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Tierney and Kadane (1986) presented a simple second-order approximation for posterior expectations of positive functions.
They used Laplace’s method for asymptotic evaluation of integrals, in which the integrand is written as f(0)exp(—nh(8)) and
the function 4 is approximated by a quadratic. The form in which they applied Laplace’s method, however, was fully exponential:
The integrand was written instead as exp[—nh(f) + log f(6)]; this allowed first-order approximations to be used in the
numerator and denominator of a ratio of integrals to produce a second-order expansion for the ratio. Other second-order
expansions (Hartigan 1965; Johnson 1970; Lindley 1961, 1980; Mosteller and Wallace 1964) require computation of more
derivatives of the log-likelihood function. In this article we extend the fully exponential method to apply to expectations and
variances of nonpositive functions. To obtain a second-order approximation to an expectation E(g(6)), we use the fully
exponential method to approximate the moment-generating function E(exp(sg(6))), whose integrand is positive, and then
differentiate the result. This method is formally equivalent to that of Lindley and that of Mosteller and Wallace, yet does not
require third derivatives of the likelihood function. It is also equivalent to another alternative approach to the approximation
of E(g(#)): We may add a large constant ¢ to g(#), apply the fully exponential method to E(c + g(¢)), and subtract c¢; on
passing to the limit as ¢ tends to infinity we regain the approximation based on the moment-generating function. Furthermore,
the second derivative of the logarithm of the approximation E(exp(sg(#))), which is an approximate cumulant-generating
function, yields a simple second-order approximation to the variance. In deriving these results we omit rigorous justification
of formal manipulations, which may be found in Kass, Tierney, and Kadane (in press). Although our point of view is Bayesian,
our results have applications to non-Bayesian inference as well (DiCiccio 1986).

1. INTRODUCTION

A simple and remarkable method of asymptotic expan-
sion of integrals generally attributed to Laplace (Laplace
1986; also see Stigler 1986) is widely used in applied math-
ematics. This method has been applied by many authors
(DiCiccio 1986; Efron and Hinkley 1978; Hartigan 1965;
Johnson 1970; Lindley 1961, 1980; Mosteller and Wallace
1964; Tierney and Kadane 1986) to find approximations
to the ratios of integrals of interest, especially in Bayesian
analysis. Tierney and Kadane (1986) applied the Laplace
method in a special form, which we call fully exponential,
that has the advantage of requiring only second derivatives
of the log-likelihood function to achieve a second-order
approximation to the expectation and variance of a real
function g of the vector parameter 6, but it has the dis-
advantage of requiring g to be positive. The purpose of
this article is to extend the fully exponential method to
expectations of arbitrary functions while retaining its ad-
vantageous simplicity.

Section 2 reviews Laplace’s method and its application
to ratios of integrals. In Section 3 we show that applying
the fully exponential method to the moment-generating
function, and then taking derivatives, leads to a second-
order approximation to the expectation of a nonpositive

technique: adding a large constant, approximating the ex-
pectation of the modified function, and then subtracting
the constant. In Section 4 we illustrate the method with
some special cases and an example. Although our point
of view is Bayesian, our results are formal and have ap-
plications to non-Bayesian inference as well. We do not
give a careful treatment of precise conditions under which
the expansions are valid. For such treatments, see Johnson
(1967, 1970), Johnson and Ladalla (1979), and Kass, Tier-
ney, and Kadane (in press). For a variation of Laplace’s
method using non-Normal exponential family kernels, see
Morris (1988).

2. LAPLACE APPROXIMATIONS TO RATIOS
OF INTEGRALS

The purpose of this section is to give a general form for
the application of Laplace’s method to the ratios of inte-
grals, displaying both what we shall call the standard
form (Lindley 1961, 1980; Mosteller and Wallace 1964)
and the fully exponential form (Tierney and Kadane 1986)
as special cases. For convenience of exposition, we assume
that the parameter @ is one-dimensional.

The posterior expectation of a function g may be written
as

function that is reasonably simple to compute. We also f g(0)L(0)n(0) db
discuss the relationship of this approximation to others in E(g(0)) = @.1)
the literature, and show its equivalence to another possible f L(0)n(0) db ’

n
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where n(6) is the prior and L(6) is the likelihood, sup-
pressing dependency on the data from the notation. We
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find it convenient to reexpress the integrands in (2.1) so
that the expectation takes the form

by(0)exp{ —nhy(0)} d6

E(g(0)) = :
j bo(0)exp{ — nhp(0)} dO

where  by(0)exp{—nhy(6)} = g(0)L(O)n(f) and
bp(0)exp{—nhp(0)} = L(0)n(6). We assume that by(-)
and bp(-) do not depend on n and that hy(6) and h,(6)
are constant-order functions of n, as n — . (In statistical
applications, n is typically the sample size.) One example,
considered next, consists of the choices Ay(0) = hp(0) =
(I/n)log{L(0)n(6)}, by(0) = g(0), and by () = 1. More
generally, whenever hp(0) = hy(0) we say that (2.2) is in
standard form; when by(6) = bp(6) [in which case hy(0)
# hp(0)] we say that (2.2) is in fully exponential form.
The basic Laplace approximation to integrals is

f b(0)exp{— nh(6)} dO

= V2no - exp{—nh} [7) + El; {025” - a‘b'H"

(2.2)

; -15527(21"')206 - %Bﬁ’”a“}] L oM, (23)

where ha}s on b, h, and their derivatives indica}e evalu-
ation at ¢/, the maximum of —h, and 0% = [h"(0)] ! (see
Erdelyi 1956, pp. 36-39). Applying (2.3) to (2.2),

be exp{—nhy} do AW

~ A(D)

+ O(n=?),
f bp exp{—nhp} db

where

1 A
A(K) = oxexp{—nh} [bK + 2—{ oxbi — hybyok

5, 1, i
+ E bK(il//')Z - Z bKU;(il']g}:I

with K = N, D. Here the hats on by, hg, and their de-
rivatives indicate evaluation at K, the maximum of — hg;
for example, by = bK(H x) and ok = [hx(@x)] ! for K =
N, D. Assume that b, # 0. Then

f byexp{ —nhy} d6

f bpexp{—nhp} db

_ oyexp{— nhy}
~ apexp{—nhp}

5_]\/ n i O'%[BDi#/ - O'ZDBNyé
BD 2n i)%)

_ oxhiyboby — abhabyby (5 a&(h)?by — a6 (hp)2by
b3 12 by
4 Jiv _ 4 hiv}
- (1 oihiby — abhBbY) | L -2, 2.4)
4 by

Akl

Now assume that the ith derivatives of h satisfy i) —

H) = O(n™) fori = 0, ..., 4 (the Oth derivative of
hK at O being hK) This is the case for both the standard
and fully exponential forms. We then have oy = o, +
O(n™"), and the last two terms in the order O(n~') part
of Expression (2.4) are actually of order O(n~?). Fur-
thermore, oy and h’) in the other two terms multiplied by
1/2n can be replaced by ap and A, to the same order of
accuracy. Thus

by —nhy} do
f expt =y} _ oyexp{ —nhy}

~ opexp{—nhp}

f bpexp{—nhp} db

by , bobly — byl ., boby — byb)
X [bD * ( by, OB T
+ 0O(n~?). (2.5)

Equation (2.5) has been applied in the literature in both
the standard form (Lindley 1961, 1980; Mosteller and Wal-
lace 1964) and the fully exponential form (Tierney and
Kadane 1986). For the standard form, Ay = hp implies
that by = bpg; then,

bobly — buby _ bo(bbg + bog') — boghy _ &'
2nb} 2nb% 2n
and
bobiy — bby _ bo(bpg + 2bpg’ + bpg") — boghp
2nb} 2nb?,
= ﬁll_)g/‘, + g— )
~ 2nbp
where ¢ = g(0) and 0 is the maximum of —hy = —hp.

Both terms are O(rn~!) and have to be evaluated in ob-
taining the O(n~?) approximation,

j byexp{—nhy} b’

an

[ boexpi—nho}

ohe’ _obhge o,

P P + 0O(n~?). (2.6)
For the fully exponential form, by = b, which implies
that hy = hp + (1/n)log g, and we now must assume that
g is positive. Tierney and Kadane (1986) treated the case
by = bp = 1. In the fully exponential form, by(-) = by(-),
but by = by(dy) is not necessarlly equal to by, = bp(6p).
If the sequence of values g(0p) is bounded away from 0,
then §y — 0, = O(n~?) and hence the ith derivatives of

by satisfy b — b = O(n~") for i = 0, 1, 2. Thus
bubp — boby _ o bwbp = Bpby
2nby 0™, 2nby On™;

therefore, both terms can be ignored to give the O(n~?)
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approximation

by —nhy
f exXpi—n }_ byowexp{ — nhy}

B BDO'DCXP{ - ”;lo}

+ 0. (2.7)

| boexpl-nho}

Both (2.6) and (2.7) have analogous multivariate versions,
which are given in the references.

One might think that the restriction that g be positive
in the fully exponential method would be unimportant,
since if g were negative then —g would be positive, so the
fully exponential method would apply. Then a general g
could be written as

g=g+ -8, (28)

where g+ = max(g, 0) and g~ = —min(g, 0), the fully
exponential method might be applied to g* and g*, and
the results could be combined using (2.8). Neither g* nor
g~ is bounded away from 0, however, so log g* and log
g~ are undefined at some points in the parameter space.
Consequently, although the decomposition (2.8) is natural
and useful in the measure-theoretic treatment of integra-
tion, it is neither for the problem here, and application of
the fully exponential method using (2.8) will produce poor
approximations in practice. The next section takes up more
promising methods for the extension of the fully expo-
nential method to the expectation of functions that are
unrestricted in sign.

3. EXPECTATIONS AND VARIANCES OF
GENERAL FUNCTIONS

The fully exponential approximation is suited only for
functions g bounded away from 0. In this section we con-
sider the following three methods of approximating ex-
pectations of general functions:

1. Approximating the moment-generating function
(MGF), which is an expectation of a positive function,
using the fully exponential form, and differentiating the
result.

2. Adding a large constant to g, using the fully expo-
nential approximation on the sum, and then subtracting
the constant. The limit of such approximations as the con-
stant tends to infinity is the second method.

3. The standard-form approximation (2.6).

We show that these three methods give identical approx-
imations and that natural extensions of the first two to the
approximation of variances are also identical. We also es-
tablish the appropriate order of the approximations.

31 Approximation Using the
Moment-Generating Function

Since exp{sg(0)} is always positive, M(s) = E(exp{sg(0)})
may be approximated according to (2.7), with by = bp =
b>0, —h, = —h = (I(6) + log{n(0)} — log{b(6)})/n,
and hy = hp — sg(6)/n, where () is the log-likelihood
and n(6) is the prior. We denote the resulting approxi-
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mation by M(s). The symbol ~ here, and in Equations
(3.1) and (3.2), indicates approximation rather than eval-
uation at a maximum, as in Section 2. Since interest centers
on the mean and variance of g, we find it convenient to
use derivatives of the approximate cumulant-generating
function, log M(s). Thus, let

E(g) = (d/ds)log M(s) |;=o (3.1)
and
V(g) = (d*ds))log M(s) |s=o. (3.2)

Since M(O) = 1, we have E(g) = M'(0) and V(g) =
M"(0) — (M’ (O))2 The following theorem establishes the
order of approximation for (3.1) and (3.2).

Theorem 1. (a) E(g) = E(g) + O(n™?. (b) V(g) =
V(g) + O(n?).
Proof. By analogy with (A.2) in the appendix of Tier-

ney and Kadane (1986), we can write
M(s) = M(s)(1 + sc,/n? + O4(n7?)), (3.3)

where O, indicates that the error term may depend on s,
and where the c, are bounded and do not depend on s.
Since the numerator integrand of M(s) depends smoothly
on s, the error term and its first and second derivatives
are uniformly O(n~?) for s in a neighborhood of the origin.
Thus we can replace O,(n~%) in (3.3) with e,(s) - n~%, where
the e,(s) are uniformly bounded and have uniformly bounded
first and second derivatives for s near 0. Making this sub-
stitution, taking logarithms, and differentiating both sides
of (3.3) with respect to s we obtain

M'(s)  M(s) c,/n? + e;(s)/n? (3.4)
M(s) M) 1+ sc,/n? + e (s)/n®” '
Evaluating (3.4) at s = 0 and using the fact that M(0) =
M(0) = 1 gives
- Cn n 0 -
E(g) = ig) + & + D = i(g) + 0(n),

which is part (a). Differentiating (3.4) once more yields
M(s)M'(s) — M'(s) _ Ms)M(s) — M)’
M(sy Ms):
(e”(s)/n3)(1 + sc,/n* + e,(s)/n®) — (c,/n* + e (s)/n3)2
1 + sc,/n* + e, (s)/n’)?

By evaluating both sides at s = 0 we obtain V(g) = V(g)
+ O(n~?). This establishes part (b) and completes the
proof.

As the following theorem shows, (3.1) and (3.2) can
be rewritten in a suggestive form: Let § be the maximum
of —h and ¢ = [h"(§)]"2. Let —nh(0) = —nh() +
5g(0), and let 6, be the maximum of —hA, and o, =
(R0

Theorem 2. (a) E(g) = g(6) + (d/ds)log g, |;~o + (d/
ds)log b(6,) |;-o- (b) V(g) = [0g'@)/n + (d*/ds?)log
O 's 0 + (dz/ds2)log b(e) 's 0-

Proof. Suppose that f(6, s) is an arbitrary smooth
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function. Let §, minimize f(-, s). Then

0£130 |05 = O. (3.5)

Hence

4 ming f(6, 5) = d%f(es, §) = of

ds as (85.5) ’ (3 6)

Since
b(6,)o,exp{—nhy(6,)}
b(8)o exp{—nh(f)} ’

we apply (3.6), where f(6, s) = nhy(6) = nh(0) — sg(0),
to yield

MGs) =

d .
7 log M(s)

Part (a) follows immediately, and
dYlog M(s) _ do, d’

ds? =8 (05) _&; ZTS_Z log Oy

= g(0,) + ;%[log o, + log b(0,)].

dZ
+ 75 log b(6,).

3.7
Now, using (3.5),

of

0=
06 | (0,5

- %[nh(@) - 5] lg,

= nh'(6,) — sg'(6,).

Differentiation of this equation at s = 0 yields 0 =
nh"(0)(d6,/ds)|;- — g'(6). Hence
do,/ds |, = g'(0)a?/n, (3.8)

and substitution into (3.7) yields part (b).

Although the theorem has been proved here only for
univariate 6, the same proof works for vector-valued 6. In
the multivariate statement of the theorem, g, would be
replaced by det(2,)'?, where 3, = [D%; |;]"', and
[og'(0)]> would be replaced by (Dg)"2(Dg), where Dg is
the derivative of g evaluated at § and 3 = [D% 5]~

Both the MGF method of (3.1) and the standard method
of (2.6) give second-order approximations. The next theo-
rem, however, shows that for expectations the approxi-
mations are arithmetically identical.

Theorem 3. Using the definitions of g, o, and hD from

the first paragraph of this section, and § = g(0,), we
have

booy _ 5o ODE  ablipg’ o’

Eg) =g+ 2n 2n * nB )

Proof. From Theorem 2(a),

A A d d
E(g) = g(0) + - log o, =0 + 7 log b(6,)];-o-

Now

— 1% log[h}(6,)]
—% log{h"(6,) — (s/n)g"(6:)}.

log o,

713

Then, using (3.8),

do, _ by a%’

d
log b(0,) = b_Dd "
D

ds
and

d log a,/ds |,

" d_es — o _ m d_es
2 h'(0;) — (s/n)g"(6)

s=0

02 " h "
=2 ("0)g @)in — gO)In] Lo

241

o S
2n 2n

Wy

Note that Theorem 3 furnishes an alternate proof of
Theorem 1(a).

3.2 Addition of a Large Constant

The second method listed at the beginning of this section
is to add a large constant to g, use the fully exponential
method on the sum, and then subtract the constant; the
approximation results from letting the constant become
infinite. We now show that this approximation is the same
(for both means and variances) as that resulting from the
fully exponential method applied to the MGF. We begin
with a heuristic argument.

Since the fully exponential method is based on max-
imization of —nh + log(g), it is unaffected by multipli-
cation of g by a constant. Thus we get the same result by
approximating the expectation of 1 + g/c and then mul-
tiplying by ¢, as we do by approximating g + c. For large
¢, meanwhile, 1 + g/c is roughly equal to exp(g/c), the
expectation of which is M(1/c). Thus, for large c, the fully
exponential approximation to the expectation of 1 + g/c
should be roughly equal to the fully exponential approx-
imation M(1/c) to M(1/c). If we now multiply M(1/c) by
c and pass to the limit as ¢ becomes infinite, we arrive
once again at the derivative at 0 of the MGF approxi-
mation. That is, from this brief argument it would appear
that adding a large constant to g and then applying the
fully exponential approximation would produce essentially
the same result as Approximation (3.1). One way to verify
this equivalence is to compute the derivative at s = 0 of
the approximation to E(1 + sg(#)), given in Equation
(2.7). After some manipulation along the lines of the ar-
gument leading to Theorem 2(a) one obtains (3.1). We
present here, instead, a simpler derivation, which is ef-
fective in deriving the variance approximation equivalence
as well.

We let E and V denote approximate fully exponential
expectation and variance operators based on (2 7) (with
by = bp), where V(g) = E(gz) — (E(g))?, as in Tierney
and Kadane (1986); E and V will be the operators of (3.1)
and (3.2). We define E.(g) = E(c + g) — cand Vi(g) =
E{(c + ) - {E(F
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Theorem 4. = E(g). (b) lim.. V.(g)
= V(g).

Proof. Let f(x, y) = E{[l + yg(0)]*”}, where the
convention z*? = 1 for z = 0 is employed. Also let f(x,

0) = lim, o f(x, y). Then M(s) = f(s, 0), so E(g) = af/
dx '(0 0) and V(g) [62f/6x - (af/a.X) ] |(0’0) Also,

E(g =ECc+g ~c

(a) lim,.., E(g)

. 11
=cE(l + glc) —c = Cf(z,z> -C
Then, since £(0, 0) =
lim E.(g) = [9f/ox + 3f/8Y] |0o)»

and, since f(0,y) = 1, 3f/dy |0 = 0 and part (a) follows.
Similarly,

Vi(g)

E(c + g — [E(c + ®)F
e 1) (L 1Y
C[f(z’Z)‘f@’c)]
[t -0

- (f(/e, 1/c) = 1)2],

SO

lim V(g) = [8*f/ox* — (3f/3x)] ooy = V(8),

proving part (b).

4. EXAMPLES

In this section we explore the performance of the MGF
approximation for several examples. We begin with four
cases in which the approximations and the correct means
and standard deviations can be evaluated explicitly: one-
dimensional Normal, gamma, ¢, and beta distributions.

For the Normal and gamma distributions the results are
quite simple: If the posterior den51ty is a Normal density,
the approximate MGF M(s) is equal to the exact MGF
M(s) for all s. If the posterior density is a gamma density
proportional to 62! exp{— 40}, then the approximate MGF
M(s) is equal to the exact MGF for s < A and is undefined
for s > A, when the exact MGF is infinite. Thus, in both
cases, the approximate mean and variance are exact. It
remains to be determined whether there are other univari-
ate distributions for which the Laplace approximation to
the MGF is exact; the methods of Daniels (1980) may
prove useful to this end.

Next, suppose the posterior density is Student’s ¢ on k
degrees of freedom, proportional to (1 + x?/k)~-*+b72,
Here the degrees of freedom k play the role of » in the
asymptotics, and we did the computations with by = b,
= 1 and used the MGF approach. We write the random
variable as X, with a typical value of x, in place of §. The
standardized ¢ case is important because the MGF ap-
proximation is location and scale equivariant; that is,
E(@@X + b) = aE(X) + b. The MGF approximation is,
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of course, not directly applicable, since the MGF M(s) is
infinite for all s # 0; however, the MGF of a ¢ variable
truncated, say, at =1,000 £'’> does exist, and for k > 2
the truncated mean and variance differ from the untrun-
cated mean and variance by an error that is of exponen-
tially decreasing order as k tends to . Thus the approx-
imations £(X) and V(X) obtained by (3.1) and (3.2) can
be justified as approximations based on the truncated vari-
able. The resulting approximate mean is 0, which is the
correct value for £k > 1. The approximate variance is

3
V(X)—k+1(1+k+1)’

with the correct value being k/(k — 2) for k > 2. Thus
V(X) = V(X) — Tk/(k + 1)%(k — 2). The first-order
approximation to the variance, k/(k + 1), is always below
1, whereas the correct and MGF approximate variances
are above 1. Detailed calculations are available from us.
Figure 1 shows a comparison of the correct, first-order,
and MGF approximate variances.

For a beta posterior distribution with density propor-
tional to x*~}(1 — x)#1, the exact and approximate means
and variances are

a &+ af +2 - 4a

E(X)=a+,3’ E(X) = (¢ + B —2)?
and
_ of
vex) = (@ + B)a + B+ 1)’
V(X)=aﬁ2+a2ﬂ—9aﬁ+6a+6ﬁ—5‘

(a + -2
Again, calculations are available from us. For a fixed value
of a/(a + B) € (0, 1) both relative errors are O((a +
B)~%). Since the beta random variable is a positive random
variable, the fully exponential Laplace approximation (2.5)
may be applied directly, giving

+ B

a a a-1/2 a -2 a+f-1/2
E(X)=a+,3—1<a—1) (a+,3—1) :

To compare the errors in these two approximations set p
= a/(a + f) and n = a + B. Then for fixed p the error

o
o

15
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Figure 1. Exact and Approximate Variances of a t, Distribution: *,
Exact Variance; +, First-Order Approximation; 0, MGF Approximation.
The horizontal axis is k, for k > 2.
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Figure 2. Leading Terms of Error in Approximating the Mean of a
Beta(np, n(1 — p)) Distribution. The horizontal axis is p, the straight
line is the MGF approximation, and the curved line is the fully expo-
nential approximation.

in the MGF approximation is
E(X) — E(X) = 2(1 = 2p)/n* + O(n™Y),
whereas the error in the direct fully exponential approx-
imation is
_13pr -1
12pn?

Figure 2 shows a comparison of the two leading error terms
multiplied by »n?. It would appear that, except for values
of p that are very close to 0 or 3, the direct fully exponential
approximation is superior to the MGF approximation. This
phenomenon has been observed in all examples considered
so far. In many of these cases, however, the performance
of the MGF approximations and the direct approximations
can be improved by transforming to a parameterization in
which the posterior may be better approximated by a
Normal distribution. For the beta distribution, the MGF
approximation and the first-order approximation to the
posterior mean E(X) are exact when the transformed pa-
rameter y = log(x/(1 — x)) is used. The MGF approxima-
tion to the posterior variance V(X) has a relative error of
1/(a + B)~

To illustrate these methods in a data-analytic context,
we turn now to the example considered in Tierney and
Kadane (1986). This example is based on a Pareto model
proposed by Turnbull, Brown, and Hu (1974) for data
from the Stanford heart-transplant experiment. Each pa-
tient has an exponential residual lifetime after entering the

E(X) - E(X) = + 0(n3).
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study. The hazard rates vary from patient to patient ac-
cording to a gamma distribution with parameters p and 4.
The effect of a transplant, if and when it occurs, is to
multiply the patient’s hazard rate by a factor 7. This pro-
duces the three-parameter likelihood

e ()

i=1 (A + xi)p+1 i=n+1

m M p
x 11 ¥ ( : )

1A+ + tZ)P* i\ Aty + Tz

where the x; are the survival times in days of the N = 30
nontransplant patients, n = 26 of whom died; y; and z,
are the times to transplant and survival times after trans-
plant, respectively, of the M = 52 transplant patients, m
= 34 of whom died.

Following Naylor and Smith (1982) we compute a pos-
terior distribution for 7, 4, and p based on a flat prior
proportional to dA dt dp. Table 1 lists the exact posterior
means and standard deviations as computed by Gauss—
Hermite quadrature, the direct fully exponential approx-
imation using (2.7), the MGF approximation based on the
original parameterization in terms of 7, 4, and p, and the
first-order approximations using the posterior mode. The
MGF approximation was computed using symmetric dif-
ference quotients with s equal to +.01 times the first-order
approximate standard deviations and two Newton steps in
the maximization; varying these choices had very little
effect on the results. As can be seen from Table 1, the
MGF approximation represents a considerable improve-
ment over the first-order approximations; however, with
errors on the order of 10% to 12%, they do not perform
as well as the direct fully exponential approximations that
produced errors on the order of 4%. On the other hand,
if the MGF and direct approximations are applied to the
parameterization (log 7, log 4, log p), then (as shown by
the remaining rows of Table 1) both methods produce
results that differ from the exact answers by only 3%
to 4%.

5. CONCLUSION

We have extended the fully exponential approximation
of Tierney and Kadane (1986) to nonpositive functions
with the MGF method (3.1) and (3.2), and we have noted
the arithmetic equivalence of (3.1) and the “standard”
second-order expectation approximation (2.6). Although
identical in their exact representations, (3.1) and (2.6)

Table 1. Approximate Moments for the Pareto Model

Standard
Mean deviation
Method Parameterization T A P T A P
Exact — 1.04 325 .50 47 16.2 14
Direct (7, 4, p) 1.044 32.11 493 494 16.09 .138
MGF (r, 4, p) 1.007 30.21 487 437 13.97 131
First order (7, 4, P) .813 21.87 434 .332 10.25 110
Direct (log 7, log 4, log p) 1.042 32.56 496 496 16.55 142
MGF (log 7, log 4, log p) 1.026 32.2 495 457 15.78 .138
First order (log 7, log 4, log p) .947 29.04 478 405 13.80 129
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differ in the numerical computation they suggest and, from
a methodological point of view, this is what distinguishes
these alternative approximations.

Since (3.1) does not require explicit third derivatives,
it is easier to use, and this is the basis for our preference
for it in our current software implementation (Tierney,
Kass, and Kadane 1987, Kass, Tierney, and Kadane 1988).
From the point of view of computational efficiency,
however, neither (3.1) nor (2.6) is better than the other
in every situation, so the choice between them should
depend on the application. To consider this statement
in a bit more detail, let us assume the parameter space
® is m-dimensional, analytical rather than numerical
second derivatives are used in both methods, and the
derivative in (3.1) is obtained from a single difference
quotient.

The computationally costly parts of each approximation
are the function evaluations for the log-likelihood and its
derivatives. Both methods require calculation of a mode
and a Hessian (of the log posterior and, thus, the log-
likelihood). The standard form requires an additional 2m(m
+ 1)(m + 2)/6 third derivatives. If a forward difference
quotient is used, the fully exponential form will require
an additional m(m + 1)/2 second derivatives, and m first
derivatives for each iteration in the maximization of hy.
As Tierney and Kadane (1986) noted, only one Newton-
like iteration toward the maximum of —nhy (using the
Hessian of nhy, rather than nhy) is required for the second-
order accuracy of fully exponential expectation approxi-
mations. Using only one iteration, we thus find that (3.1)
will be more efficient than (2.6) when m(m + 1)(m + 2)/
6 exceeds m + m(m + 1)/2. This occurs when m is greater
than 2.

On the other hand, in the Stanford heart-transplant ex-
ample we used a central difference quotient with two it-
erations to obtain (3.1) (two iterations are required for
asymptotic accuracy of the variance approximation). In
this case, the number of additional function evaluations
required for (3.1) increases by a factor of 4, and (3.1) does
not become more efficient than (2.6) until m is greater
than 10. Furthermore, when (2.6) is applied to more than
one function g, it requires no further function evaluations.
Thus it is generally more efficient when many different g
functions are of interest [as in the hierarchical modeling
context of Deely and Lindley (1981), Kass and Steffey
(1988), Mosteller and Wallace (1964), and Tsutakawa
(1985)].

We have also shown that the MGF method is equivalent
to the addition to g of a large constant c, followed by
approximation of the expectation of g + ¢, and subtrac-
tion of ¢ from the result. The choice of ¢, however, poses
a problem analogous to the choice of s in the difference
quotient required in the MGF method. The MGF ap-
proximations are exact in some cases and perform well in
others, but can sometimes behave poorly; the parameter-
ization in which they are applied is very important. Sen-
sitivity of Laplace’s method to choice of parameterization
is also illustrated by the examples of Achcar and Smith
(in press). Further work that would assist a data analyst
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in finding good parameter transformations would be val-
uable.

[Received December 1986. Revised January 1989.]
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