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Abstract

Consider n people who are seated randomly at a rectangular table with ⌊n/2⌋ and ⌈n/2⌉
seats along the two opposite sides, for two dinners. What is the probability that neighbors
at the first dinner are no longer neighbors at the second one? We give an explicit formula
and show that its asymptotic behavior as n goes to infinity is e−2(1 + 4/n) (it is known that
it is e−2(1−4/n) for a round table). A more general permutation problem is also considered.

1. Introduction

Assume that 8 people are seated around a table and we want to enumerate the number

of ways that they can be permuted such that neighbors are no longer neighbors after the
rearrangement. Of course the answer depends on the topology of the table: if the table

is a circle, then it is easy to check by a simple computer program that the number of
permutations that satisfy this property are 2832. If it is a long bar and all people sit along

one side, then there are 5242. Furthermore, if it is a rectangular table with two sides then
the rearrangements number 9512. The first two cases are respectively described by sequences

A089222 and A002464 of the On-Line Encyclopedia of Integer Sequences [8]. On the other

hand, the rectangular case does not appear in the literature and recently the corresponding
sequence has been labeled as A110128. Here is a valid rearrangement for n = 8:

1 3 5 7

2 4 6 8

First dinner

1 6 3 7

2 8 4 5

Second dinner
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whose associated permutation is

π =

(
1 2 3 4 5 6 7 8
1 2 6 8 3 4 7 5

)

.

For a generic number of persons n the required property can be established more formally

in this way:
|π(i + 2) − π(i)| 6= 2 for 1 ≤ i ≤ n − 2.

It is interesting to note that this rearrangement problem around a table also has another

remarkable interpretation. Consider n kings to be placed on a n × n board, one in each
row and column, in such a way that they are non-attacking with respect to these different

topologies of the board: if we enumerate the ways on a toroidal board we find the sequence
A089222, for a regular board we have A002464, and finally if we divide the board in the

main four quadrants we are considering the new sequence. Here is the 8 kings displacement
that corresponds to the permutation π introduced before:0Z0Z0J0ZZKZ0Z0Z00Z0Z0ZKZZ0Z0J0Z00Z0J0Z0ZZ0Z0Z0ZK0ZKZ0Z0ZJ0Z0Z0Z01

3

5

7

2

4

6

8

1 3 5 7 2 4 6 8

Closed formulas for the first two sequences are known: for A089222 it is (see [2])

an,0 =

n−1∑

r=0

(−1)r

(
n

n − r

)2

(n − r)!

r∑

c=0

2c

(
r − 1

c − 1

)(
n − r

c

)

+ (−1)n2n

and for A002464 it is (see [1],[4],[5],[6],[7])

an,1 =

n−1∑

r=0

(−1)r(n − r)!

r∑

c=0

2c

(
r − 1

c − 1

)(
n − r

c

)

(where
(

k
−1

)
= 0 if k 6= −1 and

(
−1
−1

)
= 1).

In this paper we study the sequence an,d defined for 1 ≤ d ≤ n − 1 as follows: an,d denotes
the total number of permutations π of {1, 2, . . . , n} such that

|π(i + d) − π(i)| 6= d for 1 ≤ i ≤ n − d.
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Note that if a permutation π has this property then π−1 also has the same property.

The table below provides some numerical values:

n an,0 an,1 an,2 an,3

1 1 1 1 1
2 0 0 2 2
3 0 0 4 6
4 0 2 16 20
5 10 14 44 80
6 36 90 200 384
7 322 646 1288 2240
8 2832 5242 9512 15424
9 27954 47622 78652 123456

10 299260 479306 744360 1110928
11 3474482 5296790 7867148 11287232
12 43546872 63779034 91310696 127016304
13 586722162 831283558 1154292796 1565107248
14 8463487844 11661506218 15784573160 20935873872
15 130214368530 175203184374 232050062524 301974271248
16 2129319003680 2806878055610 3648471927912 4669727780624

We will show that the following formula holds for d ≥ 2:

an,d =

n1−1∑

r1=0

· · ·

nd−1∑

rd=0

(−1)r

r1∧(n1−r1)∑

c1=0

· · ·

rd∧(nd−rd)
∑

cd=0

2c(n − r − c)!

d∏

k=1

(
nk − rk

ck

)
∑

∑c1
i=1

li,1=r1

li,1≥1

· · ·
∑

∑cd
i=1

li,d=rd

li,d≥1

qn,d(L)

where nk = |Nk| = |{1 ≤ i ≤ n : i ≡ k mod d}|, rk ∧ (nk − rk) is the minimum of rk and

nk − rk, r =
∑d

k=1 rk, c =
∑d

k=1 ck, L = [l1,1, · · · , lcd,d] or [l1, · · · , lc] after reindexing, and

qn,d(L) =
∑

J1

◦

∪···
◦

∪Jd={1,...,c}

nk≥
∑

i∈Jk
li

d∏

k=1

(
nk −

∑

i∈Jk
li

|Jk|

)

· |Jk|! .

Even if the above formula seems very complicated, it is quite manageable to attempt an

asymptotic analysis. In the last section, we prove that the probability that a permutation

belongs to the set enumerated by an,d always tends to e−2 as n goes to infinity. A more
precise expansion will reveal how the limiting probability depends on d:

an,d

n!
= e−2

(

1 +
4(d − 1)

n
+ O

(
1

n2

))

.

I would like to warmly thank Alessandro Nicolosi and Giorgio Minenkov for drawing my

attention to this problem.
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2. Asymptotic Analysis: Cases d = 0 and d = 1

Proposition 1 The following asymptotic expansions hold:

an,0

n!
∼ e−2

(

1 −
4

n
+

20

3n3
+

58

3n4
+

736

15n5
+ O

(
1

n6

))

,

and
an,1

n!
∼ e−2

(

1 −
2

n2
−

10

3n3
−

6

n4
−

154

15n5
+ O

(
1

n6

))

.

Proof. The expansion of an,0/n! is contained in [2] and it was obtained from a recurrence
relation by the method of undetermined coefficients.

With regard to an,1/n!, we give the detailed proof only for the coefficients of 1/n and 1/n2

(the others can be computed in a similar way). Since

an,1

n!
=

n−1∑

r=0

(−1)r ·
(n − r)!

n!

r∑

c=0

2c

(
r − 1

c − 1

)(
n − r

c

)

and, by the Chu-Vandermonde identity (see, for example, p.169 in [3]) ,

0 ≤
(n − r)!

n!

r∑

c=0

2c

(
r − 1

c − 1

)(
n − r

c

)

≤ 2r (n − r)!

n!

r∑

c=0

(
r − 1

c − 1

)(
n − r

n − r − c

)

≤
2r

r!

(
n

r

)−1(
n − 1

r

)

≤
2r

r!
,

the alternating sum of an,1/n! is dominated for any n ≥ 1 by the convergent series
∑+∞

r=0 2r/r! =
e2. Therefore, by uniform convergence, we can study the asymptotics of an,1/n! term by term.

Moreover
(n − r)!

n!

r∑

c=0

2c

(
r − 1

c − 1

)(
n − r

c

)

=
r∑

c=0

2c

c!

(
r − 1

c − 1

)
nr+c

(nr)2

(where ns = n(n − 1) · · · (n − s + 1) is the falling factorial), and it suffices to analyze the
cases when c is equal to r, r − 1 and r − 2 because for r + c ≤ n the rational function

nr+c/(nr)2 ∼ 1/nr−c. Since the falling factorial ns is the generating function for the Stirling
numbers of the first kind

[
s
k

]
(see, for example, p.249 in [3])

ns =
s∑

k=0

[
s

k

]

(−1)n−knk,

for c = r we obtain

(
r − 1

r − 1

)
n2r

(nr)2
∼

1 −
[

2r
2r−1

]
1
n

+
[

2r
2r−2

]
1
n2

(
1 −

[
r

r−1

]
1
n

+
[

r
r−2

]
1
n2

)2 ∼ 1 −
r2 + r

n
+

r4 + 4r3 + 2r2

2n2
.
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In a similar way, for c = r − 1,

(
r − 1

r − 2

)
n2r−1

(nr)2
∼

(r − 1)

n
−

(r − 1)3 + 3(r − 1)2 + (r − 1)

n2
,

and for c = r − 2,
(

r − 1

r − 3

)
n2r−2

(nr)2
∼

(r − 2)2 + 2(r − 2)

2n2
.

Hence,

an,1

n!
∼

n−1∑

r=0

(−2)r

r!

(

1 −
r2 + r

n
+

r4 + 4r3 + 2r2

2n2

)

+

−

n−1∑

r=1

(−2)r−1

(r − 1)!

(
(r − 1)

n
−

(r − 1)3 + 3(r − 1)2 + (r − 1)

n2

)

+

+

n−1∑

r=2

(−2)r−2

(r − 2)!

(
(r − 2)2 + 2(r − 2)

2n2

)

.

Since, for s ≥ 0,

+∞∑

r=k

(−2)r−k

(r − k)!
· (r − k)s =

+∞∑

r=k+s

(−2)r−k

(r − k − s)!
= (−2)se−2,

taking the sums we find that

an,1

n!
∼ e−2

(

1 −
(22 − 2) − 2

n
+

(24 − 4 · 23 + 2 · 22) + 2 · (−23 + 3 · 22 − 2) + (22 − 2 · 2)

2n2

)

∼ e−2

(

1 −
2

n2

)

.

Note that the same strategy can also be applied to an,0/n!. For example, the coefficient of

1/n can be easily calculated in this way: for c = r the formula gives

(
r − 1

r − 1

)
n2r

(nr)2
·

(
n

n − r

)2

∼

(

1 −
r2 + r

n

)

·

(

1 +
2r

n

)

∼ 1 −
r2 − r

n

and therefore

an,0

n!
∼

n−1∑

r=0

(−2)r

r!

(

1 −
r2 − r

n

)

−

n−1∑

r=1

(−2)r−1

(r − 1)!

(
r − 1

n

)

∼ e−2

(

1 −
(22 + 2) − 2

n

)

∼ e−2

(

1 −
4

n

)

.

�
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3. The Formula for d ≥ 2

Theorem 1 For d ≥ 2

an,d =

n1−1∑

r1=0

· · ·

nd−1∑

rd=0

(−1)r

r1∧(n1−r1)
∑

c1=0

· · ·

rd∧(nd−rd)
∑

cd=0

2c(n−r−c)!

d∏

k=1

(
nk − rk

ck

)
∑

∑c1
i=1

li,1=r1

li,1≥1

· · ·
∑

∑cd
i=1

li,d=rd

li,d≥1

qn,d(L)

where nk = |Nk| = |{1 ≤ i ≤ n : i ≡ k mod d}|, r =

d∑

k=1

rk, c =

d∑

k=1

ck, L = [l1,1, · · · , lcd,d] or

[l1, · · · , lc] after reindexing, and

qn,d(L) =
∑

J1

◦

∪···
◦

∪Jd={1,...,c}

nk≥
∑

i∈Jk
li

d∏

k=1

(
nk −

∑

i∈Jk
li

|Jk|

)

· |Jk|! .

Remark 1 Note that for d = 1 the above formula coincides with the one we gave in the

introduction:

an,1 =
n−1∑

r=0

(−1)r

r∧(n−r)
∑

c=0

2c(n − r − c)!

(
n − r

c

)
∑

l1+···+lc=r

li≥1

qn,1([l1, · · · , lc])

=
n−1∑

r=0

(−1)r

r∧(n−r)
∑

c=0

2c(n − r − c)!

(
n − r

c

)(
r − 1

c − 1

)(
n − r

c

)

c!

=

n−1∑

r=0

(−1)r(n − r)!

r∑

c=0

2c

(
r − 1

c − 1

)(
n − r

c

)

because
∑

l1+···+lc=r

li≥1

qn,1([l1, · · · , lc]) =
∑

l1+···+lc=r

li≥1

∑

J={1,...,c}

n≥r

(
n −

∑

i∈J li
|J |

)

|J |!

=
∑

l1+···+lc=r

li≥1

(
n − r

c

)

c! =

(
r − 1

c − 1

)(
n − r

c

)

c! .

It is interesting to note that the generating function of the sequence an,1,

f(x) =
+∞∑

s=0

s!

(
x(1 − x)

1 + x

)s

,
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which is due to to L. Carlitz (see [6]), can be easily proved by a very similar argument:

f(x) =

+∞∑

s=0

s!xs

(

1 +
2(−x)

1 − (−x)

)s

=

+∞∑

s=0

s! xs

s∑

c=0

(
s

c

)

2c

(
+∞∑

l=1

(−x)l

)c

.

Hence, for n ≥ 1, the coefficient of xn is equal to

[xn]f(x) =
n−1∑

r=0

(n − r)!
n−r∑

c=0

(
n − r

c

)

2c
∑

l1+···+lc=r

li≥1

(−1)l1+···+lc

=

n−1∑

r=0

(−1)r(n − r)!

n−r∑

c=0

2c

(
n − r

c

)(
r − 1

c − 1

)

= an,1.

Proof of Theorem 1 (1st part). For i = 1, . . . , n − d, let Ti,d be the set of permutations of
{1, 2, . . . , n} such that i and i+d are d-consecutive, that is, the distance between i and i+d

in the list π(1), π(2), . . . , π(n) is equal to d:

Ti,d =
{
π ∈ Sn : |π−1(i + d) − π−1(i)| = d

}

(for i = n− d +1, . . . , n we consider Ti,d as an empty set). Then, by the Inclusion-Exclusion
Principle,

an,d =
∑

I⊂{1,2,...,n}

(−1)|I|
∣
∣
⋂

i∈I

Ti,d

∣
∣,

assuming the convention that when the intersection is made over an empty set of indices
then it is the whole set of permutations Sn. A d-component of a set of indices I is a maximal

subset of d-consecutive integers, and we denote by ♯I the number of d-components of I. So
the above formula can be rewritten as

an,d =

n1−1∑

r1=0

· · ·

nd−1∑

rd=0

(−1)r
∣
∣
⋂

i∈I1∪···∪Id

Ik⊂Nk, |Ik|=rk

Ti,d

∣
∣

=

n1−1∑

r1=0

· · ·

nd−1∑

rd=0

(−1)r

r1∧(n1−r1)
∑

c1=0

· · ·

rd∧(nd−rd)
∑

cd=0

∣
∣

⋂

i∈I1∪···∪Id

Ik⊂Nk, |Ik|=rk, ♯Ik=ck

Ti,d

∣
∣

where Nk = {1 ≤ i ≤ n : i ≡ k mod d} and nk = |Nk|.

Remark 2 In order to better illustrate the idea of the proof, which is inspired by the one
of Robbins in [7], we give an example of how a permutation π that belongs to the above



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A11 8

intersection of Ti,d’s can be selected. Assume that n = 12, d = 2, r1 = 2, r2 = 3, c1 = 1,
c2 = 2. N1 and N2 are respectively the odd numbers and the even numbers between 1 and

12. Now we choose I1 and I2: let li,k be the size of the ith-component in Nk (each component
fixes li,k + 1 numbers) and let ji,k be the size of the gap between the ith-component and the

(i+1)st-component in Nk. Then the choice of I1 and I2 is equivalent to selecting an integral
solution of 





l1,1 = r1 = 2 , li,1 ≥ 1
l1,2 + l2,2 = r2 = 3 , li,2 ≥ 1
j0,1 + j1,1 = n1 − r1 − c1 = 3 , ji,1 ≥ 0
j0,2 + j1,2 + j2,2 = n2 − r2 − c2 = 1 , ji,2 ≥ 0

.

For example, taking l1,1 = 2, l1,2 = 1, l2,2 = 2, j0,1 = 1, j1,1 = 2, j0,2 = 0, j1,2 = 1 and
j2,2 = 0, we select the set of indices I1 = {3, 5} and I2 = {2, 8, 10}.

Here is the corresponding table arrangement:

2

2

4

4

6

6

8

8

10

10

12

12

1

1

3

3

5

5

7

7

9

9

11

11

l1,2 + 1 j1,2 l2,2 + 1

j0,1 l1,1 + 1 j1,1

Now we redistribute the three components selecting a partition J1

◦
∪ J2 = {1, 2, 3}, say

J1 = {1, 2} and J2 = {3}. This means that the first two components {2} and {3, 5} will go

to the odd seats and the third component {8, 10} will go to the even seats. Then we decide
the component displacements and orientations: for example, in the odd seats we place first

{3, 5} reversed and then {2}, and in the even seats we place {8, 10} reversed. To determine

the component positions we need the new gap sizes, and therefore we solve the two equations

{
j′0,1 + j′1,1 + j′2,1 = n1 − l1,1 − l1,2 − |J1| = 1 , j′i,1 ≥ 0
j′0,2 + j′1,2 = n2 − l2,2 − |J2| = 3 , j′i,2 ≥ 0

where j′i,k is the size of the new gap between the ith-component and the (i+1)st-component

in Nk. If we take j′0,1 = 0, j′1,1 = 1, j′2,1 = 0, j′0,2 = 1, j′1,2 = 2 and we fill the empty places
with the remaining numbers 1, 6, 9 and 11, we obtain the following table rearragement:
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9

2

12

4

10

6

8

8

1

10

6

12

7

1

5

3

3

5

11

7

2

9

4

11

j′0,2 j′1,2

j′1,1

Proof of Theorem 1 (2nd part). Following the notations introduced in the previous remark,

each Ik, for 1 ≤ k ≤ d, is determined by an integral solution of
{

l1,k + l2,k + · · ·+ lck,k = rk , li,k ≥ 1
j0,k + j1,k + · · · + jck,k = nk − rk − ck , ji,k ≥ 0

where l1,k, . . . , lck,k are the component sizes and j0,k, . . . , jck,k are the gap sizes in Nk. The
counting of the integral solutions of these d systems yields the following factor in the formula

d∏

k=1

(
nk − rk

ck

)
∑

∑c1
i=1

li,1=r1

li,1≥1

· · ·
∑

∑cd
i=1

li,d=rd

li,d≥1

.

Now, given I1, . . . , Id, we select a permutation π ∈
∣
∣
⋂

i∈I1∪···∪Id
Ti,d

∣
∣ following these steps:

• We redistribute the c =
∑d

k=1 ck components selecting a partition J1, . . . , Jd of the set

of indices {1, . . . , c} (we allow Jk to be empty).

• For each set Jk of the partition, we determine the sizes of the new gaps solving

j′0,k + j′1,k + · · ·+ j′|Jk|,k
= nk −

∑

i∈Jk

li − |Jk| , j′i,k ≥ 0.

This can be done in
(nk−

∑

i∈Jk
li

|Jk|

)
ways.

• For each set Jk of the partition, we choose the order of the corresponding |Jk| compo-
nents and their orientation in |Jk|! · 2

|Jk| ways.

• We fill the empty places with the remaining numbers in (n − r − c)! ways.

Taking into account all these effects, we obtain

∑

J1

◦

∪···
◦

∪Jd={1,...,c}

nk≥
∑

i∈Jk
li

(n − r − c)!
d∏

k=1

(
nk −

∑

i∈Jk
li

|Jk|

)

· |Jk|! · 2
|Jk|.

Finally, since c =
∑d

k=1 |Jk|, then
∏d

k=1 2|Jk| = 2c and we get the desired formula. �
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4. Asymptotic Analysis: The General Case

Theorem 2 For d ≥ 0

an,d

n!
= e−2

(

1 +
4(d − 1)

n
+ O

(
1

n2

))

.

Proof. The cases d = 0 and d = 1 have been already discussed, so we assume that d ≥ 2.
From the beginning of the proof of Theorem 1 we have

an,d

n!
=

n1−1∑

r1=0

· · ·

nd−1∑

rd=0

(−1)r 1

n!

∣
∣
⋂

i∈I1∪···∪Id

Ik⊂Nk, |Ik|=rk

Ti,d

∣
∣.

Moreover, since each Ik can be selected in
(

nk

rk

)
ways, each index in Ik can be ordered in 2

ways and the remaining numbers can be arranged in (n − r)! ways, we have

0 ≤
1

n!

∣
∣
⋂

i∈I1∪···∪Id

Ik⊂Nk, |Ik|=rk

Ti,d

∣
∣ ≤

(n − r)!

n!

d∏

k=1

(
nk

rk

)

2rk

≤

(
n

n1, . . . , nd

)−1(
n − r

n1 − r1, . . . , nd − rd

) d∏

k=1

2rk

rk!
≤

d∏

k=1

2rk

rk!

This means that the alternating sum of an,d/n! is dominated, for any n ≥ 1, by the convergent

series
+∞∑

r1=0

· · ·

+∞∑

rd=0

d∏

k=1

2rk

rk!
= e2d.

Therefore, by uniform convergence, we can study the asymptotics of an,d/n! term by term.

By Theorem 1, and since c =
∑d

k=1 ck =
∑d

k=1 |Jk|, each term has the following form:

(−1)r2c (n − r − c)!

n!

d∏

k=1

(
nk − rk

ck

) d∏

k=1

(
nk −

∑

i∈Jk
li

|Jk|

)

· |Jk|! ∼ const ·
n2c

nr+c

and therefore goes to zero faster than 1/n (as n goes to infinity), unless either 2c = r + c or

2c = r + c − 1. In the first case, ck = rk for any k = 1, . . . , d (remember that ck ≤ rk) and
all component sizes are equal to 1. In the second case, the same situation holds with two

exceptions: ck0
= rk0

− 1 for some index k0 and one of the components in Nk0
has size equal

to 2. By symmetry, we can assume that this particular index k0 is equal to d and multiply
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the corresponding term by d:

an,d

n!
∼

n/d−1
∑

r1=0

· · ·

n/d−1
∑

rd=0

(

(−2)r (n − 2r)!

n!

d∏

k=1

(
n/d − rk

rk

)

qn,d([

r
︷ ︸︸ ︷

1, . . . , 1])+

+d · (−2)r−1 (n − 2r + 1)!

n!

d∏

k=1

(
n/d − rk

rk

)(
n/d − rd

rd − 1

)

(rd − 1)qn,d([

r−2
︷ ︸︸ ︷

1, . . . , 1, 2])



 ,

that is

an,d

n!
∼

n/d−1
∑

r1=0

· · ·

n/d−1
∑

rd=0

qn,d([

r
︷ ︸︸ ︷

1, . . . , 1])

n2r

d∏

k=1

(−2)rk

rk!

d∏

k=1

(n/d)2rk

(n/d)rk
+

+2d ·

n/d−1
∑

r1=0

· · ·

n/d−1
∑

rd−1=0

n/d−1
∑

rd=2

qn,d([

r−2
︷ ︸︸ ︷

1, . . . , 1, 2])

n2r−1

d−1∏

k=1

(−2)rk

rk!
·
(−2)rd−2

(rd − 2)!

d−1∏

k=1

(n/d)2rk

(n/d)rk
·
(n/d)2rd−1

(n/d)rd
.

We start by considering the second term. Since

qn,d([

r−2
︷ ︸︸ ︷

1, . . . , 1, 2]) ∼ d ·
∑

∑d
k=1

r′
k
=r−2

r′
k
≥0

(
r − 2

r′1, . . . , r
′
d

) d−1∏

k=1

(
n/d − r′k

r′k

)

· r′k! ·

(
n/d − r′d − 2

r′d

)

· (r′d + 1)!

∼ d ·
∑

∑d
k=1

r′
k
=r−2

r′
k
≥0

(
r − 2

r′1, . . . , r
′
d

) d−1∏

k=1

(n/d)2r′
k

(n/d)
r′
k

·
(n/d)2r′

d
+3

(n/d)
r′
d
+2

∼ d ·
(n

d

)r−1 ∑

∑d
k=1

r′
k
=r−2

r′
k
≥0

(
r − 2

r′1, . . . , r
′
d

)

= d ·
(n

d

)r−1

dr−2 = nr−1,

the second term is

2 ·

n/d−1
∑

r1=0

· · ·

n/d−1
∑

rd−1=0

n/d−1
∑

rd=2

nr−1

n2r−1

d−1∏

k=1

(−2/d)rk

rk!
·
(−2/d)rd−2

(rd − 2)!
· nr−1 ∼ 2

(
e−2/d

)d 1

n
=

2e−2

n
.
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Now we consider the first term. Since

qn,d([

r
︷ ︸︸ ︷

1, . . . , 1]) ∼
∑

∑d
k=1

r′
k
=r

r′
k
≥0

(
r

r′1, . . . , r
′
d

) d∏

k=1

(
n/d − r′k

r′k

)

· r′k!

∼
∑

∑d
k=1

r′
k
=r

r′
k
≥0

(
r

r′1, . . . , r
′
d

) d∏

k=1

(n/d)2rk

(n/d)rk

∼
(n

d

)r ∑

∑d
k=1

r′
k
=r

r′
k
≥0

(
r

r′1, . . . , r
′
d

) d∏

k=1

1 − 1
2
(2r′k)(2r

′
k − 1) · d

n

1 − 1
2
r′k(r

′
k − 1) · d

n

∼
(n

d

)r ∑

∑d
k=1

r′
k
=r

r′
k
≥0

(
r

r′1, . . . , r
′
d

)(

1 −

(

3

2

d∑

k=1

r′k(r
′
k − 1) +

d∑

k=1

r′k

)

·
d

n

)

∼
(n

d

)r
(

dr −

(
3

2
dr(r − 1)dr−2 + drdr−1

)

·
d

n

)

∼ nr

(

1 −

(
3

2
r(r − 1) + dr

)
1

n

)

,

the first term is

n/d−1
∑

r1=0

· · ·

n/d−1
∑

rd=0

1 −
(

3
2
r(r − 1) + dr

)
· 1

n

1 − r(2r − 1) · 1
n

d∏

k=1

(−2/d)rk

rk!

d∏

k=1

(

1 − rk(2rk − 1) · d
n

1 − 1
2
rk(rk − 1) · d

n

)

;

that is,

n/d−1
∑

r1=0

· · ·

n/d−1
∑

rd=0

(

1 +

(
r2 + (1 − 2d)r

2

)

·
1

n

) d∏

k=1

(−2/d)rk

rk!

d∏

k=1

(

1 −

(
3rk(rk − 1)

2
+ rk

)

·
d

n

)

.

Recalling that r =
∑d

k=1 rk, we have

1 +

(
r2 + (1 − 2d)r

2

)

·
1

n
= 1 +

(

1

2

d∑

k=1

rk(rk − 1) + (1 − d)

d∑

k=1

rk +

d∑

k=1

d∑

k′=k+1

rkrk′

)

·
1

n
.

Moreover

d∏

k=1

(

1 −

(
3rk(rk − 1)

2
+ rk

)

·
d

n

)

∼ 1 +

(

−
3d

2

d∑

k=1

rk(rk − 1) − d
d∑

k=1

rk

)

·
1

n
.
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Therefore, the first term is equivalent to

e−2 +
1

n
·

n/d−1
∑

r1=0

· · ·

n/d−1
∑

rd=0

(

1 − 3d

2

d∑

k=1

rk(rk − 1)

d∏

k=1

(−2/d)rk

rk!
+

+(1 − 2d)

d∑

k=1

rk

d∏

k=1

(−2/d)rk

rk!
+

d∑

k=1

d∑

k′=k+1

rkrk′

d∏

k=1

(−2/d)rk

rk!

)

.

Taking the sums we obtain

e−2

(

1 +
1

n
·

(

1 − 3d

2

(
−2

d

)2

d + (1 − 2d)

(
−2

d

)

d +

(
−2

d

)2
d(d − 1)

2

))

;

that is,

e−2

(

1 +
4d − 6

n

)

.

Finally, putting everything together we find that

an,d

n!
∼ e−2

(

1 +
4d − 6

n

)

+
2e−2

n
= e−2

(

1 +
4(d − 1)

n

)

.

�
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