
ACL2 Workshop 2003

A Separation Kernel Formal Security Policy

David Greve, Matthew Wilding, and W. Mark Van
eet

Rockwell Collins Advanced Technology Center

Cedar Rapids, IA 52498 USA

fdagreve,mmwilding@rockwellcollins.com

and

U.S. Department of Defense

Abstract

Separation kernels mediate interaction between partitions in a se-

cure system. System security policies can be developed about systems

that use separation kernels that rely only on the appropriate separation

kernel operation. We introduce a formal security policy for a separa-

tion kernel in ACL2, and argue for its usefulness by comparing it with

other formalisms and by using it in a proof involving the correctness

of a �rewall application.

1 Introduction

High-assurance product evaluation requires precise, unambiguous speci�ca-

tions. Some high-assurance products are relied upon to process information

containing military or commercial secrets, and it is important to guarantee

that no unauthorized interference or eavesdropping can occur. A formal

speci�cation of what the system allows and guards against is called a formal

security policy. The construction of a formal security policy that describes

the needed behavior of a security-critical system under evaluation is now

commonly required for high-level certi�cation.

A computing system that supports multiple independent levels of se-

curity (MILS, a.k.a. MSL or multiple security levels) provides protections

to guarantee that information that is assigned di�erent security levels is

1

ACL2 Workshop 2003

handled appropriately. The design of MILS/MSL systems guaranteed to

perform correctly with respect to security considerations is a daunting chal-

lenge. An innovation �rst published in the early 1980's for architecting

secure systems involves the application of a separation kernel to reduce the

security burden [6]. Interaction between applications is mediated by the sep-

aration kernel, which enforces a security policy of information
ow and data

isolation on those interactions. Architecting a MILS/MSL system using a

separation kernel breaks the security challenge into two smaller challenges:

(1) building and verifying a dependable separation kernel and (2) building

applications that, relying upon protections a�orded by the separation kernel,

enforce sensible system security policies.

Broadly speaking, a good speci�cation of a system component has two

characteristics. First, it can be mapped to concrete component implemen-

tations using convenient and reliable methods. That is, the speci�cation

can be proved about a particular system component. Second, a good speci-

�cation encapsulates needed behavior so that the larger system can bene�t

from an assurance that the speci�cation holds of the component. That is, the

speci�cation can be used in the larger system that contains the component

about which the speci�cation has been proved.

We present in this paper a security property that we believe has both

of these desired properties. We are currently proving this security policy

about several system component implementations that are designed to en-

force separation, which we plan to document in a future paper. In this paper

we argue that this policy can be used, which we show in two ways. First,

we introduce some theorems similar to what others have used to describe a

separation kernel and prove that our speci�cation implies theirs. Second, we

formalize an example application | a �rewall | that uses the separation

kernel and show that the separation kernel security policy implies that the

application works properly.

We have choosen the ACL2 logic, an enhancement of the Common Lisp

programming language [7], to describe our security policy. It is a good

choice for this work because of its usefulness in modeling and reasoning

about computing systems [1, 2, 3, 8] and the support a�orded by the ACL2

theorem proving system [4]. The de�nitions and proofs presented in this

paper have each been checked using ACL2 version 2.7. In addition, the

assumptions we make that are introduced as constraints on the functions of

the speci�cations have been proved using ACL2 to be satis�able.

Ultimately, we will prove that an implementation adheres to the secu-

rity policy being presented in this note and use the ACL2 theorem prover to

check the proofs. We crafted this policy to provide an unambiguous descrip-

2

ACL2 Workshop 2003

tion for what a separation kernel provides, and constructing such a policy

is a step toward building a formally veri�ed separation kernel implementa-

tion, which is our ultimate goal. However, the scope of this paper is limited

to introducing a separation kernel security policy and showing that it de-

scribes the separation kernel's behavior in order to reason about an example

application that relies upon it.

2 Separation Kernel Formal Security Policy

The formal security policy describes abstractly what a separation kernel

does. The machine supports a number of partitions whose names are pro-

vided by the constant function (allparts). We use the notation of ACL2's

encapsulate command to indicate a function of no arguments that returns

a single value.

((allparts) => *)

One of the partitions is designated the \current" partition. The function

current calculates the current partition given a machine state.

((current *) => *)

We use the notation of ACL2's defthm command, which presents a the-

orem expressed in Common Lisp notation, to indicate a property about the

functions current and allparts.

(defthm current-is-partition

(member (current st) (allparts)))

Associated with partitions are memory segments. Memory segments

have names and are intended to model portions of the machine state. The

names of the memory segments associated with a particular partition are

available from the function segs, which takes as an argument the name of

the partition. (Note that since segs is a function only of partition name |

not, for example, a function of machine state | the assignment of segments

to partitions is implicitly invariant.)

((segs *) => *)

The values in a machine state that are associated with a memory segment

are extracted by the function select. Select takes two arguments: the name

of the memory segment and the machine state.

3

ACL2 Workshop 2003

((select * *) => *)

The separation kernel enforces a communication policy on the memory

segments. This policy is modeled with the function dia, which represents

the pairs of memory segments for which direct interaction is allowed. The

function takes as an argument a memory segment name and returns a list

of memory segments that are allowed to e�ect it. (Note that since dia is a

function only of the memory segment name, the formalization here implicitly

requires that the communication policy is invariant.)

((dia *) => *)

The last function constrained in the security policy is next, which models

one step of computation of the machine state. The function next takes as

an argument a machine state and returns a machine state that represents

the e�ect of the single step.

((next *) => *)

The aforementioned constrained functions are used to construct several

additional functions. Function selectlist takes a list of segments and

returns a list of segment values, function segslist takes a list of partition

names and returns the list of memory segment associated with the partitions,

and run takes an initial machine state and number of steps and returns an

initial machine state updated by executing the number of steps indicated.

(defun selectlist (segs st)

(if (consp segs)

(cons

(select (car segs) st)

(selectlist (cdr segs) st))

nil))

(defun segslist (partnamelist)

(if (consp partnamelist)

(append

(segs (car partnamelist))

(segslist (cdr partnamelist)))

nil))

(defun run (st n)

(if (zp n)

st

(run (next st) (1- n))))

4

ACL2 Workshop 2003

The security policy requires that the e�ect on an arbitrary memory seg-

ment seg by the execution of one machine step is a function of the set of

memory segments that are both allowed to interact with seg and are asso-

ciated with the current partition.

(defthm separation

(let ((segs (intersection-equal (dia seg) (segs (current st1)))))

(implies

(and

(equal (selectlist segs st1) (selectlist segs st2))

(equal (current st1) (current st2))

(equal (select seg st1) (select seg st2)))

(equal

(select seg (next st1))

(select seg (next st2))))))

That is the entirety of the separation kernel security policy1

3 Relationship with other formalizations

In this section we present several theorems that hold of any system that

meets the security policy of the previous section. We prove these theorems

because they have been proposed as good properties for a separation kernel

in the literature, in informal discussions we have had, or both. Each of these

theorems is a special case of the separation axiom of the security policy of

the previous section, as veri�ed using the ACL2 theorem prover.

3.1 Ex�ltration

When a partition is the currently-executing partition, a partition's memory

segments can only be e�ected in a way that is consistent with the commu-

nication policy. We have formalized this property in the following lemma.

(defthm exfiltration

(implies (and

(equal (intersection-equal (dia seg)

(segs (current st1))) nil)

(equal (current st1) (current st2))

(equal (select seg st1) (select seg st2)))

(equal (select seg (next st1))

(select seg (next st2)))))

1There are other valuable properties of systems employing separation kernels that need

to be demonstrated but are not part of the formal security policy of the separation kernel.

For example, the property that the system startup mechanism initializes the system so as

to enforce the dia function.

5

ACL2 Workshop 2003

Ex�ltration is an instance of the separation axiom of the previous section.

It is similar to the \Communication Policy" axiom of [5]. However, there

appear to be small di�erences between our security policy and the security

policy of [5]2.

� The formalization presented in this paper does not preclude changes

to the state of a partition that are independent of the operation of the

machine. This change allows the introduction of such useful things

as free-running counters and the asynchronous arrival of (partition

speci�c) information from external sources.

� The communication policy enforced by the separation kernel allows for

a �ner level of control, since it is at the memory segment level rather

than aggregated at the partition (or, to use the MASK terminology,

\cell") level. This allows us to make assertions about speci�c regions

of partition memory, allowing us to de�ne \inbox" regions that are

distinct from \read only" program memory.

3.2 Mediation

When a partition executes, the e�ect on a segment does not depend on any-

thing other than the segment's original value and the values of the current

partition.

(defthm Mediation

(implies (and (equal (current st1) (current st2))

(equal (selectlist (segs (current st1)) st1)

(selectlist (segs (current st1)) st2))

(equal (select seg st1) (select seg st2)))

(equal (select seg (next st1))

(select seg (next st2))))

This theorem is very similar to the second separation constraint of [5],

and is an instance of the separation axiom of the previous section.

3.3 In�ltration

When a partition executes, the values of the current partition's memory

segments do not depend on other segments that should not e�ect it.

2We rely on the published description MASK. The proofs and formal models associated

with this work appear not to have been published.

6

ACL2 Workshop 2003

(defthm infiltration

(implies (and

(equal (current st1) (current st2))

(equal (selectlist (segs (current st1)) st1)

(selectlist (segs (current st1)) st2))

(member seg (segs (current st1))))

(equal (select seg (next st1))

(select seg (next st2))))

This too is an instance of the separation axiom of the previous section.

(It is an instance of mediation as well.)

4 Formalization of a Firewall Application

In this section we formalize the operation of a �rewall application that uses

the separation kernel formalized in Section 2 and show that by exploiting

the separation kernel's security policy we can show that the �rewall works

properly. This shows that our formalization of the separation kernel security

policy is usable.

4.1 Two Functions for Describing Firewalls: black and scrub

In order to prove that a model of a �rewall application works, we introduce

functions that we can use to describe how a �rewall is supposed to behave.

It is not immediately obvious how to formalize the correct operation of a

�rewall, in part because it is diÆcult to describe what it means for data

not to contain sensitive information. We introduce the notion of \black",

which is a predicate on a segment name and a system state. The intended

interpretation is that black segments do not contain sensitive information

that requires protection. We assume the following properties about black

and scrub.

� spontaneous-generation If all segments in a system are black, then

after the system progresses one step each segment is black.

� black-scrub There exists a function \scrub" that modi�es a segment

so that it is black.

� black-function-of-segment Elements of system state that are not

associated with the segment are irrelevant in deciding whether a seg-

ment is black.

� current-scrub Scrubbing does not change which partition is current.

7

ACL2 Workshop 2003

These assumptions are formalized using constrained ACL2 functions.

Function black takes a segment name and a machine state and returns

whether the segment contains no sensitive data. Function scrub takes a

segment name and machine state and returns a new machine state where

the segment has been modi�ed so as not to contain sensitive information.

((black * *) => *)

((scrub * *) => *)

One function is de�ned using the constrained functions.

(defun blacklist (segnames st)

(if (consp segnames)

(and

(black (car segnames) st)

(blacklist (cdr segnames) st))

t))

We further constrain these functions by adding the following assumptions

about them. We believe that these constraints formalize properties of the

functions that we have described informally.

(defthm scrub-commutative

(equal

(scrub seg1 (scrub seg2 st))

(scrub seg2 (scrub seg1 st))))

(defthm segment-scrub-different

(implies (not (equal seg1 seg2))

(equal (select seg1 (scrub seg2 st))

(select seg1 st))))

(defthm black-scrub

(equal

(black seg1 (scrub seg2 st))

(or

(equal seg1 seg2)

(black seg1 st))))

(defthm current-scrub

(equal

(current (scrub seg st))

(current st)))

8

ACL2 Workshop 2003

(defthm spontaneous-generation

(implies

(blacklist (segslist (allparts)) st)

(black seg (next st))))

(defthm black-function-of-segment

(implies

(equal (select x st1) (select x st2))

(equal (black x st1) (black x st2))))

We have shown that the axioms are consistent using ACL2, but are they

reasonable for the properties we wish to formalize? In other words, does it

formalize a sensible notion of sensitive information? Consider a computing

platform that is supposed to handle data of this type. We could imagine

extending it so that the system labeled all data with a \black" bit that

identi�es whether the byte contains sensitive information. Any operation

that produces data would set the result's black bit to the \and" of all the

input black bits.

Note that each of these assumptions seems reasonable on this enhanced

system. In particular,

� spontaneous-generation holds, since any operation will set black bits

if every segment in the system has its black bits set. Note that, this

framework could model something like a decryption algorithm. De-

cryption requires keys or algorithms that would not be considered

\black" in this framework, so this axiom would be consistent with

such models.

� Black-scrub holds since one can \scrub" a data segment by zeroizing

all the data and setting the black bits.

� Black-function-of-segment holds since it is straightforward to tell if a

segment is black by checking whether all its black bits are set.

Informally, we believe that our formalization of \black" and \scrub" are

reasonable in part because in principle it is possible to implement them

by adding the black bit extension suggested above. We believe that these

assumptions constitute a simple but sensible formalization of concepts useful

in describing a �rewall.

4.2 A Proved Firewall

Using the functions described in the previous section, we now describe a

�rewall that uses the separation kernel (with the separation property) to

9

ACL2 Workshop 2003

implement its own security policy. The �rewall is implemented as a partition

that is guarded by the separation kernel, and we add assumptions about the

con�guration of the system and the behavior of the �rewall. We use the

notion of \black" introduced in the previous section to describe a �rewall

security policy, and we prove that it is met using the security policy of the

security kernel upon which it depends.

We assume the following about the �rewall3.

� There is a partition named b and a partition named f.

(defaxiom allparts-includes

(and

(member 'b (allparts))

(member 'f (allparts))))

� When partition f is executing, memory segment \outbox" does not

transition from black to non-black. Firewall operation therefore is

assumed not to allow non-black information to be placed into memory

segment \outbox".

(defaxiom firewall-blackens

(implies

(and

(equal (current st) 'f)

(black 'outbox st))

(black 'outbox (next st))))

� If there is a segment in partition B that is writable from a segment

that is in a non-B partition, then it has the name \outbox" and it is

only writable from segments that are both in partition F and not in

partition B.

3Note that these assumptions are introduced using defaxiom. We would prefer to

introduce them using constrain in order to ensure their consistency, but ACL2 does

not support \extending" previously-introduced constraints, and these assumptions involve

previously-introduced constrained functions. We have built into the make�le that supports

this work a check that these axioms are consistent. The check involves building an ACL2

source �le with de�nitions for the constrained functions culled from the earlier constrain

events and these defaxioms recast as defthms. This �le is checked by ACL2 when the

book containing the defaxioms is created so, although the assumptions are introduced

using axioms, they are not logically inconsistent with the previous assumptions made

about these functions.

10

ACL2 Workshop 2003

(defaxiom dia-setup

(implies

(and

(member seg1 (dia seg2))

(member seg2 (segs 'b))

(member seg1 (segs p))

(not (equal p 'b)))

(and

(equal seg2 'outbox)

(iff

(member seg1 (segs p2))

(equal p2 'f))))

:rule-classes nil)

These assumptions have been demonstrated to be consistent with the

other assumptions introduced earlier in this paper.

We now state the security policy we desire the �rewall to enforce: non-

black data will never be introduced into the memory segments of b.

(defthm firewall-works

(implies

(blacklist (segs 'b) st)

(blacklist (segs 'b) (run st n))))

This theorem has been proved. The proof relies upon the assumptions

about the security policy and the operation of the �rewall presented here,

and requires the proof of several sublemmas. All the de�nitions, assump-

tions, sublemmas, and the �nal lemma are processed in seconds using ACL2.

5 Summary

We have introduced a formal security policy for a separation kernel, and

argued for its usefulness by comparing it with other formalisms and using it

to prove a formalization of a �rewall application. We are now proving that

this security policy holds of a separation kernel implementations currently

under development.

References

[1] William R. Bevier, Warren A. Hunt Jr., J Strother Moore, and

William D. Young. An approach to systems veri�cation. Journal of

Automated Reasoning, 5(4):411{428, December 1989.

11

ACL2 Workshop 2003

[2] David Greve and Matthew Wilding. Evaluatable, high-assurance micro-

processors. In Second Annual High-Con�dence Systems and Software

Conference (HCSS02). National Security Agency, March 2002. Also

http://hokiepokie.org/docs.

[3] David Greve, Matthew Wilding, and David Hardin. High-speed, ana-

lyzable simulators. In Computer-Aided Reasoning: ACL2 Case Studies.

Kluwer Academic Publishers, 2000. Also http://hokiepokie.org/-

docs.

[4] M. Kaufmann and J S. Moore. An industrial strength theorem prover

for a logic based on Common Lisp. IEEE Transactions on Software

Engineering, 23(4):203 { 213, April 1997.

[5] W. Martin, P. White, F.S. Taylor, and A. Goldberg. Formal construc-

tion of the mathematically analyzed separation kernel. In Proceedings

of the Fifteenth IEEE International Conference on Automated Software

Engineering (ASE'00). IEEE Computer Society Press, 2000.

[6] J. Rushby. Design and veri�cation of secure systems. In Proceedings

of the Eighth Symposium on Operating Systems Principles, volume 15,

December 1981.

[7] Guy L. Steele. Common LISP: The Language. Digital Press, 1984.

[8] Matthew Wilding, David Greve, and David Hardin. EÆcient simulation

of formal processor models. Formal Methods in System Design, 18(3),

May 2001.

12

