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This paper gives an elementary and self-contained proof of Conway’s Basic
Theorem on rational tangles. This theorem states that two rational tangles are
topologically equivalent if and only if they have the same associated rational
fraction. Our proof divides into a geometric half that relates the arithmetic of
continued fractions to the topology of tangles and an algebraic part that defines
the fraction of any tangle via the bracket model for the Jones polynomial. We
present an application to molecular biology. Q 1997 Academic Press

1. INTRODUCTION

We give an elementary and self-contained proof of J. H. Conway’s Basic
Theorem on Rational Tangles. Conway associated a finite continued
fraction to each rational tangle. The sum of this continued fraction is the
fraction of the tangle. Conway’s Theorem states that two rational tangles
are ambient isotopic if and only if their fractions are equal. The meanings of
these terms will be explained in the body of the paper. Conway’s Theorem

Ž . w xis first stated without proof in his paper 3 . Proofs of the theorem using a
fair amount of mathematical machinery have appeared in the literature of

Ž w x.knot theory see 2 . In the meantime, the subject of tangles has become
of wider interest due to its applications to the topology of DNA. We are
pleased with the elementary nature of our proof and we believe that it
provides a good place to begin learning these aspects of knot theory and its
applications.
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The paper is organized as follows. Section 1 defines the notions of
tangle, rational tangle, and the continued fraction and fraction associated
with a rational tangle. Then, by using a few simple lemmas about the
topology of rational tangles coupled with an elementary algebraic identity
of Lagrange for continued fractions, we show that tangles ha¨ing the same
fraction are ambient isotopic. Our proof actually provides an algorithm for
transforming a rational tangle into an equivalent one. This is one half of
the ‘‘if and only if’’ of the Conway Theorem. What is unique in our
approach to this half is the fact that a topological interpretation for
Lagrange’s identity provides the simple key to the proof. This completes
the ‘‘hard’’ part of the Theorem and Section 3 turns to the ‘‘easier’’ part of
showing that the fraction of a rational tangle is a topological invariant of
that tangle. That is, we must show that if two tangles are ambient isotopic,
then they have the same fraction. This task is accomplished by showing
that a topologically invariant ‘‘fraction’’ can be defined for any tangle
whatsoever, and that this fraction agrees with the rational tangle fraction
that we have defined in Section 2. We define the general tangle fraction by

w xusing the bracket model of the Jones polynomial 8, 9 at a special value.
The advantage of this approach is that the bracket properties can be
verified by entirely elementary means, and the bracket formalism is just
suited to handling the tangles.

We also remark that the definition of tangle fraction given here coin-
cides with the definition of conductivity for tangles explained in our earlier

w xpaper 7 . In fact, we can use the bracket definition of conductivity to
deduce the formula for the conductivity of a dual graph in the plane
Ž .Remark after Theorem 3.3 . The discussion in Section 3 completes our
proof of the Conway Theorem. Section 4 is a quick discussion of the
applications of rational tangles to the analysis of DNA recombination.

RATIONAL TANGLES AND THEIR ALGEBRA}
CONWAY’S THEOREM

The key concept for this section is the notion of a tangle. A tangle is
analogous to a link except that it has free ends. These ends are depicted as

Ž .strands that enter a box the tangle box within which there are no free
ends. Inside the box one may find closed loops that are knotted and linked
with the tangle strands. The strands of the tangle may themselves be
knotted and linked. Note that if you begin at one of the free ends
emanating from the tangle box and walk along it, you will enter the box,
and eventually leave the box to meet another end of strand. Thus a tangle
box must have an even number of ends. We will be concerned in this
section with tangles with four ends. Such tangles have two strands, each
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strand participating in two ends. In considering the topology of tangles, we
allow the strands to move inside the box by ambient isotopy, but the ends
of the strands must remain fixed, and the strand movements are confined
to the box.

Rational tangles were introduced by John Conway as basic building
blocks for the construction of knots. They are the simplest tangles in the
sense that they can be ‘‘unwound.’’ More precisely, we visualize the four
endpoints of the strands of a tangle as restricted to the surface of a sphere
and the rest of the tangle inside the sphere. If we restrict the endpoints of
the tangle to move on the surface and the rest of the tangle to move inside
the sphere, then a rational tangle is one that can be deformed into two
straight lines. In Fig. 2.1A, the tangle can be unwound by grabbing the
ends b and c and untwisting while holding a and d fixed. In Fig. 2.1B, we
unwind by first using the ends c and d to unwind the bottom and then
using b and d to unwind the remaining twist.

Conversely, we can construct a rational tangle by starting with two
horizontal or two vertical strands, picking two endpoints and twisting them,
then picking another pair and twisting them, and so on, for a finite number
of twists. We see an example in Fig. 2.1B by reading the figures from the
bottom up. A twist of two diagonally opposite strands can be obtained by

Ž .two successive twists of adjacent strands Fig. 2.2 . Thus we only need
twists of adjacent structure to construct rational tangles.

We need a few definitions before defining a rational tangle formally.
Ž . Ž X .A horizontal resp. ¨ertical integer tangle t resp., t is a twist of twoa a

Ž . < <horizontal resp. vertical strands a times in the positive or negative
direction according to the sign of a. The directions are shown in Fig. 2.3.

The horizontal sum ‘‘q’’ and ¨ertical sum ‘‘q9 ’’ of two tangles A and B
are defined by the diagrams in Fig. 2.4. Thus twisting two adjacent strands
of a tangle A is equivalent to adding an integer t on the right or the lefta
Ž . X Ž . Ž .with q or adding t on the top or bottom with q9 Fig. 2.5 .a

X X X Ž .It is easy to see that t q t ; t and t q9t ; t Fig. 2.6 .a b aqb a b aqb

Essentially, a negative twist cancels a positive twist topologically so that
cancellation of positive and negative integers is paralleled in tangle topol-
ogy. This particular cancellation is an instance of the second Reidemeister
move in knot theory. See Section 3 of this paper for a discussion and
illustration of the Reidemeister moves.

At this point it is worth drawing attention to the notion of ambient
isotopy of tangles. Two tangles A and B are said to be ambient isotopic if
it is possible to deform A into B without mo¨ing the endpoints and without

Ž .mo¨ing the strands outside the tangle box we will usually just say isotopic .
When we say deform, we mean topological deformation, a movement of
the strands that is continuous and does not allow any strand to penetrate
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FIGURE 2.1

either itself or another strand. Of course, we usually visualize this by
taking a representation of A and a representation of B, and trying to
change A until it looks like B. In the end, if A and B are isotopic, the
changed version of A should be identical to B. In Section 3 we will explain
how isotopy can be expressed by the combinatorial Reidemeister moves on
diagrams. It will then be possible to give ways to calculate invariants of
isotopy. In this section, we use some elementary isotopies to simplify the
presentation of rational tangles.
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FIG. 2.2. Twining diagonally opposite strands via twists of adjacent strands.

Ž .Now we define a rational tangle with n integer tangles inductively.

DEFINITION. For any sequence of integers a , . . . , a , choose a se-1 n
quence of integer tangles T , . . . , T , where T s t or tX .a a a a a1 n i i i

Ž .1 Let B s T .1 a1

Ž .2 For k - n.

Ž .i if T s t , let B s t q B or B q t ,a a kq1 a k k akq 1 kq1 kq1 kq1

Ž . X X Xii if T s t , let B s t q9B or B q9t .a a kq1 a k k akq 1 kq1 kq1 kq1

Any tangle constructed in this way is a rational tangle with n integer
tangles.

Note. The number of integer tangles in a rational tangle is not unique.
For example, t ; t q t , and, by our definition, t has one integer tangle5 3 2 5
and t q t has two.3 2

Note. This definition of ‘‘rational tangle with n integer tangles’’ is
simply a formalization of our description of a rational tangle as obtained
from two horizontal or two vertical strands by successive twisting of pairs

Žof adjacent endpoints. These twistings can be construed as the horizontal
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FIGURE 2.3

.or vertical addition of horizontal or vertical tangles on the right, left, top,
or bottom. Thus any rational tangle is a rational tangle with n integer tangles
for some n. The next theorem gives a fundamental simplification in the
description of rational tangles.

Ž .FLIP THEOREM 1. A 1808 rotation flip of a rational tangle b in the
horizontal or ¨ertical axis is ambient isotopic to b.
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FIGURE 2.4

Note. This theorem is, in general, not true for nonrational tangles. For
example, consider the tangle illustrated in Figure 2.6.1. It is not rational.
One strand has a knot in it and this strand is linked with the other strand.
This tangle is not equivalent to the tangle obtained by performing a
vertical flip because there is no way to deform the knot on one strand to
the other one, since the endpoints are fixed.

Proof of Flip Theorem 1. We proceed by induction on the number n of
integer tangles in b.

If n s 1, then b s t or tX for some a. In either case a horizontal ora a
vertical flip leaves the tangle invariant.

Assume the theorem is true for any rational tangle with F n integer
tangles, and let b be a tangle with n q 1 integer tangles. By the definition
of tangles b is equal to one of the tangles t q B, B q t , tX q9B, ora a a
B q9tX for some a and some rational tangle B with n integer tangles.a

Suppose that b s t q B. Then a horizontal flip leaves the t parta a
invariant and, by the induction hypothesis, takes B into a tangle B n

Žisotopic to B. Note that, as discussed above, tangle isotopy leaves the
endpoints of the tangle fixed, so that the isotopy of B n to B induces an

n .isotopy of t q B to t q B. Hence t q B is isotopic to its horizontala a a
flip t q B n.a
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FIGURE 2.5

Vertical flips take a little more work. Consider specifically b s t q B.3
Its vertical flip is B9 q t , where B9 is the vertical flip of B. By the3
induction hypothesis B ; B9, so B9 q t ; B q t . Hence we must prove3 3
that t q B ; B q t . To see this, we twist B through three 1808 twists3 3
Ž .holding the endpoints of t q B fixed , as shown in Fig. 2.7. Such a flip of3
a subtangle is called a flype. Since we performed an odd number of flypes,

n Ž .the resulting subtangle becomes B the horizontal flip of B . Again, by
the induction hypothesis, B n; B and we are done.

The other cases are handled in exactly the same way, using horizontal or
vertical flypes as needed. The key idea is that flyping allows us to mo¨e an
integer tangle from the right to the left, from the left to the right, from the
bottom to the top, and from the top to the bottom.

We state an essential part of the proof separately.

COROLLARY. If B is a rational tangle and a is an integer, then

t q B ; B q t and tX q9B ; B q9tX .a a a a
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FIGURE 2.6
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FIGURE 2.6.1

FIGURE 2.7
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Now we define a subclass of rational tangles, the basic tangles. A basic
Ž .horizontal resp., ¨ertical tangle is a rational tangle built as follows:

Ž . Ž X .1 Start with a horizontal tangle t resp., a vertical tangle t .a a

Ž . X Ž2 Add a vertical tangle t on the bottom resp., a horizontal tangleb
. Žt on the left , then a horizontal tangle t on the right resp., a verticala c

X . X Ž .tangle t on the bottom , then a t on the bottom resp., t on the left ,c d d
and so on, stopping after a finite number of such steps.

If we start with t , the resulting tangle is a basic horizontal tangle, and ifa
we start with tX , it is a basic vertical angle.a

X Ž X .For example, the construction t ª t q9t ª t q9t q t ends in a3 3 2 3 2 y2
X X Ž X .basic horizontal tangle, whereas t ª t q t ª t q t q9t ends in a3 2 3 2 3 y2

Ž .basic vertical tangle Fig. 2.8 .
When constructing a rational tangle, we can use the last corollary to

convert horizontal twists on the left to those on the right and vertical twists
on the top to those on the bottom.

Moreover, the corollary plus the fact that t q t ; t and tX q9tX ;a b aqb a b
tX allows us to avoid adding two horizontal or two vertical twists in aaqb
row. Hence we have

THEOREM 2. E¨ery rational tangle is isotopic to a basic tangle.

Note that an algorithm is implicit in the proof of Theorem 2.
In order to classify the basic tangles, we introduce three more opera-

tions.

FIGURE 2.8
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DEFINITION. If b is a rational tangle, then

Ž . Ž .1 yb s b* is the mirror image of b reverse all crossings

Ž . Ž .2 The c-in¨erse clockwise inverse 1r b of b is the tangle ob-c
tained by rotating b 908 clockwise and taking the mirror image.

Ž . Ž .3 The cc-in¨erse counterclockwise inverse 1r b of b is thecc
tangle obtained by rotating b 908 degrees counterclockwise and taking the
mirror image.
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FIGURE 2.9

The reason for taking mirror images in the definition of inverses will
become clear when we discuss numerical invariants.

THEOREM 3. The c-in¨erse and cc-in¨erse of a rational tangle are ambient
isotopic.

ŽProof. We apply the flip theorem twice a vertical followed by a
horizontal flip as shown in Fig. 2.9.

Thus if a subtangle of a tangle is of the form 1r b, b rational, we canc
always replace it by 1r b and, conversely, we can replace 1r b by 1r b.cc cc c
We will often write 1rb if the type of the inverse does not matter.

We need a few more properties of our operations in order to describe
basic tangles algebraically.

Ž .PROPOSITION 4. 1 If b is a basic horizontal tangle, then 1r b is a basicc
¨ertical tangle.

Ž .2 If b is a basic ¨ertical tangle, then 1r b is a basic horizontal tangle.cc

Ž . X X X3 t s 1r t s 1r t and t s 1r t s 1r t .a c a cc a a c a cc a

Ž . X4 t q t s t q 1rt .d e d e

1
XŽ .5 t q9t s cc.d e 1

t q ce td

Ž . Ž . Ž . Ž . Ž . Ž .6 y b q c s yb q yc , y 1rb s 1r yb , yt s t , anda ya
ytX s tX .a ya

ŽProof. The results follow easily from the definitions we leave it to the
.reader to draw these pictures .

Now we can build our basic tangles using the tangle operations q, y,
r , r . For example, consider the basic tangles of Fig. 2.8. The construc-c cc
tion of the first tangle is given by

t ª t q 9t ª t q 9tX q tŽ .3 3 2 3 2 y2
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or

1 1
t ª cc ª cc q t3 y21 1

t q c t q c2 2t t3 3

1
; t q ccy2 1

t q c2 t3

and the second is given by

tX ª t q tX ª t q tX q9tXŽ .3 2 3 2 3 y2

or

1 1 1
ª t q ª cc2 1t t3 3 t q cy2 1

t q2 t3

In both cases we have a ‘‘continued fraction’’ in elementary tangles.
ŽMoreover, the second tangle is isotopic to the reciprocal of the first recall

.Theorem 3 .
Similarly, any basic horizontal tangle b can be written in the form

1
b s t q 1Ž .an 1

t q .any 1 . .
1

q
ta1

and any basic vertical tangle b in the form

1
b s . 2Ž .1

t qan 1
t q .any 1 . .

1
q

ta1

Ž . Ž .In fact, we could take 1 and 2 as the definition of a basic tangle.
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Ž .These forms for basic tangles suggest associating to the basic tangles 1
Ž .and 2 the arithmetic continued fractions

1 1
a q and . 3Ž .n 1 1

a q a q.ny1 n 1. . a q .ny1 .1 .q 1a1 q
a1

Each of these continued fractions equals a rational fraction which we call
Ž .the fraction of the tangle and denote it by F b .

Ž . Ž X . Ž .In particular, F t s a and F t s F 1rt s 1ra.a a a

PROPOSITION 5. If b is a basic tangle, then

Ž . Ž . Ž .1 F 1rb s 1rF b , independent of which in¨erse we use.
Ž . Ž . Ž . Ž .2 If t q b is also a basic tangle, then F t q b s F t q F b sa a a
Ž .a q F b .

Ž . Ž . Ž . Ž .3 F yt s F t s ya s yF t .a ya a

F ytX s F tX s F 1rt s y1ra s yF 1rt s yF tX .Ž . Ž . Ž . Ž . Ž .a ya ya a a

Ž . Ž . Ž .4 F yb s yF b .

Ž .Proof. Only 4 is not immediate from the definitions and Proposi-
Ž .tion 4. A formal proof of 4 requires induction, but we shall just illustrate

the reasoning with an example. Let

1
b s t q .3 1

t q4 ty5

Then, by Proposition 4,

1
yb s yt y3 1

t q4 ty5

1
s yt q3 1

yt y4 ty5
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1
s yt q3 1

yt q4 yty5

1
s yt q .3 1

yt q4 t5

Therefore

1 1
F yb s y3 q s y 3 q s yF b .Ž . Ž .1 1

y4 q 4 q
5 y5

We now have the concepts and tools to state and prove John Conway’s
fundamental theorem.

Ž . Ž .CONWAY’S THEOREM. Let T and T be basic tangles. If F T s F T ,1 2 1 2
then T is ambient isotopic to T .1 2

Remarks. The converse is in fact true, namely, if T is ambient isotopic1
Ž . Ž .to T , then F T s F T . Later we will give a different interpretation of2 1 2

the fraction of a tangle, which allows us to prove this. Thus the fraction is
a complete invariant for the equivalent of basic tangles. Moreover, since

Ž .any rational tangle is ambient isotopic to a basic tangle by an algorithm ,
we have an algorithmic procedure for deciding the equivalence of any two
rational tangles.

Ž .Proof. Given a basic tangle T in the continued fraction form of Eq. 1
with fraction prq, we will show that it is ambient isotopic to a basic tangle

Ž .T with fraction prq, whose continued fraction 3 satisfies a ) 0 fori
i s 1, . . . , n y 1. Such a continued fraction is called regular. Since the

Žregular continued fraction of prq is unique up to the last term which can
w x.be written as a y 1 q 1r1}see 5 , this means that any tangle withn

fraction prq is ambient isotopic to T 9 and we will be finished.
Ž .We begin arithmetically with the continued fraction 3 of the fraction

Ž .F T and show how to convert it into the regular continued fraction with
Žthe same sum. The key step is the following formula of Lagrange See

w x.Lagrange’s Appendix to Euler’s Algebra 5 ,

1 1
a y s a y 1 q , 4Ž . Ž .1b

1 q
b y 1Ž .

which is trivial to verify.
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Applying Lagrange’s formula to convert a continued fraction to a
regular one is best illustrated with an example. Consider the continued
fraction

43 1 1
s 1 q s 1 y 5Ž .1 162 y3 q 3 q1 1

y4 q 4 y
5 5

and move all negative signs to the numerator as shown. We find the last
Žappearance of a negative sign reading down the fraction in this case

. Ž . Ž .y1r5 and apply Eq. 4 to 4 y 1r5 a s 4, b s 5 y 1r5 . Then

1 1
4 y s 3 q ,15

1 q
4

Ž .which, substituted into the right-hand side of 5 yields

43 1
s 1 y , 6Ž .162

3 q 1
3 q 1

1 q
4

a continued fraction for 43r62 with one less negative sign. Now find the
Ž . Ž . Ž .last negative sign in 6 , which is the only one, and apply Eq. 4 to 6 with

a s 1 and

1
b s 3 q ,1

3 q 1
1 q

4

which gives

43 1 1 1
s a y s 0 q s ,1 162 b

1 q 1 q1 1
2 q 2 q1 1

1 q 1 q
4 4
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a continued fraction with all terms positive. This procedure, namely using
Lagrange’s formula to reduce the number of negative signs one step at a
time, works in general yielding a continued fraction in which a negative
sign can only appear in front of the first term.

Now we mirror this procedure topologically. Let the numbers a and b
represent rational tangles with fractions a and b respectively. Then

ŽFig. 2.10 shows the construction of a rational tangle with fraction 1r 1 q
Ž .. Ž .1r b y 1 , which corresponds to part of the right-hand side of 4 .

FIGURE 2.10
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In Fig. 2.11, we use the rational tangle from Fig. 2.10 to form a rational
Ž . Ž Ž ..tangle corresponding to a y 1 q 1r 1 q 1r b y 1 and then topologi-

cally deform this tangle until it is the rational tangle for the fraction
Ž .a q 1r yb . Thus we have the topological version of Lagrange’s formula.

Now we are essentially done. We start with a basic tangle T in the
Ž .continued fraction form of Eq. 1 with fraction prq given by the contin-

Ž .ued fraction 3 . We have shown how to convert the continued fraction
into a regular one, which is essentially unique. Then we showed how to
convert the original tangle to an ambient isotopic tangle corresponding to
the regular continued fraction for prq. Hence given any two tangles T1
and T with the same fraction prq, they are ambient isotopic to the same2
tangle T 9 which corresponds to the unique regular continued fraction for
prq. Therefore T and T are ambient isotopic. Moreover, our proof1 2
actually gives an algorithm for converting T to T .1 2

Note that the basic tangles associated to regular continued fractions are
alternating, i.e., as we walk along a strand, the crossings alternate between
under and over crossings. So we have proved that any basic tangle is
ambient isotopic to an alternating tangle.

FIGURE 2.11
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3. THE CONDUCTANCE INVARIANT AND
THE BRACKET

We have seen how to define the fraction of a rational tangle and that
tangles with the same fraction are ambient isotopic. In this section we shall
prove the converse}that if two tangles are ambient isotopic, then they
have the same fraction. This will complete our goal of showing that the
fraction of a rational tangle completely classifies its topological type.

In order to show that ambient isotopic tangles have the same fraction,
Ž .we shall build an in¨ariant, C T , for arbitrary tangles T and then show

Ž . Ž .1. If T is ambient isotopic to S, then C T s C S .
Ž . Ž .2. If T is rational, then C T s F T , the fraction of T.

This is a case where it is actually easier to solve a more general problem
Žof finding an invariant for arbitrary tangles rather than just for rational

.tangles.
Ž .We shall call the invariant C T the conductance of T , because it is the

Ž . Ž .generalized conductance of a generalized electrical network associated
Ž . w xwith T. The full theory of C T is explained in our paper 7 , but here we

Ž .shall give a different and elementary development of C T that is based on
the bracket polynomial. In order to do this we will first give a quick
introduction to the bracket. Readers interested in more information on the

w xbracket polynomial should consult 8, 9, or 11 . The relationship between
Ž .the bracket Jones polynomial and the conductance invariant is explained

w xin 7 .

The Bracket

² : ŽThe bracket invariant K is defined on all knots and links K not yet
.on tangles by the formulas:

Ž .1

Ž . ² : ² :2 OK s d K ,
² :O s 1,
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where d s yA2 y Ay2 and B s Ay1. The assignment of A and B s Ay1

Ž .in 1 follows the labeling convention}the regions swept out as the o¨er
crossing strand is rotated counterclockwise to the under crossing strand are
labeled with A; the other regions are labeled with Ay1. The symbol A is thus
associated with splicing the crossing from the A to the A regions and B

y1 y1 w xwith splicing the crossing from the A to the A regions. See 8 for the
Ž .motivation behind this definition. In the formula 1 the small diagrams

Ž .stand for otherwise identical parts of larger diagrams. In formula 2 it is
Ž .stated that the appearance of an extra loop O multiplies the bracket by

2 y2 Žd s yA y A , and that the solitary loop receives the value 1. In other
² : .words, s 1rd . The unmarked plane has bracket value 1rd .

² : y1These rules give a well-defined polynomial K in A and A associ-
Ž w x .ated to a given link diagram K see 8, 9, 11 and Exercise 0 below .

Exercises in Bracketology

The following exercises provide a self-contained introduction to various
basic notions and to the bracket polynomial. Some of these results will be
used later.

w x0. INFORMATION ON THE REIDEMEISTER MOVES. In 10 Reidemeister
proved that the set of two-dimensional moves on diagrams shown in Fig.
3.1 are sufficient to capture the concept of ambient isotopy of knots and
links in three-dimensional space. That is, two knots and links are ambient

Žisotopic if and only if diagrammatic ‘‘snapshots’’ of each projections on a
.plane where at most two strands meet at a crossing are equivalent by a

sequence of Reidemeister moves combined with homeomorphisms of the
diagrams in the plane that do not change the crossing structure.

For an exercise, unknot the knot shown in Fig. 3.2 using only Reideme-
siter moves. For a second exercise, turn the figure-eight knot in Fig. 3.2
into its mirror image via the Reidemeister moves. For the latter, it may
help to make a model of the figure eight from rope and see by direct
topological manipulation that the figure-eight knot is indeed equivalent to
its mirror image.

² :1. Let K denote the bracket polynomial in independent commuting
Ž y1variables A, B, and d . We do not yet assume that B s A or that

2 y2 . Ž . Ž .d s yA y A . Verify that the recursion formulas 1 and 2 in the
definition of the bracket polynomial yield a well-defined polynomial func-
tion of link diagrams in the three variables A, B, and d .

2. Continue with the assumptions of problem 1 and show that the
three-variable bracket polynomial has the following behavior under Reide-
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FIG. 3.1. Reidemeister moves.

FIGURE 3.2
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meister move II:

It follows from this formula that if we take B s Ay1 and d s yA2 y Ay2 ,
then

With this specialization of the variables, the bracket is invariant under the
second Reidemeister move.

3. Show that with B s Ay1 and d s yA2 y Ay2 , the invariance of the
bracket under the second Reidemeister move implies its invariance under
the third Reidemeister move.

² :4. Show that K changes under the first Reidemeister move via the
formulas
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Note that in working with the bracket calculations we are not allowed to
perform type I moves on the diagrams without applying these compensat-
ing formulas.

5. Show that if K* is the mirror image of K, obtained by switching all
² :Ž . ² :Ž y1 .the crossings in the diagram for K, then K* A s K A where we

now use the bracket with B s Ay1 and d s yA2 y A2. Compute the
bracket polynomial in A and Ay1 for the trefoil diagram in Fig. 3.3.

Ž .6. Let K be an oriented link diagram and define the writhe of K, w K ,
Ž .by the formula w K s the sum of q1 or y1 for each crossing in K

where the q1 or y1 is the sign of the crossing.
The sign of a crossing is obtained as shown in Fig. 3.4.

Ž . Ž .Now define the normalized bracket, f A , by the formula f A sK K
Ž 3.yw ŽK .² :yA K where we take K to be oriented but forget the orienta-

Ž .tion when we compute the bracket. Show that f A is an invariant of allK
Ž . Ž y1 .three Reidemeister moves. Show that f A s f A . Use these factsK * K
Ž .and your calculation of the trefoil diagram from Problem 4 to prove that

Ž .the trefoil knot is chiral i.e., inequivalent to its mirror image .

This ends the exercises in bracketology.
We now introduce the bracket for tangles.

DEFINITION. Let T be a tangle. Then

² : ²5: ² :T s a T q b T s ,Ž . Ž .
Ž . Ž .where the coefficients a T and b T are obtained by starting with T and

Ž . Ž .using formulas 1 and 2 repeatedly until only the infinity and zero
w x w xtangles are left. We let 0 denote the 0-tangle and ` denote the infinity

² : Ž .²w x: Ž .²w x: ²w x: ²w x:tangle so that T s a T ` q b T 0 . Neither 0 nor ` are
numbers. They are place holders for the results of the computation of the
bracket restricted to the tangle.

FIGURE 3.3
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FIGURE 3.4

Figure 3.5 shows an example of a bracket calculation.

Ž . Ž . Ž .THEOREM 3.1. For any choice of A, R A s a T rb T is an ambientT
isotopy in¨ariant of tangles.

Ž . Ž .Proof. The main point is to examine how a T and b T behave under
the Reidemeister moves. As outlined in the exercises above, one can
expand the tangles in the same way that one expanded a knot or a link to
calculate the bracket. In so doing, the verification of invariance under the
second and third Reidemeister moves goes through in the same way as for
links}with the caveat that one keep the ends of the tangle fixed and that

FIGURE 3.5
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only isotopies within the tangle box are allowed. By the properties of the
Ž . Ž .bracket expansion, a T and b T are each invariant under Reidemeister

II and Reidemeister III moves of the tangle. We know that the bracket
behaves under a type-I move by multiplying by either yA3 or by yAy3. It

Ž . Ž .is easy to see that both a T and b T are multiplied by the same factor
Ž .under a type-one move applied to the tangle. Hence the ratio R A sT

Ž . Ž .a T rb T is unchanged under the first Reidemeister move. Therefore
Ž . Ž .the ratio R A is an invariant of the tangle T. Note that R T may takeT

Ž . Ž .the value ‘‘infinity’’ under the circumstance that b T is zero when a T
is nonzero. This completes the proof of the theorem.

Specializing the A
2 2 y2' 'Ž .Now let A s i i s y1 ; hence B s 1r i and d s yA y A s

yi y 1ri s yi q i s 0. Thus the loop value is 0 for this bracket. From
² :now on T denotes this specialization of the bracket. Let

'C T s yiR i .Ž . Ž .T

Ž .We are now going to see that C T has just the properties that we need to
Ž . Ž .show that C T s F T for rational tangles.

Ž . Ž Ž ..It is easy to see that C 1rT s 1rC T *, where * denotes complex
conjugation, for

² : ² : ² :w x w xT s a T ` q b T 0Ž . Ž .
² : ² : ² :w x w x« 1rT s a T * 0 q b T * ` ,Ž . Ž .

since
' 'w x w x1r 0 s ` as tangles and 1r i * s i .Ž .

Ž . Ž . Ž . Ž . Ž . Ž Ž ..Thus C 1rT s b T *ria T * s i*b T *ra T * s 1rC T *.
Ž . Ž . Ž .Note that when C T is real, then C 1rT s 1rC T since a real

Ž .number is conjugate to itself. We shall see shortly that the values of C T
on rational tangles are rational numbers and hence real.

Ž . Ž .Thus for rational tangles, C 1rT s 1rC T .

EXAMPLE.

' ' ' '²5: ² : ² : ² :w x w xs i q 1r i s s i ` q 1r i 0 .Ž . Ž .
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' 'Žw x. Ž .Ž Ž .. Ž .Ž .Hence C 1 s 1ri i r 1r i s 1ri ir1 s 1. In exactly the same
Žw x. Žw x. Žw x.way, we find that C y1 s y1. Note that C ` s 0 and c 0 s `,

with the convention that formally 1r0 s `.

Ž . Ž . Ž .We now see that C T q S s C T q C S .

² : ²w x: ²w x: ² : ²w x: ²w x:PROPOSITION 3.2. If T s a ` q b 0 and S s c ` q d 0
² : Ž .²w x: ²w x: Ž . Ž .then T q S s ad q bc ` q bd 0 . Hence C T q S s C T q

Ž . Ž .C S follows from the fact that ad q bc rbd s arb q crd.

Proof. In this proof we shall proceed by a picture-writing technique
Ž .Fig. 3.6 : the boxes stand for the tangles in question. We first expand on
the tangle T , replacing it by the sum of two tangles with coefficients that
corresponds to its bracket expansion. We then expand each of these
pictures on the tangle S to get the full sum that is evaluated. Thus
² : Ž .²w x: ²w x:T q S s ad q bc ` q bd 0 , completing the proof of the theo-
rem.

Ž .This completes the proof of all the properties of C T that we need.
w x w x Ž .Since the generating tangles 1 and y1 take rational values under C T

Ž .it follows that tangles generated from them will also take real rational
Ž . Ž .values so that C 1rT s 1rC T for any rational tangle. Then repeated

application of this reciprocal formula, coupled with the addition theorem
Ž . Ž . Ž . Ž . Ž .C T q S s C T q C S , implies that C T s F T for rational tangles.

FIGURE 3.6
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Our mission is complete. We have proved that the rational tangles are
classified by their fractions.

Remark on Numerators and Denominators. To any tangle T there are
Ž .associated two links, the numerator of T , N T , and the denominator of

Ž .T , D T . The numerator is obtained by tying the input strands to each
Ž .other and the output strands to each other Fig. 3.7 . The denominator is

obtained by tying the input strands to the output strands as indicated in
Ž .Fig. 3.7. It is easy to see that the conductance, C T , of the tangle is i

times the ratio of the bracket evaluations of the numerator and the
denominator of the tangle. That is,

Ž . ² Ž .: ² Ž .:THEOREM 3.3. C T s yi N T r D T .

² : ²w x: ²w x: ² Ž .:Proof. When T s a ` q b 0 , it follows that N T s a, while
² Ž .: Ž . ² Ž .: ² Ž .:D T s b. Thus C T s yiarb s yi N T r D T .

In the next section we shall have occasion to use numerators and
denominators of tangles associated with DNA recombination.

Remark on Graphs and Duals. Before leaving this topic there is an
observation about the usefulness of the bracket that is worth making. In

w xorder to make this remark we will assume the background of our paper 7
without further explanation. In that paper we associate to the tangle T a

Ž .signed plane graph called G T , ¨ , ¨ 9 with special vertices ¨ and ¨ 9
corresponding to the inputs and outputs of the tangle. We regard this
signed plane graph as a generalized electrical network. We prove that
Ž . Ž .C T is equal to the generalized conductance of the network between the

vertices ¨ and ¨ 9 where each edge has conductance "1 according to its
sign and negative conductances are handled algebraically in the same

FIG. 3.7. Numerator and denominator.



GOLDMAN AND KAUFFMAN328

manner as classical positive conductances in a linear circuit. Let T* denote
Ž .any choice of inverse tangle for T. It follows that the graph G 1rT , w, w9

Ž .is the planar dual to the graph G T , ¨ , ¨ 9 and, by using the bracket, we
conclude that the conductance of the graph is the inverse of the conduc-
tance of its planar dual. This result comes directly from our easy proof that
Ž . Ž .C 1rT s 1rC T . It is not at all obvious how to produce such a direct

argument using pure graph combinatorics. This shows how the bracket
model for conductance is not just a trick, but in fact it is a way to see more
deeply the properties of both the topology and the electricity associated
with plane graphs.

IV. MOLECULAR BIOLOGY

In this section we sketch an application of fractions of rational tangles to
molecular biology. This method of using tangles has been pioneered by

w x w xDeWitt Sumners 14 and used in the work of Cozzarelli and Spengler 4 .
w x w xSee Kauffman 11, Part 2 and Adams 1 for introductions to the subject.

Recombination of DNA is the process of cutting two neighboring
strands with an enzyme and then reconnecting them in a different way.
The idea of applying tangle theory is to use the addition of tangles to write
the equations for possible recombinations of DNA molecules. Then one

Ž .uses topological information such as the fraction of tangle to obtain
limitations on the possibilities for the products of the recombination.
Recombination occurs in successive rounds for which the nature of the
products can be known through a combination of electrophoresis and
electron microscopy. In particular, electron microscopy provides the biolo-
gist with an enhanced image of the DNA molecule from which it is
possible to see direct evidence of knotting and supercoiling. In the case of
TN3 resolvase, a species of closed circular DNA is seen to produce very
specific knots and links in successive rounds of recombination. By knowing
these actual products of the rounds of recombination it is possible to use
topology to deduce the mechanism for the recombination.

In order to apply the fraction of a tangle to molecular biology, we shall
make the blanket assumption that all products of recombination, starting
from a gï en unknotted and unlinked form of double-stranded DNA, are

( )closures numerators of rational tangles. This is a reasonable assumption. It
assumes that the knots or links that are built in the recombination process

Žare obtained by a combination of simple twisting of the sort that builds
.new rational tangle from old and the addition of single crossings at a

smoothing site. The latter operation is what is usually called site specific
Ž .recombination by biologists see Fig. 4.1 . A crossing is created in place of

the smoothing that is the local configuration of the ‘‘lined-up’’ sites. There
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FIG. 4.1. Site specific recombination.

are two possibilities for such a crossing. We have called these possibilities
R and L. In Fig. 4.2 we have illustrated the concept of a site specific
recombination by drawing the DNA schematically in a single closed loop
with local arrows at these sites. In order for the recombination to occur,
the DNA must twist about to bring these two sites into proximity with the
orientations lined up.

FIG. 4.2. First round of recombination.
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We regard the crossing R as a small tangle and differentiate it from its
reverse version L. Now view Fig. 4.2. Here we see the result of a single
round of recombination. First it is assumed that there is a total twist of the
DNA and that the two sites are brought into proximity. In this form, the

Žw x .DNA can be described as the numerator, Num 1rn q U , of the tangle
w xsum 1rn q U where U denotes the tangle that we have previously called

w x Žw x .0 . The recombination then produces Num 1rn q S , where S equals R
or L. In Fig. 4.2, we have taken n s q3 and S s L.

Successive rounds of recombination produce

w xNum 1rn q S q S ,Ž .
w xNum 1rn q S q S q S ,Ž .

??? .

For example, let n s 3 and S s L. Then the successive rounds of
recombination are shown in Figs. 4.3 and 4.4. The first two rounds give a
simple link and the figure-eight knot. The third round gives a link of two
components with linking number zero. In fact, TN3 resolvase produces just
these knots and links in its successive rounds. Here we have indicated a
possible mechanism for TN3 resolvase. Is it the only possibility?

In order to answer this question in the context of our model, we
consider the most general case of a sequence of rational tangles in the

Ž .form T , T q S, T q S q S, . . . such that FRAC T q S s 1r3 y 1 s
Ž .y2r3 and FRAC T q S q S s 1r3 y 1 y 1 s y5r3. Let x s

Ž . Ž . ŽFRAC T and y s FRAC S . Then using the fact that the fraction of a

FIG. 4.3. Second round of recombination.
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FIG. 4.4. Third round of recombination.

.sum of tangles is the sum of the fractions of the summands we have the
equations

x q y s y2r3

x q 2 y s y5r3.

The only solution to these equations is x s 1r3 and y s y1. By the
w xConway Fraction Theorem, the tangles T and S are identified as T s 1r3

w xand S s y1 . This shows how the topology can be used to pinpoint a
biological mechanism.
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