
J. Functional Programming 7 (5): 549–554, September 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

549

F U N C T I O N A L P E A R L

The Zipper

GÉRARD HUET
INRIA Rocquencourt, France

Capsule Review

Almost every programmer has faced the problem of representing a tree together with a

subtree that is the focus of attention, where that focus may move left, right, up or down the

tree. The Zipper is Huet’s nifty name for a nifty data structure which fulfills this need. I wish

I had known of it when I faced this task, because the solution I came up with was not quite

so efficient or elegant as the Zipper.

1 Introduction

The main drawback to the purely applicative paradigm of programming is that

many efficient algorithms use destructive operations in data structures such as bit

vectors or character arrays or other mutable hierarchical classification structures,

which are not immediately modelled as purely applicative data structures. A well

known solution to this problem is called functional arrays (Paulson, 1991). For trees,

this amounts to modifying an occurrence in a tree non-destructively by copying its

path from the root of the tree. This is considered tolerable when the data structure

is just an object local to some algorithm, the cost being logarithmic compared to

the naive solution which copies all the tree. But when the data structure represents

some global context, such as the buffer of a text editor, or the database of axioms

and lemmas in a proof system, this technique is prohibitive. In this note, we explain

a simple solution where tree editing is completely local, the handle on the data not

being the original root of the tree, but rather the current position in the tree.

The basic idea is simple: the tree is turned inside-out like a returned glove,

pointers from the root to the current position being reversed in a path structure. The

current location holds both the downward current subtree and the upward path. All

navigation and modification primitives operate on the location structure. Going up

and down in the structure is analogous to closing and opening a zipper in a piece

of clothing, whence the name.

The author coined this data-type when designing the core of a structured editor

for use as a structure manager for a proof assistant. This simple idea must have been

invented on numerous occasions by creative programmers, and the only justification

for presenting what ought to be folklore is that it does not appear to have been

published, or even to be well-known.



550 G. Huet

2 The Zipper data structure

There are many variations on the basic idea. First let us present a version which

pertains to trees with variadic arity anonymous tree nodes, and tree leaves injecting

values from an unspecified item type.

2.1 Trees, paths and locations

We assume a type parameter item of the elements we want to manipulate hierar-

chically; the tree structure is just hierarchical lists grouping trees in a section. For

instance, in the UNIX file system, items would be files and sections would be direc-

tories; in a text editor items would be characters, and two levels of sections would

represent the buffer as a list of lines and lines as lists of characters. Generalizing

this to any level, we would get a notion of a hierarchical Turing machine, where a

tape position may contain either a symbol or a tape from a lower level.

All algorithms presented here are written concretely in the programming language

OCaml (Leroy et al., 1996). This code is translatable easily in any programming

language, functional or not, lazy or not.

type tree =

Item of item

| Section of tree list;;

We now consider a path in a tree:

type path =

Top

| Node of tree list * path * tree list;;

A path is like a zipper, allowing one to rip the tree structure down to a certain

location. A Node(l,p,r) contains its list l of elder siblings (starting with the eldest),

its father path p, and its list of younger siblings (starting with the youngest).

Note. A tree presented by a path has sibling trees, uncle trees, great-uncle trees, etc.,

but its father is a path, not a tree like in usual graph editors.

A location in the tree adresses a subtree, together with its path.

type location = Loc of tree * path;;

A location consists of a distinguished tree, the current focus of attention and its

path, representing its surrounding context. Note that a location does not correspond

to an occurrence in the tree, as assumed, for instance, in term rewriting theory (Huet,

1980) or in tree editors (Donzeau-Gouge et al., 1984). It is rather a pointer to the

arc linking the designated subtree to the surrouding context.

Example. Assume that we consider the parse tree of arithmetic expressions, with

string items. The expression a× b+ c× d parses as the tree:

Section[Section[Item "a"; Item "*"; Item "b"];

Item "+";

Section[Item "c"; Item "*"; Item "d"]];;



Functional pearl 551

The location of the second multiplication sign in the tree is:

Loc(Item "*",

Node([Item "c"],

Node([Item "+"; Section [Item "a"; Item "*"; Item "b"]],

Top,

[]),

[Item "d"]))

2.2 Navigation primitives in trees

let go_left (Loc(t,p)) = match p with

Top -> failwith "left of top"

| Node(l::left,up,right) -> Loc(l,Node(left,up,t::right))

| Node([],up,right) -> failwith "left of first";;

let go_right (Loc(t,p)) = match p with

Top -> failwith "right of top"

| Node(left,up,r::right) -> Loc(r,Node(t::left,up,right))

| _ -> failwith "right of last";;

let go_up (Loc(t,p)) = match p with

Top -> failwith "up of top"

| Node(left,up,right) -> Loc(Section((rev left) @ (t::right)),up);;

let go_down (Loc(t,p)) = match t with

Item(_) -> failwith "down of item"

| Section(t1::trees) -> Loc(t1,Node([],p,trees))

| _ -> failwith "down of empty";;

Note. All navigation primitives take a constant time, except go_up, which is propor-

tional to the ‘juniority’ of the current term list_length(left).

We may program with these primitives the access to the nth son of the current

tree.

let nth loc = nthrec

where rec nthrec = function

1 -> go_down(loc)

| n -> if n>0 then go_right(nthrec (n-1))

else failwith "nth expects a positive integer";;

2.3 Changes, insertions and deletions

We may mutate the structure at the current location as a local operation:

let change (Loc(_,p)) t = Loc(t,p);;



552 G. Huet

Insertion to the left or to the right is natural and cheap:

let insert_right (Loc(t,p)) r = match p with

Top -> failwith "insert of top"

| Node(left,up,right) -> Loc(t,Node(left,up,r::right));;

let insert_left (Loc(t,p)) l = match p with

Top -> failwith "insert of top"

| Node(left,up,right) -> Loc(t,Node(l::left,up,right));;

let insert_down (Loc(t,p)) t1 = match t with

Item(_) -> failwith "down of item"

| Section(sons) -> Loc(t1,Node([],p,sons));;

We may also want to implement a deletion primitive. We may choose to move

right, if possible, otherwise left, and up in case of an empty list.

let delete (Loc(_,p)) = match p with

Top -> failwith "delete of top"

| Node(left,up,r::right) -> Loc(r,Node(left,up,right))

| Node(l::left,up,[]) -> Loc(l,Node(left,up,[]))

| Node([],up,[]) -> Loc(Section[],up);;

We note that delete is not such a simple operation.

We believe that the set of datatypes and operations above is adequate for pro-

gramming the kernel of a structure editor in an applicative, albeit efficient, manner.

3 Variations on the basic idea

3.1 Scars

When an algorithm has frequent operations which necessitate going up in the tree,

and down again at the same position, it is a loss of time (and space, and garbage-

collecting time, etc.) to close the sections in the meantime. It may be advantageous

to leave ‘scars’ in the structure, allowing direct access to the memorized visited

positions. Thus, we replace the (non-empty) sections by triples memorizing a tree

and its siblings:

type memo_tree =

Item of item

| Siblings of memo_tree list * memo_tree * memo_tree list;;

type memo_path =

Top

| Node of memo_tree list * memo_path * memo_tree list;;

type memo_location = Loc of memo_tree * memo_path;;



Functional pearl 553

We show the simplified up and down operations on these new structures:

let go_up_memo (Loc(t,p)) = match p with

Top -> failwith "up of top"

| Node(left,p’,right) -> Loc(Siblings(left,t,right),p’);;

let go_down_memo (Loc(t,p)) = match t with

Item(_) -> failwith "down of item"

| Siblings(left,t’,right) -> Loc(t’,Node(left,p,right));;

We leave it to the reader to adapt other primitives.

3.2 First-order terms

So far, our structures are completely untyped – our tree nodes are not even labelled.

We have a kind of structured editor à la LISP, but oriented more toward ‘splicing’

operations than the usual rplaca and rplacd primitives.

If we want to implement a tree-manipulation editor for abstract-syntax trees,

we have to label our tree nodes with operator names. If we use items for this

purpose, this suggests the usual LISP encoding of first-order terms: F(T1, ..., Tn) being

coded as the tree Section[Item(F); T1; ... Tn]. A dual solution is suggested by

combinatory logic, where the comb-like structure respects the application ordering:

[Tn; ... T1; Item(F)]. Neither of these solutions respects arity, however.

We shall not pursue details of such generic variations any more, but rather

consider how to adapt the idea to a specific given signature of operators given with

their arities, in such a way that tree edition maintains well-formedness of the tree

according to arities.

Basically, to each constructor F of the signature with arity n we associate n path

operators Node(F, i), with 1 ≤ i ≤ n, each of arity n, used when going down the i-th

subtree of an F-term. More precisely, Node(F, i) has one path argument and n − 1

tree arguments holding the current siblings.

We show, for instance, the structure corresponding to binary trees:

type binary_tree =

Nil

| Cons of binary_tree * binary_tree;;

type binary_path =

Top

| Left of binary_path * binary_tree

| Right of binary_tree * binary_path;;

type binary_location = Loc of binary_tree * binary_path;;

let change (Loc(_,p)) t = Loc(t,p);;



554 G. Huet

let go_left (Loc(t,p)) = match p with

Top -> failwith "left of top"

| Left(father,right) -> failwith "left of Left"

| Right(left,father) -> Loc(left,Left(father,t));;

let go_right (Loc(t,p)) = match p with

Top -> failwith "right of top"

| Left(father,right) -> Loc(right,Right(t,father))

| Right(left,father) -> failwith "right of Right";;

let go_up (Loc(t,p)) = match p with

Top -> failwith "up of top"

| Left(father,right) -> Loc(Cons(t,right),father)

| Right(left,father) -> Loc(Cons(left,t),father);;

let go_first (Loc(t,p)) = match t with

Nil -> failwith "first of Nil"

| Cons(left,right) -> Loc(left,Left(p,right));;

let go_second (Loc(t,p)) = match t with

Nil -> failwith "second of Nil"

| Cons(left,right) -> Loc(right,Right(left,p));;

Efficient destructive algorithms on binary trees may be programmed with these

completely applicative primitives, which all use constant time, since they all reduce

to local pointer manipulation.

References

Donzeau-Gouge, V., Huet, G., Kahn, G. and Lang, B. (1984) Programming environments

based on structured editors: the MENTOR experience. In: Barstow, D., Shrobe, H. and

Sandewall, E., editors, Interactive Programming Environments. 128–140. McGraw Hill.

Huet, G. (1980) Confluent reductions: abstract properties and applications to term rewriting

systems. J. ACM, 27(4), 797–821.

Leroy, X., Rémy, D. and Vouillon, J. (1996) The Objective Caml system, doc-

umentation and user’s manual – release 1.02. INRIA, France. (Available at

ftp.inria.fr:INRIA/Projects/cristal)

Paulson, L. C. (1991) ML for the Working Programmer. Cambridge University Press.


