[Evodiamine induces extrinsic and intrinsic apoptosis of ovarian cancer cells via the mitogen-activated protein kinase/phosphatidylinositol-3-kinase/protein kinase B signaling pathways]

J Tradit Chin Med. 2016 Jun;36(3):353-9. doi: 10.1016/s0254-6272(16)30049-8.
[Article in Chinese]

Abstract

Objective: To explore the effects of evodiamine on ovarian cancer cells and the mechanisms underlying such effects.

Methods: Human. ovarian cancer cells HO-8910PM were treated with evodiamine at 0, 1.25, 2.5, and 5 μM for 1-4 d. 3-(4,5-Dimethiylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the growth inhibition rate of evodiamine-treated HO-8910PM cells. The cell cycle was observed via propidium iodide (PI) staining. Apoptosis induction was assessed via Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) double staining assay. To verify the mechanism of apoptosis, caspase-dependent apoptotic pathway-related protein was detected by Western blot analysis. The expression levels of mitogen-activated protein kinase (MAPK) and/or phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway-related proteins were also investigated.

Results: Evodiamine significantly inhibited the proliferation of HO-8910PM cells in a dose- and time-dependent manner. Evodiamine induced G2/M arrest with an increase of cyclin B1 level, and promoted cell apoptosis with a decrease of B cell lymphoma/lewkmia-2 (Bcl-2) and an increase of Bcl-2-associated X protein (Bax) level. In addition, evodiamine treatment led to the activation of caspase-8, caspase-9, and caspase-3 and the cleavage of poly (ADP-ribose)-polymerase (PARP). Evodiamine targeted the MAPK and/or PI3K/Akt pathways by reducing the expression and activity of PI3K, Akt, and extracellular signal-regulated kinase mitogen-activated protein kinase (ERK1/2 MAPK) and the activity of p38 MAPK.

Conclusion: Evodiamine can inhibit the growth of ovarian cancer cells by G2/M arrest and intrinsic and extrinsic apoptosis. In addition, evodiamine-induced PI3K/Akt, ERK1/2 MAPK, and p38 MAPK signaling may be involved in cell death.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects*
  • Cell Cycle / drug effects
  • Cell Line, Tumor
  • Drugs, Chinese Herbal
  • Evodia / chemistry*
  • Female
  • Humans
  • MAP Kinase Signaling System / drug effects
  • Mitogen-Activated Protein Kinases / genetics
  • Mitogen-Activated Protein Kinases / metabolism*
  • Ovarian Neoplasms / drug therapy
  • Ovarian Neoplasms / enzymology*
  • Ovarian Neoplasms / genetics
  • Phosphatidylinositol 3-Kinases / genetics
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / genetics
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Quinazolines / pharmacology*

Substances

  • Drugs, Chinese Herbal
  • Quinazolines
  • evodiamine
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinases