of selecting the file should
convey both the identity of the chosen file and the
authority to read it [Hardy88].

We can judge when explicit authority is necessary on
the basis of the user’s expectations. For example, if there
is a window on the screen that clearly belongs to an
application, users will expect the application to draw in
the window. However, it would certainly be unexpected
for the application to spontaneously delete the user’s
personal documents. Just as it requires an explicit action
by the user to instruct the computer to delete personal
files, so should it require explicit action by the user for
any program to acquire the ability to delete them.

The judgement of what authorities should be explicit
should be based on the potential consequences, not on the
technical difficulty of the decision to be made. Any
authority that could result in unexpected behaviour
should be controlled by the user. If the user cannot
readily understand the consequences of granting an
authority, then that authority should never be granted at
all, not merely hidden under some “Advanced” section of
the interface. If a truly necessary authority seems to
require an unusual degree of technical knowledge, then
the model presented to the user probably needs to be
rethought in terms that can be understood.

3.5.2. Principle of Visibility

If the actor-ability state begins as a known quantity
(for example, we have a safe minimal set of authorities,
such as allowing applications to draw within labelled,
bounded areas of the screen), and we are in control of
each change in state, then in theory we have enough
information to ensure that our state is always accurate.

However, there will often be situations where one has to
come upon a new system in an unknown state.
Moreover, it is unreasonable to expect a user to keep a
perfect record of all grantings of authorities; human
memory is fallible and limited in capacity. Therefore, we
must enable users to update the actor-ability state in their
heads at any time. That is, the system must support the
principle of visibility. This is not to say that the
interface should display all the low-level authorities of all
the components in the system as a debugger would.
Rather, it should show the right information for the user
to ascertain the limits of what each actor can do, and
should do so in terms of actors and actions that fit the
user’s model.

Visibility of system state is advocated by Jakob
Nielsen as essential for usability in general [Nielsen94].
Likewise, visibility of authorities is necessary for users to
understand the security implications of their actions.
Since such authorities come about as a result of the
user’s granting actions, it makes sense to show the actor-
ability state in terms of those granting actions. Past
granting actions that have no effect on the current state
(such as access given to an application that has since
terminated) need not be visible. It is helpful to be able to
identify authorities by inspection of either the holder or
the resource to which the authority gives access. Without
visibility of authorities, any application that gains an
authority could retain and use that authority undetected
and indefinitely, once the user has forgotten about the
granting action.

3.5.3. Principle of Revocability

To keep the actor-ability state manageable, the user
must be able to prevent it from growing without limit.
Therefore, wherever possible, the user should be allowed
to revoke granted authorities; this is the principle of
revocability.

Another, stronger argument for facilitating revocation
is the need to accommodate user error. It is inevitable
that people will make mistakes; any well-designed
system should help recover from them. In the context of
granting authorities, recovery from error amounts to
revocation. One might intentionally grant an authority
to an application and later discover that the application is
misguided or malicious; or one might inadvertently grant
the wrong authority and want to correct the mistake. In
both of these cases, the granting decision should be
reversible. Note that revocation prevents further abuse of
an authority, but it is rarely possible to undo any damage
caused by the abuse of an authority while it was
available. Therefore, interfaces should be careful not to
draw an analogy between “revoke” and “undo”; instead,
“revoke” is better described as “desist”.

3.5.4. Principle of Expected Ability

When we introduced the actor-ability state, we
mentioned that P, should be a subset of the user’s actual
abilities. This can also have security consequences. In
the course of performing tasks, users sometimes make
decisions based on the expectation of future abilities. If
these expectations are wrong, the user might make the
wrong decision, with serious security consequences. In
some situations, the false expectation of an ability might
give the user a false sense of security, or cause the user to
make a commitment that cannot be fulfilled. Hence the
principle of expected ability: the interface must not
give the user the false impression of an ability.

For example, suppose the user is working in a system
where granted authorities are usually revocable. If the
user comes across an authority for which revocation is
not supported, the interface should make it clear that the
authority cannot be revoked, as this could affect the
user’s decision to grant it.

Or suppose the interface makes the claim that it is
possible to prevent an application from broadcasting
information on the Internet. The user could then decide
to reveal sensitive information, based on this expectation.
If the system in fact cannot enforce the restriction, the
user has been misled into enabling a security violation.

3.6. Input and Output

Observation and control is conveyed through input
and output, so the ability to use a system securely relies
on the integrity of the input and output channels.

3.6.1. Principle of the Trusted Path

The most important input and output channels are
those used to manipulate authorities; if these channels
can be spoofed or corrupted, the system has a security
vulnerability. Hence the principle of the trusted path:
the user must have an unspoofable and incorruptible
channel to any entity trusted to manipulate authorities on
the user’s behalf.

The authority-manipulating entity could be a number
of different things, depending on the domain. In an
operating system, the authority-manipulating entities
would be the operating system and user interface
components for handling authorities. Microsoft
Windows, for example, provides a trusted path to its
login window by requiring the user to press Ctrl-Alt-Del.
This key sequence causes a non-maskable interrupt that
can only be intercepted by the operating system, thus
guaranteeing that the login window cannot be spoofed by
any application. In a language system for running
untrusted code, such as Java, this issue also needs to be
addressed.

3.6.2. Principle of Identifiability

The ability to identify objects and actions is the first
step in proper communication of intent. When identity is
threatened, either by inadvertent collision or by
intentional masquerading, the user is vulnerable to error.
Identification has two aspects: continuity (things which
are the same should appear the same) and
discriminability (things which are different should
appear different).

That something is perceived to have an identity
depends on it having some consistency over time. When
we see an object that looks the same as something we
saw recently, we are inclined to believe it is the same
object. If an untrusted program can cause an object to
look the same as something else, or it can change the
appearance of an object in an unexpected way, it can
produce confusion that has security consequences. The
same is true for actions, in whatever way they are
represented; actions are just as important to identify and
distinguish as objects.

Note that it is not enough for the representations of
distinct objects and actions to merely be different; they
must be perceived by the user to be different. For
example, a choice of typeface can have security
consequences. It is not enough for two distinct
identifiers to be distinct strings; they must be displayed
with visually distinct representations. In some fonts, the
lowercase “L” and digit “1” are very difficult to
distinguish. With the use of Unicode, the issue is further
complicated by characters that combine to form a single
accented letter, as this means many different character
sequences can be rendered identically on the screen.

As the communication of intent is vital, and we
cannot assume that objects will give themselves unique
and consistent representations, identifiability is
something that must be ensured by the system. This
gives us the principle of identifiability: we must enforce
that distinct objects and distinct actions have unspoofably
identifiable and distinguishable representations.

3.6.3. Principle of Expressiveness

Sometimes a security policy may be specified
explicitly, as in a panel of configuration settings; other
times it is implied by the expected consequences of
actions in the normal course of performing a task. In
both cases, there is a language (consisting of settings or
sequences of actions) through which the user expresses a
security policy to the system.

If the language used to express security preferences
does not match the user’s model of the system, then it is
hard to set policy in a way that corresponds with
intentions. In order for the security policy enforced by

the system to be useful, we must be able to express a safe
policy, and we must be able to express the policy we
want. This is the principle of expressiveness.

3.6.4. Principle of Clarity

When the user is given control to manipulate
authorities, we must ensure that the results reflect the
user’s intent. We rely on software correctness to enforce
limits on the authorities available to an actor; but the
correctness of the implementation is irrelevant if the
policy being enforced is not the one the user intended.
This can be the case if the interface presents misleading,
ambiguous, or incomplete information.

The interface must be clear not only with regard to
granting or revoking authorities; the consequences of any
security-relevant decision, such as the decision to reveal
sensitive information, should be clear. All the
information necessary to make a good decision should be
accurate and available before an action is taken, not
afterwards, when it may be too late; this is the principle
of clarity.

An interface can be misleading or ambiguous in non-
verbal ways. Many graphical interfaces use common
widgets and metaphors, conditioning users to expect
certain unspoken conventions. For example, round radio
buttons usually reflect an exclusive selection of one
option from several options, while square checkboxes
represent an isolated yes-or-no decision. The presence of
an ellipsis at the end of a menu command implies that
further options need to be determined before an action
takes place, whereas the absence of such an ellipsis
implies that an action will occur immediately when the
command is selected.

Visual interfaces often rely heavily on association
between graphical elements, such as the placement of a
label next to a checkbox, or the grouping of items in a
list. Within a dialog box of security settings, for
instance, we might be relying on the user to correctly
associate the text describing an authority with the button
that controls it. The Gestalt principles of perceptual
grouping [Wertheimer23] can be applied to evaluate and
improve clarity:

* Proximity: items near each other are seen as
belonging together.

* Closure: line breaks and form discontinuities are
filled in.

* Symmetry: symmetrically positioned and shaped
objects are seen as belonging together.

* Figure-ground segregation: small objects are
seen as the foreground.

* Continuation: objects that follow a line or curve
tend to be seen as belonging together.

* Similarity: similar shapes belong together.

3.7. Summary

In order to have a chance of using a system safely in a
world of unreliable and sometimes adversarial software, 1
need to have confidence in the following statements:

* Things don’t become unsafe “all by themselves”.
(Explicit Authority)

* I can know whether things are safe.
(Visibility)

* I can make things safer.
(Revocability)

* I don’t choose to make things unsafe.
(Path of Least Resistance)

* [know what the system can do for me.
(Expected Ability)

* The system can safely do what I want.
(Appropriate Boundaries)

* I can tell the system what I want.
(Expressiveness)

* | know what I'm telling the system to do.
(Clarity)

* The system protects me from being fooled.
(Identifiability, Trusted Path)

4. Case Studies

In the following sections, we analyze some security
problems that arise from usability issues in real-life
applications, and show how the above design principles
apply. We present these case studies to justify our claim
that each of these design principles is in fact a significant
consideration and to show that each one can be applied
in practice to guide design for better security.

4.1. ActiveX and Code Signing

Problem: When an untrusted ActiveX control is
downloaded from a Web page, its digital certificate is
presented to the user for approval. Most of the time,
users accept certificates without paying them much
attention, even from unknown sources. Once accepted, a
malicious ActiveX control would have full access to the
machine, and could easily wipe out or overwrite anything
on the hard drive. Although one could try to legally
pursue the source identified on the certificate, the damage
is already done. If the damage is done quietly (say, an
alteration to an important accounting file), it might not
be discovered until much later.

Further, consider a more subtle and insidious attack in
which an ActiveX control appears to perform its
intended function, but meanwhile silently modifies the
certificate-checking behaviour of the operating system. It
could make the certificate checker function properly for
the next 99 times and then destroy the hard drive on the

100th ActiveX control downloaded; or it could even have
it destroy the hard drive when it sees a certificate signed
by a particular other party that the attacker wants to
incriminate. This kind of delayed attack would be
virtually impossible to trace.

Analysis: Although the cryptography behind code
signing is perfectly sound, its effectiveness is diminished
because few users ever check the validity of certificates in
practice. Users find that it takes too much effort to even
read the certificate, and most don’t know how to verify
the fingerprint to ensure that it matches the claimed
certifying authority. In the ActiveX scheme, the easiest
action — to simply click “Okay” and proceed — is also
the most dangerous. It is clear that this scheme was
designed without regard to the path of least resistance.

Solution: The security of the system should not rely
on an assumption that users will always expend time and
effort on security checks. By default, downloaded code
should run with extremely limited authority. Granting
extra authorities to a downloaded program should require
special action from the user, and in no event should the
program be allowed to modify the operating system.

4.2. Java Applet Permissions in IE

Problem: The dialog for editing Java permissions in
Microsoft Internet Explorer 5, shown in Figure 2,
presents two independent options regarding files:
“Access to all files” and “Dialogs”. “Access to all files”
gives universal permission to read and write any file;
“Dialogs” permits applets to show a file chooser dialog.

There is no way to allow access to only one file, or
even to allow reading without writing. To accomplish
almost any useful creative task, one often needs to save
work locally. But permitting access to all files allows an
applet to destroy the entire file system, which is clearly
almost never desirable. There is also no way to
distinguish individual applets; Internet Explorer groups
Web sites into four zones, and all applets from all sites in
a zone are treated with the same policy.

‘View Permissions Edit Permissions l

O Dizable L]
Q) Enable
ﬁ Additional Unsigned Pemissions
@ Aocess to all Files
Q) Disable
® Enachle
@ Access to all Metwork Addresses
(® Disable
O Enable
@ Execute
@ Disable
Q) Enable
@ Dialogs
Q) Dizable
(® Enahble
@ System Infarmation j

Figure 2. Java security settings in Internet Explorer.

Analysis: The system image has failed to provide
appropriate boundaries between distinct file objects,
between the distinct actions of reading and writing, or
between distinct actors (that is, different Java applets).
The permissions dialog also violates the principle of
clarity by presenting confusing and vague controls.
None of the permissions are explained in any detail: it is
not made clear that “Access to all files” includes
modification or destruction of files, nor is it explained
just what kinds of dialogs the “Dialogs” setting affects.

Solution: The problem of clarity could be addressed in
isolation by adding better descriptive text to the dialog
box. However, a much better solution would be to
eliminate the permissions dialog altogether and grant file
access at the time that access is needed. If an applet
needs to read or write one file, then the Java language
system should present a file chooser that clearly indicates
whether read or write access is requested, and the user’s
selection of a file should convey the authority to read or
write it. This change would greatly improve both
security and usability at the same time.

4.3. E-mail and Macro Viruses

Problem: The “Melissa” virus was first reported on
26 March 1999 and within three days it had infected
more than 100,000 computer systems [CA-1999-04].
Despite widespread publicity about Melissa and
increased demand for computer security measures, most
computers remained unprotected. Over a year later, in
May 2000, a similar virus known as “Love Letter” spread
even more rapidly; it was estimated to have infected
millions of computer systems within just a couple of days
[CA-2000-04]. The Love Letter virus did much more
damage than Melissa, destroying most of the image and
music files on each machine.

Analysis: The permissive nature of Microsoft
Windows made it trivially easy for these viruses to infect
other computers and destroy files. Here are some of the
authorities abused by these viruses, none of which are
necessary to the reading of a typical e-mail message:

1. Upon a request from the user to examine an
attachment, the enclosed script or macro was
given permission to execute.

2. The script or macro was allowed to discover all
the files on the machine and overwrite them.

3. The script or macro was allowed to read the
Microsoft MAPI address book.

4. The script or macro was allowed to command
Microsoft Outlook to send out mail.

Item 1 is a violation of the principle of clarity. The
recipient did take explicit action to see the contents of the
attachment, but was misled about the potential
consequences. In the user’s mind, the desired action is to

view the attachment; instead, the action actually taken is
to execute it. In the case of Melissa, the attachment was
just a Microsoft Word document, and few users were
aware that a document could actively damage the system
upon being opened. In the case of the Love Letter worm,
the operating system hid the “.vbs” extension on the
filename “LOVE-LETTER-FOR-YOU.TXT.vbs” so that
the attached file appeared to be a text file; again, the
recipient had no obvious warning that opening the file
could damage the system.

Items 2 through 4 are violations of the principle of
explicit authority. A typical e-mail message never
needs to be given the ability to trigger the transmission of
further mail, yet the e-mail client extended these
permissions freely to the attachment without any explicit
action from the user. Neither the e-mail client nor
Microsoft Word need permission to overwrite arbitrary
files on the disk at all, and the operating system should
not have granted them this permission without explicit
action from the user.

Solution: When an action will cause the creation of a
new actor, as in item 1, the interface should make it clear
that this will happen. The system should follow the
principle of explicit authority, and avoid giving out the
authority to destroy files or send e-mail unless the user
specifically authorizes them.

4.4. Back Orifice

Problem: Many operating systems, including
Windows and Unix, make it easy for programs to run “in
the background” in a way that is invisible to the typical
user. Although there is a way to view a list of processes,
the user must first suspect the existence of a harmful
process before he or she can discover and disable it.

One of the most widely publicized examples of a
potentially harmful background process is the “Back
Orifice” program released by a group named Cult of the
Dead Cow in mid-1998. Back Orifice can be used to
remotely control a computer running Windows,
including capturing keystrokes and images of the screen
and transmitting or modifying its files.

Analysis: Microsoft responded to concerned
customers with a security bulletin claiming that Back
Orifice “does not expose or exploit any security issue
regarding Windows, Windows NT, or the Microsoft
BackOffice suite of products” [Microsoft98]. The
bulletin further implied that the user is fully responsible
for evaluating the security consequences of any software
they download or install. This reflects a narrow,
developer-centric point of view. The expectation that
one will never make any mistakes while installing or
configuring software is clearly unreasonable, even for the
most experienced system administrators.

Even if we assume that the user understands exactly
what Back Orifice does, there certainly is a security issue
regarding Windows demonstrated here. Suppose the
user launches Back Orifice accidentally (perhaps two
nearby clicks get interpreted as a double click); or the
user launches it intentionally but forgets that it is
running; or the user closes all visible Back Orifice
windows, believing that the program has terminated
when in fact it has not. The issue is one of visibility:
Windows freely allows programs like Back Orifice to run
in the background, monitoring and controlling the user’s
machine, without ever making the user aware of the
program’s existence. The Windows task bar, where
users expect to see the set of currently running programs,
shows no evidence of Back Orifice. Hence, an entire
actor can be missing from the user’s actor-ability state.

Solution: If the system is changed to ensure that all
actors were always visible, a user would be aware of
Back Orifice whenever it is running, and could avoid
doing sensitive work or take steps to turn it off.

4.5. Software Installation and Maintenance

Problem: Today it is common practice on most end-
user systems to treat the installation of software
programs and device drivers as a kind of electronic
Russian Roulette. After a user downloads software
components or purchases hardware with packaged
software drivers, the installation process is a complete
mystery. There is little or no indication what resources
are being given to the new software, what global settings
are being modified, or how to restore the system to a
stable state if the installation fails.

The designers of software are typically most
concerned with making their own software work well,
and are less worried about damaging the functionality of
previously installed (and possibly competing) software.
As a result, the installation of new software often
destroys configuration parameters that the user may have
taken great pains to set up, and can leave the system in a
state where some hardware devices can no longer be used
with any other applications. Frequently the only
available recourse is to try to guess what settings might
be changed and write them down on paper in advance.

Analysis: Software packages should not be able to
take over hardware control without the wuser’s
permission. This is a violation of the principle of
explicit authority. Just as important is the user’s ability
to audit and revoke authorities so that he or she can
confidently restore the system to a working state. It
might not be possible to refuse authority initially (one
can’t know whether software works before having tried
it), so the granting of authorities must be reversible.
This is the principle of revocability.

Ultimately the user must retain control over the
system’s resources, and decide which software gets to
control what. Multiple software products that want to
use the same resources should be able to coexist in such a
system, where the user can easily switch from one to
another. To do so, the user must be able to know where
that control lies, and to revoke and reassign it at will.

Solution: Consider the analogy that installing a new
component of a stereo system is not that different from
installing software. Suppose I purchase a new speaker. I
install it by connecting it to my radio, thus allowing the
radio to employ the speaker to generate sound. At any
time, I can revoke all authority to control the speaker by
picking up the speaker and disconnecting any cables
leading to it; then I have complete confidence that the
speaker is unaffected by the stereo system, and I am free
to take it and use it elsewhere. Ideally, one would like
installing, interchanging, and removing software
components to approach this level of simplicity.

~Running Appic:

Jukebox#1 @ allow Deny

@ Mlow Deny
@ alow ¢ Deny
© Mlow & Deny

Rstart| | #)nkeboxet
Figure 3. A possible interface for revoking authorities.

Here is one possible interface design that might begin
to address these issues, based on the stereo-system
analogy. Figure 3 shows a mocked-up screenshot of a
system where a music-playing program named “Jukebox”
has been installed. There is a Jukebox launcher on the
desktop, and the user has also started one running
instance of the Jukebox. In the figure, the user has
inspected the speaker device on the right, and the display
shows that one running program and two launchers have
access to the speaker. Arrows connect the program (on
the taskbar) and the launchers (one on the desktop and
one buried in the Start menu) to the speaker icon. A
dialog box lets the user revoke any of these authorities.

The general problem of software installation is large
and complex. Although a complete solution is outside
the scope of this paper, this design example should help
to demonstrate that it is possible to make some progress.

4.6. Namespace Collisions in the Unix Shell

Problem: Unix users are often warned against putting
“.”, which refers to the current directory, in their PATH
environment variable. Suppose that a malicious user
creates a shell script called “1s” that tries to delete every
file on the disk. If a user with “.” in their PATH
happens to change into the directory containing this
script and tries to list its files by typing “1s”, they will
end up destroying all their files.

Analysis: In this example, the interface has allowed
identifiability to be violated. @ When objects are
referenced by name, non-unique names can cause
confusion. A global namespace increases the likelihood
that multiple objects will have the same name.

In response to a command such as “1s”, most Unix
shells search all of the directories listed in the PATH
variable for a file named “ls”. For instance, the
directory /bin will be in the PATH as it contains many
basic programs, including “ls”. This searching
behaviour produces the confusing effect of multiple
overlapping global namespaces, and introduces a
potential security weakness. Programs specified at the
command line are not uniquely identified; if there are
two programs with the same name on the system and one
is malicious, it is possible that the malicious program
will be invoked where the safe one was intended.

If the PATH contains only restricted-access
directories, these directories are known to contain only
safe programs, and the programs are all known to have
unique names, then there is no problem. But the system
does not enforce any of these restrictions.

Solution: Although this example is specific to Unix, it
provides motivation for avoiding such discriminability
problems in general. Our example shows that one should
avoid using names in a global namespace to refer to
objects. Selecting an object directly, rather than by
giving its name, is also better from a usability standpoint
because recognition is easier than recall [Nielsen94].

When names are absolutely necessary, unique names
should be enforced. One solution to the PATH problem is
to use only local namespaces instead of global ones. If,
instead of a PATH variable, each user had their own
directory containing hard links to the programs they use,
the confusion described here could not occur.

4.7. Website Password Prompts

Problem: Suppose that Alice and Bob both run Web
sites requiring user authentication. Both sites are hosted
on the same server, some-Web-host.org (perhaps
Alice and Bob use the same free hosting service, for
instance). If we open two browser windows, one at
Alice’s site and one at Bob’s site, and attempt to enter

the protected areas of both sites, two password prompts
will appear, as in Figure 4.

2)

= ‘ Flo Edt Vow Favortes [Dools Help H@ . »

=lslx]
Adess [E] heep b-host.orgfbob/ -
=l

&lI| Bl it vew

Adress [&] httpufs

| Alice's Auction Avenue

' . .
Bob's Beanie Boutique
|| Welcome to Alice's Auctions, where the best
prices are just a click away! To manage your account preferences,
If you are a registered member,

>>> LOG IN TO CONTINUE
ENTER HERE

@ Please type your user name and passward.

Site: some-web-hast ol

Frivate frea

Reain

User Name
Passwort d

I~ Bave this password in your password list

Cancel

Figure 4. Two browser windows ask for passwords.

How can we tell which is which? There may be some
delay before the network responds, so the first prompt to
appear might not correspond with the first site we tried to
open. Both Netscape and Internet Explorer show two
pieces of information in their password prompts: (a) the
site hostname, which is the same for both sites in this
example, and (b) the authentication “realm”, a string that
the Web master can configure. If Alice and Bob have
both left the realm at some default value, their prompts
will be indistinguishable. (Or if Bob is nasty, he could
decide to name his realm “Alice’s Auctions™!)

Notice also that any other program running on the
user’s machine is free to bring up a window that looks
exactly like one of these password prompts. With careful
(or lucky) timing, this other program could fool the user
into giving it a secret password.

Analysis: The problem of the two identical password
prompts is due to a violation of the principle of
identifiability. The password prompt is vulnerable to
spoofing because there is no trusted path.

Solution: Figure 5 suggests a possible design that
would solve both of these problems. We first introduce
the rule that the operating system only allows
applications to draw into rectangular frame buffers,
which the system copies onto the screen. The system has
control over the window borders and the desktop area.
Then we change the Web browser so that it asks the
operating system to request user authentication on its
behalf. The system-generated password prompt is drawn
with a special red striped border that no application
could imitate, eliminating the possibility of spoofing.
Red lines join the prompt window to the window of the
requesting application, establishing an unmistakable
association between the two.

‘Z-:- fle Edt yen F Took elp “.- . »iFg =] =[o]x]
i — || || adaress [&7 e -host.orgfbob -
=l

| Alice's Auction Avenue , X B
Bob's Beanie Boutique

|| Welcome to Alice's Auctions, whergthe best
0| prices are just a click away!

To manage your account preferences,

If you are a registered membey,

>>> LOG IN TO CONTINUE

Please type your user name and password.

EnterNetyrork Bagswrd:

@ Please type your user name and passward.

Site: some-web-host ol

Frivate frea

Realn

Wser Name
Passwort d

I~ Bave this passward in your password st

Cancel

Figure 5. A possible solution to trusted path and
identifiability issues.

Turning the password requester into an operating
system function has the advantage that it would permit
one to implement a challenge-response mechanism, to
avoid trusting applications with passwords in the clear.
It also facilitates the addition of operating system
features for managing authentication in general.

4.8. Unix File Permissions

Problem: Alice, Bob, and Carol have accounts on a
Unix system. The Unix file permission system assigns a
single owner ID and group ID to each file. Separate flags
give permission to read, write, or execute the file. There
are three flags specifying these permissions for the file’s
owner, three for members of the file’s group, and three
for all other users. Groups can be created and edited
only by the system administrator.

Alice has a file named “secrets.txt” that she
would like to share with Bob. She trusts Bob with the
secrets in this file, but doesn’t want anyone else to see
them. There are some groups defined for people in her
office and people in Bob’s office, but no group containing
just her and Bob. What can Alice do?

The next week, Alice and Bob are working on the file
together. Alice would like them both to be able to edit
the file. She also wants to let her friend Carol read the
file, but not to change it. Now what does she do?

unix% 1ls —1 secrets.txt
—rWe—————— 1 alice alice
unix% grep alicebob /etc/group
alicebob:x:100:alice,bob

unix% chgrp alicebob secrets.txt
unix$ chmod g+r secrets.txt
unix% 1ls —1 secrets.txt

—IW-r-—=== 1 alice
unix$

Figure 6. Alice shares a secret file with Bob.

8743 Jan 31 00:47 secrets.txt

alicebob 8743 Jan 31 00:47 secrets.txt

Analysis: In the first case, Alice (on her own) cannot
share her file with only Bob. She must ask the system
administrator to help her by creating a new group

t3)

“alicebob” containing just her and Bob. Then she sets
her file’s group to “alicebob” and turns on “group-read”
access. Figure 6 shows what her Unix shell session
might look like. In the second case, we must disappoint
Alice. There is no way to achieve what she wants in the
Unix filesystem, because each file has only one group ID.

Although the permission system does distinguish
different files, users, and types of access, it is still
insufficiently expressive for many common tasks, such
as the one just described. It is impossible to share a file
among a specific set of users unless a group containing
that set of users already exists. The system administrator
isn’t likely to create a special group each time a user
wants to share files with a new combination of people.
Often the only available way to do any sharing is to give
access to all users on the system, which is an unfortunate
and excessive privacy risk.

Solution: Of course, it would be better to use a more
flexible permission system. Ideally one would like to be
able to give commands such as “grant Bob access to
modify this file” and “grant Carol access to read this
file”. Figure 7 shows how Alice might solve her second
problem in a hypothetical system with such a “grant”
command. User and group names don’t appear in the
listings produced by “ls —1" because they aren’t
necessary; instead, the number in the first column is the
number of outstanding grants.

unix% 1ls —1 secrets.txt

0 8743 Jan 31 00:47 secrets.txt
unix% grant bob +rw secrets.txt
unix$% grant carol +r secrets.txt
unix% 1ls —1 secrets.txt

2 8743 Jan 31 00:47 secrets.txt

... time passes . . .

unix$% lsgrants secrets.txt

1. granted +rw to bob (Jan 31 00:53)

2. granted +r to carol (Jan 31 00:54)
unix% revoke 1 secrets.txt
unix$% 1ls —1 secrets.txt

1 8743 Jan 31 00:47 secrets.txt
unix$% lsgrants secrets.txt

1. granted +r to carol (Jan 31 00:54)
unix$

Figure 7. Alice gives write access to Bob and read
access to Carol. Later, she revokes Bob’s access.

4.9. Java Applet Privileges in Netscape

Problem: Since version 3.0, Netscape Navigator has
managed security for Java applets by allowing the user to
grant and deny what the Netscape documentation
alternately calls “privileges” or “capabilities”. Before an
applet is allowed to perform potentially dangerous
operations, such as connecting to the network or
accessing local files, it must first activate an associated
privilege with an enablePrivilege(...) call to
Netscape’s SecurityManager. This usually causes a
dialog box to appear asking the user to grant the
privilege in question, as in Figure 8.

6. Java Security = [=1E3)

= JavaScript or a Java applet from 'Bogus Appletwriters
£ j y Incorporated ' is requesting additional privileges.

Granting the following is high visk:

Feading, modification, or deletion of any of your files :‘:]

Dretails
I™ Remember this decision

Mentityverfied by Verisign. Ino.
Certificate] Grrant] Deny] Help 1

Figure 8. Applet requests a privilege by calling
enablePrivilege(“UniversalFileAccess”).

The dialog box omits a lot of important information.
What program is going to receive the privilege, and how
long will the privilege last? If the user chooses
“Remember this decision”, exactly what decision will be
recorded, and how long will it stay in effect? If the user
grants or denies the privilege now, how is the decision
reversed later? As it turns out, choosing “Grant” gives
the privilege to all scripts and applets from a given
source, from now until the end of the Netscape session,
without any further permission from the user. If the
“Remember this decision” box is checked, the privilege
lasts indefinitely, and is automatically granted to all
programs from this source in all future Netscape
sessions. The dialog box is so vague that no user could
possibly make a reasonable decision.

Further, the user can’t be certain that the program is
really from Bogus Appletwriters Incorporated, as the
certification details are obscured at the bottom of the
window. Even if the window is resized, the user
interface toolkit rearranges the widgets in the window to
match, so the text remains obscured. This could be
considered merely a programming bug, but it should be
noted as a subtle security consequence of cross-platform
user interface design.

Suppose that the user wishes to change the privilege
settings for programs from Bogus Appletwriters
Incorporated. After some privileges have been granted,
the interface for editing privileges might look like Figure
9. Each privilege can be in one of three lists: “Always”
(privileges that are always granted), “For this session
only” (privileges that are automatically granted only for
the remainder of the session), or “Never” (privileges that
are automatically denied).

If the user selects the “Reading information...”
privilege and clicks “Delete”, a confirmation dialog
appears, as in Figure 10. The sentence says that the
privilege will be deleted “for all applets and scripts from

Bogus”. Yet the actual effect is to delete this privilege
from the list of privileges automatically denied: that is, it
will become possible to grant the privilege in future.

H Java Security (Edit Privileges) - Netscape & (=153

allow applets and scripts from Bogus Appletwriters Incorporated to have the
following access

Always:
=

Delete More Info...
=

For this session only:

Reading preferences settings =l

Delete Maore Infa...
=

Mever:

Reading infarmation stored in your computer, such as your user name =
Contacting and connecting with other computers over a network, Delete 4
I

| i
Ok Cancel

Figure 9. Editing privileges.

% Java Security (Delete Privilege) - Netscape

i [B]x]
&re you sure that you want to delete the Reading information stored in your
computer, such as your user name privileges for all applets and scripts from

Bogus Appletwriters Incorporated?

QK Cancel

Figure 10. Deleting a privilege.

The latest version of Netscape, version 6.2, is even
worse in this situation. It merely presents a single
question, shown in Figure 11, that provides absolutely no
information about the privileges to be granted. (In case
the user has any doubts about granting unknown
privileges to unnamed entities for unspecified intervals of
time, with no knowledge of how to revoke them, the
“Yes” button is helpfully selected by default.)

Intemet Security

T3 A scriptfrom “files” has reguested enhanced privileges. You should grant these priviieges
only if you are camfortable downloading and executing a program from this source. Do you
wish to allow these privileges?

[Remember this decision

ves
Figure 11. Privilege prompt in Netscape 6.

Analysis: All of these dialog boxes violate the
principle of clarity by being ambiguous and sometimes
misleading. The last one, by selecting “Yes” as the
default, also ignores the path of least resistance.

Solution: These dialog boxes should be redesigned so
that all the relevant information is presented and the
explanations are specific and clear. If the interface
toolkit varies from platform to platform, the security
dialogs should be carefully tested on each platform.

5. Conclusion

In an attempt to provide a reasonable starting point
for talking about user interaction in secure systems, we
have presented the actor-ability model and a set of design
principles, and done our best to justify the applicability of
these principles. Our greatest hope is that this paper will
provoke further thinking and discussion about a user-
centred approach to computer security, and eventually
lead to the construction of computer systems that are
safer, more reliable, and easier to use.

6. Acknowledgements

This paper builds directly on previous work done
jointly with Miriam Walker [Walker99].

Many of the key insights in this paper come from
Norm Hardy, Mark S. Miller, Chip Morningstar, Kragen
Sitaker, Marc Stiegler, and Dean Tribble, who devoted
much of their time to extensive discussions during which
the set of design principles was developed.

We are very grateful to Morgan Ames, Verna Arts,
Nikita Borisov, Jeff Dunmall, Tal Garfinkel, Marti
Hearst, Johann Hibschman, Josh Levenberg, Lisa Megna,
David Wagner, and David Waters for their comments
and suggestions, which have greatly helped to improve
this paper.

7. References

[Adams99] A. Adams and M. A. Sasse. Users Are Not The
Enemy: Why users compromise security mechanisms and how
to take remedial measures. In Communications of the ACM,
December 1999, pp. 40-46.

[Bruce88] B. Bruce and D. Newman. Interacting Plans. In
Readings in Distributed Artificial Intelligence, Morgan
Kaufmann, 1988, pp. 248-267.

[CA-1999-04] CERT Advisory CA-1999-04: Melissa Macro
Virus. http://www.cert.org/advisories/CA-1999-04.html,
27 March 1999.

[CA-2000-04] CERT Advisory CA-2000-04: Love Letter
Worm. http://www.cert.org/advisories/CA-2000-04.html,
4 May 2000.

[CapDesk] E and CapDesk: POLA for the Distributed
Desktop. (see http://www.combex.com/tech/edesk.html)

[Dennett87] D. Dennett. The Intentional Stance.
Cambridge, MA: MIT Press, 1987.

[E] ERights.org: Open Source Distributed Capabilities.
(see http://www.erights.org/)

[Gibson77] J. J. Gibson. The Ecological Approach to Visual
Perception. Boston: Houghton Mifflin, 1979, p. 127 (excerpt at
http://www.alamut.com/notebooks/a/affordances.html).

[Garfinkel96] S. Garfinkel and G. Spafford. Practical UNIX
and Internet Security: Second Edition. O’Reilly & Associates,
Inc., 1996.

[Hardy85] N. Hardy. The KeyKOS Architecture. In Operating
Systems Review, vol. 19, no. 4, October 1985, pp. 8-25.

[Hardy88] N. Hardy. The Confused Deputy. In Operating
Systems Review, vol. 22, no. 4, October 1988, pp. 36-38.

[Holmstrom99] U. Holmstrom. User-centered design of
secure software. Human factors in Telecommunications, May
1999, Copenhagen, Denmark.

[Jendricke00] U. Jendricke and D. Gerd tom Markotten.
Usability meets Security: The Identity-Manager as your
Personal Security Assistant for the Internet. In Proceedings of
the 16th Annual Computer Security Applications Conference,
December 2000.

[Karat89] C.-M. Karat. Iterative Usability Testing of a
Security Application. In Proceedings of the Human Factors
Society 33rd Annual Meeting, 1989.

[MillerO0] M. S. Miller, C. Morningstar, and B. Frantz.
Capability-Based Financial Instruments. In Proceedings of the
4th Conference on Financial Cryptography, 2000.

[Mosteller89] W. S. Mosteller and J. Ballas. Usability
Analysis of Messages from a Security System. In Proceedings
of the Human Factors Society 33rd Annual Meeting, 1989.

[Microsoft98] Microsoft Security Bulletin MS98-010:
Information on the “Back Orifice” Program.
http://www.microsoft.com/technet/security/bulletin/ms98-010.asp,
12 August 1998.

[Nielsen94] J. Nielsen. Enhancing the explanatory power of
usability heuristics. In Proceedings of the CHI '94 Conference,
ACM Press, 1994, pp. 152-158.

[Norman88] D. A. Norman. The Psychology of Everyday
Things. New York: Basic Books Inc., 1988.

[Nass94] C. Nass, J. Steuer, and E. Tauber. Computers are
Social Actors. In Proceedings of the CHI '94 Conference, ACM
Press, 1994, pp. 72-78 (see http://cyborganic.com/People/
jonathan/Academia/Papers/Web/casa-chi-94.html).

[Saltzer75] J. H. Saltzer and M. D. Schroeder. The
Protection of Information in Computer Systems. In Proceedings
of the IEEE, vol. 63, no. 9, September 1975, pp. 1278-1308
(see http://web.mit.edu/Saltzer/www/publications/protection/).

[Shapiro99] J. Shapiro, J. Smith, and D. Farber. EROS: A
Fast Capability System. In Proceedings of the 17th ACM
Symposium on Operating System Principles (SOSP '99),
December 1999.

[Walker99] M. Walker and K.-P. Yee. Interaction Design
for End-User Security, http://www.cs.berkeley.edu/~pingster/
sec/desktop/.

[Wertheimer23] M. Wertheimer. Untersuchungen zur Lehre
von der Gestalt II. In Psychologische Forschung, 4, pp. 301-
350. Condensed translation published as “Laws of organization
in perceptual forms”, in W. D. Ellis, A Sourcebook of Gestalt
Psychology, London: Routledge & Kegan Paul, 1938, pp. 71-88
(http://psychclassics.yorku.ca/Wertheimer/Forms/forms.htm).

[Whitten99] A. Whitten and J. D. Tygar. Why Johnny can’t
encrypt. In Proceedings of the 8th USENIX Security
Symposium, August 1999.

[Zurko99] M. E. Zurko, R. Simon, and T. Sanfilippo. A
User-Centered, Modular Authorization Service Built on an
RBAC Foundation. In Proceedings of IEEE Symposium on
Research in Security and Privacy, May 1999, pp. 57-71.

