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Abstract. The World Wide Lightning Location Network
(WWLLN) data have been used to perform a lightning
climatology in the South-West Indian Ocean (SWIO) re-
gion from 2005 to 2011. Maxima of lightning activity were
found in the Maritime Continent and southwest of Sri Lanka
(> 50 fl km−2 yr−1) but also over Madagascar and above the
Great Lakes of East Africa (> 10–20 fl km−2 yr−1). Light-
ning flashes within tropical storms and tropical cyclones rep-
resent 50 % to 100 % of the total lightning activity in some
oceanic areas of the SWIO (between 10◦ S and 20◦ S).

The SWIO is characterized by a wet season (Novem-
ber to April) and a dry season (May to October). As one
could expect, lightning activity is more intense during the
wet season as the Inter Tropical Convergence Zone (ITCZ)
is present over all the basin. Flash density is higher over
land in November–December–January with values reaching
3–4 fl km−2 yr−1 over Madagascar. During the dry season,
lightning activity is quite rare between 10◦ S and 25◦ S. The
Mascarene anticyclone has more influence on the SWIO re-
sulting in shallower convection. Lightning activity is concen-
trated over ocean, east of South Africa and Madagascar.

A statistical analysis has shown that El Niño–Southern Os-
cillation mainly modulates the lightning activity up to 56.8 %
in the SWIO. The Indian Ocean Dipole has a significant con-
tribution since∼ 49 % of the variability is explained by this
forcing in some regions. The Madden–Julian Oscillation did
not show significative impact on the lightning activity in our
study.

1 Introduction

The World Meteorological Organization (WMO) has long
been the only available source of information about thun-
derstorm days (World Meteorological Organization, 1953).

Lightning activity was recorded by human observers based
on the sound of thunder. This kind of data is very sparse
and may not be representative of a specific region. A better
knowledge of location and frequency of global and regional
lightning activity has been possible with the emergence of
ground-based detection networks and satellite observations.

A global lightning climatology, based on a 5-yr dataset,
has been proposed byChristian et al.(2003) using the Optical
Transient Detector (OTD) on-board the MicroLab-1 satel-
lite. Flash rate extrema were found in coastal regions (Gulf
of Mexico, Florida or Indonesian Archipelago), mountain-
ous regions (Himalayas, Andes of northern Colombia) and
convergence zones (South Pacific Convergence Zone or Inter
Tropical Convergence Zone (ITCZ)). However, the highest
flash rate (82.7 fl km−2 yr−1) was obtained in the equatorial
Congo Basin. Lightning Imager Sensor (LIS) data were used
by Collier et al.(2006) to study the seasonal and diurnal vari-
ations of lightning activity over southern Africa. As inChris-
tian et al.(2003), the highest flash density was found in the
Congo Basin (107 fl km−2 yr−1), but Madagascar and South
Africa also exhibit high flash density (32.1 fl km−2 yr−1 and
26.4 fl km−2 yr−1, respectively). It is also important to note
that the flash density reported byCollier et al. (2006) is
higher than inChristian et al.(2003) due to a higher detection
efficiency with LIS compared to OTD (see Fig. 3 ofChristian
et al., 2003).

Regional lightning climatologies are also available and
mainly based on national lightning detection networks. They
have been used to estimate thunderstorm duration (Reap and
Orville, 1990) and to understand how local geography can af-
fect lightning distribution (Hodanish et al., 1997; Antonescu
and Burcea, 2010). Reap and Orville(1990) proposed a
cloud-to-ground lightning climatology over the United States
for the period 1989–1996 based on a dataset provided by
the National Lightning Detection Network (NLDN). They
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showed that the maximum flash density occurs mainly over
the south-east (> 7 fl km−2 yr−1) and especially over Florida
(> 11 fl km−2 yr−1), whereas Appalachian Mountains ex-
hibit the lowest flash density.Hodanish et al.(1997) studied
more specifically the Florida region using the same network
for the period 1986-1995 and showed that the location of
lightning flashes strongly depends on synoptic and mesoscale
conditions. Sea and lake breezes and flow-topography inter-
actions are found to trigger convection, and thus thunder-
storms. However, mesoscale frontal systems are also a ma-
jor source of lightning flashes. In Europe,Antonescu and
Burcea(2010) studied the cloud-to-ground lightning activ-
ity over Romania using the Romanian Lightning Detection
Network data from 2003 to 2005 and 2007. They found that
high flash density is mainly associated with high topogra-
phy with the maximum value (> 3.06 fl km−2 yr−1) over the
Carpathian Mountains. Other climatologies used national de-
tection networks in Austria (Schulz et al., 2005), in Spain
(Rivas Soriano et al., 2005) and in Australia (Kuleshov et al.,
2006).

However, national lightning detection networks have some
limitations. For example, lightning activity over open ocean
can not be studied with this kind of network. Moreover, only
a few countries owns this kind of system. For some appli-
cations, a global network such as the World Wide Light-
ning Location Network (WWLLN) is better suited. Recently,
Kucieńska et al.(2010) proposed a climatology over Mex-
ico and adjacent oceanic regions using the WWLLN dataset,
composed of 5 yr of records (2005–2009). As inAntonescu
and Burcea(2010), they found that thunderstorms with high
flash density are the results of orography forcing, but sus-
tained lightning activity also occurs in low altitude areas.
Coastal clouds were found to act like continental clouds
as they produced a large amount of lightning. Oceanic re-
gions such as Caribbean Sea or Gulf of Mexico showed high
flash density, whereas the lowest lightning activity was found
in the subtropical Pacific. Indeed, as suggested byZhang
(1993), deep convection develops above warm water with
sea surface temperature> 26◦ C. The WWLLN data are then
well suited to study lightning activity over the open ocean.
In particular, several studies byPrice et al.(2009), Thomas
et al. (2010) and Abarca et al.(2011) investigated the re-
lationships between lightning activity and tropical cyclone
(TC) intensity for systems near land and in the open ocean
using WWLLN data.

Up to now, the lightning activity in the South-West Indian
Ocean (SWIO) has not been investigated. However, this basin
has shown interesting electrical phenomena such as transient
luminous events (TLEs) which occurs in the middle and up-
per atmosphere.Wescott et al.(2001) presented a photograph
of a blue jet which developed north of La Réunion (a French
island in the Indian Ocean) which shows some details of
streamers never observed before. More recently,Soula et al.
(2011) recorded 5 gigantic jets in an isolated storm near La
Réunion at about 50 km from the observation site.

The Indian Ocean is also known to be affected by differ-
ent modes of variability such as El Niño–Southern Oscilla-
tion (ENSO;Alexander et al., 2002; Tourre and White, 2003;
Timm et al., 2005), the Madden–Julian Oscillation (MJO ;
Zhang, 2005), the Quasi-Biennal Oscillation (QBO;Tourre
and White, 2003) and the Indian Ocean Dipole (IOD;Saji
et al., 1999; Morioka et al., 2010), which can affect deep con-
vection and consequently lightning activity.

The main purpose of this work is to propose the first light-
ning climatology in the South-West Indian Ocean. This study
also tries to better understand the mechanisms and the vari-
ability associated with lightning activity in this region. The
paper is organized as follows: Sect. 2 presents the data and
methodology, and Sect. 3 describes the lightning activity in
the SWIO and its variability.

2 Data and methodology

Our interest area is the SWIO, which we define as the region
geographically bounded by 10◦ N–50◦ S and 30◦ E–110◦ E.
This choice was made firstly to capture the change in posi-
tion of the ITCZ which causes the different monsoon regimes
in this ocean, and secondly to encompass all the possible cy-
clone trajectories tracked by the Regional Specialized Mete-
orological Centre (RSMC) at La Ŕeunion.

2.1 Lightning data

Lightning data from 2005 to 2011 are extracted from the
WWLLN database. The WWLLN (http://www.wwlln.net/)
is a real-time lightning detection network with global cov-
erage. In 2006, 28 stations recorded lightning strokes. Their
number increased to 30 in 2007, and currently the network
is composed of 54 sensors detecting sferic (impulsive sig-
nal from lightning discharges) activity. The WWLLN uses
the “time of group arrival” of very low frequency radiation
(3–30 kHz) to locate lightning strokes. According to the de-
velopers, a stroke has to be detected by at least 5 stations to
have a good location accuracy. Due to its global coverage,
the WWLLN has been used to study TCs (Solorzano et al.,
2008; Price et al., 2009; DeMaria et al., 2012), lightning-
produced NOx (Beirle et al., 2010; Bucsela et al., 2001) and
TLEs (Soula et al., 2011).

This network detects both cloud-to-ground (CG) and intra-
cloud (IC) lightning, but as CGs have higher peak current,
their detection efficiency (DE) is about twice the IC DE.
Abarca et al.(2010) compared the CG flash density be-
tween the WWLLN and the NLDN which has a higher DE
in its coverage area (continental US and adjacent waters).
They showed that the WWLLN DE increased from 3.88 %
in 2006 to 10.30 % in 2010 and is dependant of the peak cur-
rent. Even if the NLDN detects 10 times more flashes, the
WWLLN can well capture the lightning activity as the spatial
correlation between the NLDN and the WWLLN recorded
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Table 1.WWLLN detection efficiency obtained using the LIS/OTD
data as ground truth.

Year WWLLN detection
efficiency (in %)

2005 2.0
2006 3.4
2007 5.0
2008 4.7
2009 6.6
2010 8.3
2011 8.5

flashes reached a value of 0.75 in 2008/2009.Rodger et al.
(2009) showed that the location accuracy has globally a spa-
tial dependence (between 10 and 20 km in the SWIO: see
their Fig. 5).Abarca et al.(2010) found that, for the US re-
gion, the WWLLN has a northward and a westward bias of
about 4.03 km and 4.98 km, respectively.Soula et al.(2011)
showed that the lightning strokes detected by the WWLLN
in an isolated thunderstorm near La Réunion (21◦ S; 55.5◦ E)
in March 2010 coincided with the lowest cloud top temper-
ature. The lightning flashes were also recorded by a video
camera and the same trend was obtained using the recorded
data and the WWLLN data.

As explained above, the WWLLN DE is quite low even if
the increase in the number of stations has increased the DE.
In order to scale up the results obtained with the WWLLN
data, the annual mean lightning density from the LIS/OTD
(horizontal resolution of 0.5◦) is used as ground truth. The
LIS and OTD properties are described byBoccippio et al.
(2002). The protocol is the same asDeMaria et al.(2012);
for each year of the study, the ratio between the annual av-
erage flash density over the SWIO and the average LIS/OTD
climatology over the same domain (i.e. the DE) has been cal-
culated. Thus, the WWLLN data were multiplied by a cali-
bration factor which is the inverse of the DE. Table1 shows
the evolution of the WWLLN lightning detection rate; in the
SWIO, the DE was about 2.04 % in 2005 and increased up to
about 8.5 % in 2011. These DEs are quite similar to those of
Abarca et al.(2010) but differ from those ofDeMaria et al.
(2012) since 2009; the DEs found byDeMaria et al.(2012)
reach up to 20%. These differences may be explained by the
fraction of land–sea or the station distribution.

As the WWLLN location accuracy is 10–20 km in the
SWIO (Rodger et al., 2009), we performed our climatol-
ogy at a 0.5◦ resolution. This resolution is high enough since
small scale features are not investigated herein.

2.2 Variability

Convection in the Indian Ocean is known to be affected
by different modes of variability such as ENSO, MJO,
QBO or IOD. Indeed, the IOD and ENSO are coupled

ocean–atmosphere phenomena leading to warmer or cooler
sea surface temperatures (SST) which affect convection
(Zhang, 1993). The QBO also modulates convection which is
damped (enhanced) during the west (east) phase (Collimore
et al., 2003).

To identify the impact of the different modes of variabil-
ity affecting the SWIO on the lightning activity, we used a
statistical model called “Trend-Run” (Bencherif et al., 2006;
Bègue et al., 2010). Previously, temperature trends and vari-
ations over 2 subtropical sites (Durban and La Réunion) have
been studied with this model using monthly mean radiosonde
temperature profiles (for the periods 1980–2001 and 1993–
2008, respectively).

Trend-Run is a linear regression fitting model based on a
multivariate least squares method that initially includes terms
for the Annual Cycle (AC), the Semi-Annual Cycle (SAC),
the QBO, the ENSO and the 11-yr solar cycle (using the Sun
Spot Number (SSN)). The variations of a time seriesY (t) are
broken down into the sum of the previous parameters:

Y (t) = c1 SAC(t) + c2 AC(t) + c3 QBO(t)

+ c4 ENSO(t) + c5 SSN(t) + ε(t), (1)

whereε(t) is the residual term.
Recent results byMorioka et al.(2010) revealed that IOD

acts as a major climate mode in the SWIO. Thus, the IOD has
been included (Bègue et al., 2010) using the Dipole Mode
Index (Behera and Yamagata, 2003) defined as the differ-
ence in SST between the western and eastern tropical Indian
Ocean. Since the MJO is the dominant intra-seasonal mode
of variability in the tropics (Zhang, 2005), this forcing has
also been added in Trend-Run. We used the index ofWheeler
and Hendon(2004) which is based on the first two empiri-
cal orthogonal functions of combined fields of 850 hPa zonal
wind, 200 hPa zonal wind and outgoing longwave radiation
(near the equator and averaged). In its final form, Trend-Run
decomposes a geophysical signalY (t) as follows:

Y (t) = c1 SAC(t) + c2 AC(t) + c3 QBO(t)

+ c4 ENSO(t) + c5 SSN(t)

+ c6 IOD(t) + c7 MJO(t) + ε(t). (2)

More details on Trend-Run are available inBencherif et al.
(2006) andBègue et al.(2010).

In order to investigate the lightning activity variability in
the SWIO, the initial area was subdivided into 10◦

×10◦ bins,
and the WWLLN strokes were counted to get monthly time
series for each box. Due to the limited index time series, our
period of study only covers March 2005 to July 2010. In or-
der to focus on the tropical forcings, we also restricted our
study area to the 0◦–30◦ S belt.
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Fig. 1.Distribution of the annual mean flash density (fl km−2 yr−1)
over the SWIO. The black box corresponds to the area of respon-
sibility of RSMC La Ŕeunion. The different numbers stand for
the country or region: 1-Ethiopia, 2-Sudan, 3-Somalia, 4-Uganda,
5-Kenya, 6-Tanzania, 7-Malawi, 8-Zambia, 9-Mozambique, 10-
Zimbabwe, 11-Swaziland, 12-South Africa, 13-Madagascar, 14-La
Réunion, 15-Mauritius, 16-Sri Lanka, 17-India, 18-Sumatra, 19-
Java and 20-Malaysia.

3 Lightning activity in the SWIO region

3.1 Spatial distribution

The annual mean flash density over the SWIO is shown in
Fig. 1. The lightning distribution over this region follows
the main features of the 1995–2005 climatology developed
by Christian et al.(2003) from OTD: the “hot spots” in the
SWIO are found in Indonesia, Sri Lanka, South India and
Madagascar. Moreover, the lightning activity in the Mozam-
bique channel is quite similar in trend.

In the study area, the more electrically active regions
are the Maritime Continent (especially Java island) and the
southwest of Sri Lanka with more than 50 fl km−2 yr−1.
It is worth noting that the strait of Malacca exhibits
the second highest flash density.Fujita et al. (2010)
suggested that gravity currents generated by precipita-
tion over the eastern and western coastal area of Suma-
tra and Malay Peninsula can converge and trigger con-
vection over the strait.Teo et al. (2011) proposed that
the strait of Malacca can be seen as a wave cavity.
Lake Malawi (12.2◦ S; 34.4◦ E) and Lake Victoria (1.0◦ S;
33.1◦ E) also exhibit high flash densities, higher than
8 fl km−2 yr−1. During the day, downdraft and dry air are
present above these lakes, whereas convergence is associ-
ated with precipitation during the night. Convective instabil-
ity is enhanced due to an increase of evaporation above lakes

which is a source of water vapor to the prevailing systems.
Concerning Madagascar, lightning flashes are preferentially
triggered over the low highlands and plains in the northwest-
ern and western parts of the country (10–20 fl km−2 yr−1).
The flash density is between 2 and 8 fl km−2 yr−1 in the
southern and eastern parts of the island.

In the southwestern part of the SWIO (30◦ S–45◦ S, 30◦ E–
50◦ E), the significant lightning activity (4–8 fl km−2 yr−1)
could be caused by cold fronts and mid-latitudes storms.

Figure1 also illustrates the land–ocean contrast in light-
ning activity with associated deep convection stronger over
land than over ocean. Apart from the African continent, the
islands of Madagascar, Java and Sri Lanka have the high-
est flash densities, in agreement withWilliams and Stan-
fill (2002). They examined the annual thunder day counts
for all islands included in the WMO worldwide compilation
and concluded that the larger islands are associated with the
higher annual number of thunder days.

In the SWIO, some areas exhibit very low or almost
null lightning density. The region 20◦ S–50◦ S, 70◦ E–110◦ E
shows a gap in lightning activity that can be explained partly
by the presence of the Mascarene anticyclone. Two other ar-
eas of low flash density (< 2 fl km−2 yr−1) are located south
of the Mozambique channel and near Somalia shores. This
may be caused by the presence of subsiding air from the
Walker circulation and the Hadley cell.Lau and Yang(2003)
proposed an annual mean position of the different ascending
and descending branches of the Walker circulation using the
NCEP-NCAR (National Centers for Environmental Predic-
tion – National Center for Atmospheric Research) reanalysis
for the period 1949–1999. They showed that in the Indian
Ocean near East African coasts there is a narrow region of
subsidence with maximum descent in the upper troposphere.
Concerning the Mozambique channel area, the region of sub-
sidence may be caused by the Hadley cell.

3.2 Impact of tropical storms and cyclones on lightning
activity

In most tropical basins, deep convection can be separated
into tropical cyclones and local convection. In the SWIO,
the TC activity represents 10–12 % of the global total an-
nual TC activity (Neumann, 1993) with a dozen depressions
observed on average per season. More than 9 of these de-
pressions reach the stage of moderate tropical storms (TSs),
of which half become TCs (Caroff et al., 2008). As high-
lighted by more and more studies, tropical cyclones exhibit
specific lightning activity (Black and Hallet, 1999; Squires
and Businger, 2008; Price et al., 2009; Abarca et al., 2010;
Fierro et al., 2011; DeMaria et al., 2012, among others).

Here, we focus on the impact of the tropical storms on
the lightning climatology of the SWIO, and we try to quan-
tify the proportion of lightning associated with TSs and TCs.
Information concerning the tropical cyclone positions (lati-
tude and longitude) is obtained from the RSMC La Réunion
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Fig. 2. Individual tracks of tropical storms from cyclonic seasons
2005/2006 to 2010/2011 in the SWIO. Source: RSMC La Réunion.

best-track database. The tracks of the 51 tropical storms and
cyclones that developed in the basin between cyclonic sea-
sons 2005/2006 and 2010/2011 are represented in Fig.2.
Lightning strokes associated with tropical storms are ob-
tained as follows: the latitude and longitude of the storm
center are linearly interpolated to the time of the lightning
strike (from the WWLLN database) to calculate the distance
between the storm center and the strike location. Only light-
ning flashes within a 600-km radius from the storm center
are considered to be part of the system. Indeed, according to
the Joint Typhoon Warning Center, the average size of a TC
is about 300-to-600 km.

Figure 3a shows the cumulative flash density generated
by TSs and TCs between cyclonic seasons 2005/2006 and
2010/2011. Lightning activity associated with TSs and TCs
is mainly gathered south of 7◦ S, in a triangular area de-
fined by these points: 10◦ S, 40◦ E; 10◦ S, 95◦ E; and 30◦ S,
45◦ E. These systems produce a large amount of lightning
flashes between 10◦ S and 20◦ S. Two main regions with high
flash densities (> 10 fl km−2) appear: north-east of the Mas-
carene archipelago and in the northern part of the Mozam-
bique channel. However, since the Mozambique channel and
Madagascar are regions with high lightning activity, light-
ning flashes associated with TSs and TCs represent less than
10 % of the total lightning activity over Madagascar and
Africa, and range between 10 and 30 % in the Mozambique
channel (Fig.3b). On the contrary, over the oceanic region
between 10◦ S and 20◦ S and between 55◦ E and 90◦ E, the
proportion of lightning flashes associated with TSs and TCs
can exceed 80 % of the total lightning activity. Thus, light-
ning strokes associated with TSs and TCs represent the ma-
jor source of lightning activity over some oceanic regions of
the SWIO.

Fig. 3. Impact of tropical storms on the global lightning activity
in the SWIO between cyclonic seasons 2005/2006 and 2010/2011.
(a) Cumulative flash density (fl km−2) associated with TSs, and
(b) contribution (%) of lightning generated by TSs.

3.3 Seasonal variation

The SWIO is characterized by two seasons: the wet season
is November to April, and the dry season is May to October.
In order to study more precisely the evolution of lightning
activity over the whole year, each 6-month period in split-
ted into two subsets (NDJ for November–December–January,
FMA for February–March–April and MJJ for May–June–
July, ASO for August–September–October).

Figure4 represents the trimestrial distribution of the mean
flash density over the SWIO superimposed with Outgoing
Longwave Radiation (OLR) contours. The OLR data are
monthly 2.5◦ × 2.5◦ gridded NOAA/ESRL/PSD (National
Oceanic and Atmospheric Administration/Earth System Re-
search Laboratory/Physical Sciences Division) (Liebmann
and Smith, 1996) data and cover the same period as the
WWLLN data (from January 2005 to December 2011). They
have been averaged to get a trimestrial climatology.

www.nat-hazards-earth-syst-sci.net/12/2659/2012/ Nat. Hazards Earth Syst. Sci., 12, 2659–2670, 2012
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Fig. 4. The trimestrial distribution of lightning activity (fl km−2 yr−1) for the period 2005–2011:(a) November, December and January,
(b) February, March and April,(c) May, June and July and(d) August, September and October. Contours correspond to OLR values (W m−2).

3.3.1 Wet season

The maximum lightning activity in the SWIO is found dur-
ing the wet season (Fig.4a–b). Flash densities are higher
over land (African continent and Madagascar) with values
> 1 fl km−2 yr−1. A band of moderate flash density (0.1–
0.6 fl km−2 yr−1) extends trough an important oceanic part
of the basin, between 0◦ S and 25◦ S. These features are
co-located with low values of OLR (< 240 W m−2) used
to define the ITCZ. Oceanic lightning strokes tend to oc-
cur in these regions of intense convection (OLR contours
< 250 W m−2 on Fig. 4). Collier and Hughes(2011) con-
cluded from their study that lightning in the tropics would
not be a good locator of the ITCZ, as lightning activity over
Africa tends to occur south of the ITCZ. However, they an-
alyzed lightning activity in relation with the ITCZ position
only over continental Africa. The dynamics of the ITCZ over
land and ocean are not dictated by the same processes, which
could explain the different results.

The Near Equatorial Trough (NET) (Sikka and Gadgil,
1980) is a secondary trough present above the Indian Ocean
during the whole year and defined as an area of equatorial
westerly winds near 3◦ N in January and near 3◦ S in July.
Lightning activity reaches 1 fl km−2 yr−1 north of the equator
during the wet season, in agreement with the NET location
(Fig. 4a–b).

During NDJ (Fig. 4a), peaks of lightning activity are
mainly found above land, 3–4 fl km−2 yr−1 in Madagascar
and> 1–2 fl km−2 yr−1 over the African continent. During
these months, the most active phase of the East Africa mon-
soon takes place over East Africa and Madagascar (Ver-
schuren et al., 2009). In this configuration, the western part
of Madagascar is influenced by northwest winds which bring
moist air (evaporation from hot Indian Ocean). Convergence
with the southeast trade winds results in increased instabil-
ity. Moreover, under some conditions, monsoon depressions
can develop and affect the western part of the SWIO (Baray
et al., 2010).
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During the second part of the wet season (FMA), light-
ning activity tends to weaken over land. Indeed, flash density
reaches up to 3 fl km−2 yr−1 in the western part of Mada-
gascar and up to 2 fl km−2 yr−1 on the African continent (in
Tanzania, Malawi, Zambia and Mozambique). However, over
ocean near 10◦ S, a straight band of moderate flash density
(between 0.1 and 0.6 fl km−2 yr−1) takes place, and it may be
associated with the increase of SST (which mainly controls
the position of the ITCZ over ocean). The number of light-
ning strokes in this same area seems to be greater than during
NDJ. Two areas south-east of Madagascar and south-east of
Africa exhibit an increase in lightning activity (between 0.6
and 2 fl km−2 yr−1).

3.3.2 Dry season

The dry season is characterized by a low lightning activity
in the central part of the SWIO (Fig.4c–d). On the African
continent, lightning activity is preferentially found north of
the equator. A large area of lightning activity is present over
ocean, east of South Africa and Madagascar. The ITCZ has
moved northward and the NET is visible near 5◦ S.

During the MJJ period (Fig.4c), lightning strokes are quite
rare between 10◦ S and 25◦ S. As the Mascarene anticyclone
moves westward, the altitude of the trade inversion lowers
resulting in shallow convection. This high is climatologically
located near 60◦ E in July (austral winter) and moves to 90◦ E
in January (austral summer). Moreover, MJJ corresponds to
the first 3 months of the winter season in the SWIO, so
the thermal contrast (over land or ocean) is less pronounced
leading to less intense convection. Lightning activity in the
basin is concentrated over ocean east of Africa’s shores and
south of Madagascar. This feature is also visible inChris-
tian et al.(2003), and also takes place south-east of Australia
and South America. The year-round persistent presence of
anticyclones (southern Atlantic, Indian Ocean and Australia)
and the land–sea contrast in the Southern Hemisphere pro-
mote thunderstorm activity which extends eastward, up to
thousands of kilometers from the coasts (Barnes and New-
ton, 1982).

During the ASO period (Fig.4d), lightning activity tends
to restart over land (Mozambique and Madagascar) even if
the flash density remains moderate (up to 0.8 fl km−2 yr−1

over South Africa). Compared to the previous period (MJJ),
the ASO has a more sustained lightning activity over land
while lightning activity over ocean erodes more and more.
There is nearly no flash east of 70◦ E and flash density over
ocean east of South Africa is less important than in MJJ.

3.4 Modes of variability

3.4.1 High frequency modes

Trend-Run has been used on high-pass band filtered time se-
ries to focus on modes with temporal periods between 1 and

5 months (to avoid the effects of the SAC). One unexpected
result is that the MJO does not have an important contribu-
tion in the lightning activity modulation. Indeed,Abatzoglou
and Brown(2009) showed that MJO affects the lightning ac-
tivity over the continental United States. MJO causes the am-
plification of the upper-level ridge over the western US and
the development of mid-tropospheric instability leading to
an enhancement of lightning activity. Recently,Virts et al.
(2011) studied the relationships between lightning and NO2
over the Maritime Continent using WWLLN data. They con-
cluded that up to∼ 50 % of the observed variations can be
attributed to MJO.

In order to confirm or not confirm the results obtained with
Trend-Run, Fast Fourier Transforms (FFTs) have been per-
formed on the same time series. Results (not presented here)
show peaks at 2.5–3 months, which seems to be asociated
with the MJO (period of 30–90 days). Trend-Run was then
not able to reproduce the results given by the FFTs for the
high frequency modes. Trend-Run is a linear regression fit-
ting model. Then, if the relationship between lightning activ-
ity and MJO is non-linear, Trend-Run should not be able to
emphasize it.

Recently, during the DYNAMO (DYNAmics of the
Madden–Julian Oscillation; http://www.eol.ucar.edu/
projects/dynamo/) campaign, and for the area 7◦ N–
11◦ S, 65◦ E–83◦ E, observations have shown that light-
ning activity seemed to be not affected by the MJO
in this region. The MJO variance (RMM12

+ RMM22;
see Wheeler and Hendon, 2004) is extracted from
http://cawcr.gov.au/staff/mwheeler/maproom/RMM/. Fig-
ure 5 illustrates the daily evolution of lightning activity
superimposed with the time series of MJO variance for the
DYNAMO area. The three MJO events (18 October 2011,
28 November 2011 and 23 December 2011) were clearly not
associated with enhanced lightning activity.

3.4.2 Low frequency modes

Figure 6 summarizes the results obtained with Trend-Run
for the low frequency modes (temporal period higher than
12 months). The highest coefficient of determination (R2

=

0.77) is located in the region 0◦–10◦ S, 60◦ E–70◦ E. In this
region, the lightning activity variability is mainly dominated
by the IOD, contributing to 49 % (±11.8) of the signal.
ENSO explains 18.1 % (±12.4) of the signal variation and
the QBO 9.5 % (±8.6). Near the Maritime Continent (0◦–
10◦ S, 90◦ E–100◦ E), the coefficient of determination is also
high (R2

= 0.72) and, as expected, ENSO dominates the sig-
nal with a contribution of 42.3 % (±27.2). Most of the re-
gions have correlations greater than 0.50, which confirms
that the modes defined in Trend-Run can globally explain the
variations of the signals.

The inter-annual variations of lightning activity in the
SWIO are mostly driven by the ENSO. It is the main forc-
ing in 12 regions (on 21), with values ranging from 24.7 %
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Fig. 5. Daily number of strokes from WWLLN (black) and MJO
variance (red) for the period 6 September 2011 to 31 Decem-
ber 2011 and for the region 7◦ N–11◦ S, 65◦ E–83◦ E.

(±12.3) to 56.8 % (±24.7) (Fig. 6). Lightning activity in
the areas 20◦ S–30◦ S, 50◦ E–60◦ E and 20◦ S–30◦ S, 60◦ E–
70◦ E is modulated at 56.8 % (±24.7) and 52.9 % (±22.8),
respectively, by this forcing. Previous studies have shown the
positive correlations between ENSO and lightning activity at
global scale (Durden et al., 2004; Chronis et al., 2008; Wu
et al., 2012) and at lower scale (Goodman et al., 2000, over
the Southwestern United States;Hamid et al., 2001, over In-
donesia; andYoshida et al., 2007, in the Southeast Asia and
western Pacific).

The IOD plays an important role in 4 regions, especially
in the 0◦–10◦ S region where its contribution reaches 49 %
(±11.8) (Fig.6). Lightning activity in the southern part of
Madagascar is affected by the IOD up to 39.9 % (±25.4).

The QBO has a greater influence in the eastern part of
the domain but its contribution (22.8 % (±15.4) and 16.7 %
(±13), second row; Fig. 6) is still smaller than the IOD
and ENSO. Seasonal modulation of lightning activity by the
QBO was investigated byHernandez(2008) for different re-
gions (Africa, India, Indonesia/Australia and South Amer-
ica). The QBO was decomposed into zonally symmetric
westerly (west phase) and easterly (east phase) wind regimes.
Results showed a different behavior depending on the phase
and the geographic region.

3.4.3 Discussion

In some parts of the domain (20◦ S–30◦ S, 80◦ E–100◦ E
Mascarene high and the 70◦ E–80◦ E belt), the forcings de-
fined above can not explain the lightning variability. These
modes of variability are probably not the main responsible
cause of changes in lightning activity. The Trend-Run model

only takes into account a limited number of forcings. Other
phenomena like the Tropospheric Biennal Oscillation (Meehl
et al., 2003) or convectively coupled equatorial waves (Ki-
ladis et al., 2009) can enhance or dampen convection.

Another explanation is that lightning activity in the trop-
ics is more dependent on dynamic forcing. It is assumed that
important vertical velocities are required to carry relative hu-
midity in altitude (generation of supercooled liquid water)
and to separate charges thanks to the noninductive charg-
ing process (Reynolds et al., 1957; Williams and Lhermitte,
1983; Dye et al., 1989; Rutledge et al., 1992; Carey and Rut-
ledge, 1996; Petersen et al., 1999; Latham et al., 2007). In the
tropics, the troposphere has high value of relative humidity.
When convection is triggered, the buoyancy term is not very
important, leading to weak updrafts (Jorgensen and LeMone,
1989). Even if convection is enhanced by the MJO, ENSO or
IOD, it does not mean that updrafts will be vigorous enough
to generate supercooled liquid water and graupel, and then
separate charges (Zipser and Lutz, 1994).

4 Summary and conclusions

Lightning activity over the South-West Indian Ocean has
been explored. The dataset is composed by lightning flash
records from the WWLLN from 2005 to 2011. A climatol-
ogy in this region has been performed and is in agreement
with the previous global study byChristian et al.(2003). The
area of maximum lightning activity is the Maritime Conti-
nent (Java island) and the southwest of Sri Lanka with more
than 50 fl km−2 yr−1. Madagascar also exhibits high flash
density (up to 20 fl km−2 yr−1). In some oceanic areas, be-
tween 10◦ S and 20◦ S, TSs and TCs are the major source of
lightning activity (ranging from 50 % to 100 %).

The austral summer is the most electrically active period
in the SWIO as the ITCZ is present all over the basin and the
northern part of the domain is influenced by the NET. During
the winter season, as the Mascarene high moves northward,
convection (and consequently lightning activity) is inhibited
due to the presence of the trade inversion.

Lightning activity in the SWIO was found to be mainly
modulated by ENSO (up to 56.8 %). The IOD forcing is sig-
nificant in some regions (up to∼ 49 % in the northern central
Indian Ocean). Inter-annual variability has a greater impact
than intra-annual variability. It was expected that the MJO
would play an important role in the modulation of lightning
activity, but high frequency modes did not show significant
results using Trend-Run model. However, we obtained the
opposite results suggesting that the modulation of lightning
activity by the MJO is quite complex and needs to be studied
more precisely.

This study has shown some limitations, in particular con-
cerning the WWLLN DE and the modes of variability. First
of all, the WWLLN DE is quite low, which constrained us
to scale up the data to obtain significative values. Secondly,
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Fig. 6.Contributions (color boxes, in %) and standard deviations (black segments, in %) of the different forcings per 10◦
×10◦ bin. Orange,

green and blue bars represent the QBO, the IOD and the ENSO, respectively. The coefficients of determination (R2) are indicated on the top
of each box.
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the length of the dataset provided by the WWLLN is still too
short to provide strong relationships between lightning activ-
ity and modes of variability.

However, the similarity between the different climatolo-
gies (global or regional) have confirmed the reliability of the
WWLLN data. The present paper has highlighted that light-
ning activity within TSs and TCs is significant and needs to
be more precisely studied. Moreover, this work can be help-
ful in determining regions and periods to observe TLEs in the
SWIO.
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