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Abstract Photography has been striving to capture an
ever increasing amount of visual information in a single
image. Digital sensors, however, are limited to record-
ing a small subset of the desired information at each
pixel. A common approach to overcoming the limita-
tions of sensing hardware is the optical multiplexing of
high-dimensional data into a photograph. While this is
a well-studied topic for imaging with color filter arrays,
we develop a mathematical framework that generalizes
multiplexed imaging to all dimensions of the plenoptic
function. This framework unifies a wide variety of exist-
ing approaches to analyze and reconstruct multiplexed
data in either the spatial or the frequency domain. We
demonstrate many practical applications of our frame-
work including high-quality light field reconstruction,
the first comparative noise analysis of light field attenu-
ation masks, and an analysis of aliasing in multiplexing
applications.

Keywords Computational Photography · Optical
Multiplexing · Plenoptic Function · Light Fields

1 Introduction

Despite the tremendous advances in camera technol-
ogy throughout the last decades, the basic principle of
operation of modern cameras is still the same as that
of Joseph Nicéphore Niépce’s camera, which he used to
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capture the first permanent photograph in 1826. Digital
sensors have replaced light sensitive resins and on-board
image processing using integrated computing hardware
is now common practice, even for consumer-grade dig-
ital cameras. However, the acquired visual information
has always been what a single human eye can perceive:
a two-dimensional trichromatic image. Fueled by ad-
vances of digital camera technology and computational
processing, image acquisition has begun to transcend
limitations of film-based analog photography.

Computational photography has emerged as an in-
terdisciplinary field that is dedicated to the exploration
of sophisticated approaches to capturing, analyzing,
and processing visual information. Most of the pro-
posed techniques aim at acquiring the dimensions of
the plenoptic function (Adelson and Bergen 1991) with
combined optical modulation and computational pro-
cessing (Wetzstein et al 2011). The plenoptic function
provides a ray-based model of light encompassing most
properties of interest for image acquisition, including
the color spectrum as well as spatial, temporal, and
directional light variation.

A most desirable plenoptic camera would capture
all plenoptic dimensions in a single image using plenop-
tic multiplexing. This can be achieved with something
as simple as a color filter array or, more generally, con-
sider additional plenoptic quantities (Narasimhan and
Nayar 2005). In either case, a full-resolution image is
computed from an interleaved sensor image by interpo-
lating the captured data. Alternatively, an encoding of
the spatio-angular plenoptic dimensions, commonly re-
ferred to as light fields (Levoy and Hanrahan 1996), can
be achieved by multiplexing directional light variation
into spatial frequency bands using optical heterodyning
(Veeraraghavan et al 2007, 2008; Lanman et al 2008).

In this paper, we introduce a mathematical frame-
work for describing and analyzing plenoptic multiplex-
ing systems. This allows us to cast a large variety of
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existing multiplexed imaging approaches into a com-
mon framework for analysis, reconstruction, and per-
formance evaluation.

1.1 Contributions

We analyze approaches to acquiring the dimensions of
the plenoptic function and present a framework that
unifies previously proposed reconstruction methods.
Specific contributions are as follows:

– Capture and reconstruction of the plenoptic dimen-
sions are very similar in nature. While intuitive,
we demonstrate that sophisticated reconstruction
methods developed for one dimension can be sim-
ilarly applied to other dimensions.

– We introduce a mathematical framework for image
formation in plenoptic multiplexing applications.
This model generalizes both spatial and Fourier
multiplexing methods that have been proposed
independently in the literature.

– We present, for the first time, spatial reconstruc-
tions of Fourier multiplexed light fields and other
plenoptic manifolds and show that the resulting im-
age quality can be significantly increased.

– We establish a metric for the quantitative evalua-
tion of attenuation masks used in light field acquisi-
tion. We compare a variety of attenuation patterns
and analyze their performance with respect to sen-
sor noise amplification.

1.2 Overview of Benefits and Limitations

The framework introduced in Section 3 shares limita-
tions of other image processing methods, such as color
demosaicing: the captured sensor images are assumed
to be composed of repeating super-pixels. Each of these
super-pixels contains different samples of the plenop-
tic function, but the sampling layout within the super-
pixels is spatially invariant. While standard color filter
arrays (CFAs, e.g. Bayer (1976)) only perform an inter-
polation of the spatially interleaved samples, our frame-
work targets more sophisticated multiplexing schemes
that require additional data processing after the inter-
polation. A general assumption for all such approaches
is that the sampled signal is band-limited. In practice,
this is achieved using optical anti-aliasing filters (e.g.,
Greivenkamp (1990)).

As illustrated in Figure 1, we demonstrate that our
framework allows for reconstructions, that is interpo-
lation and subsequent processing, of multiplexed data
in both the spatial and Fourier domain. Although this
may seem straightforward for some applications, such
as color demosaicing, a variety of mask-based light
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Fig. 1 Overview of multiplexed image reconstruction. The
plenoptic function can be reconstructed by interpolating the
sensor samples and performing a local decorrelation in the
spatial domain (upper row). Alternatively, it can be recon-
structed in the Fourier domain by cropping and locally decor-
relating Fourier tiles that are created by the periodic struc-
ture of the employed optical filters (lower row).

field acquisition approaches have recently been pro-
posed with corresponding analyses and reconstructions
being exclusively performed in the Fourier domain
(Veeraraghavan et al 2007, 2008; Lanman et al 2008;
Georgiev et al 2008; Agrawal et al 2010b). Our frame-
work is the first to generalize optical multiplexing to
all plenoptic dimensions and to demonstrate a unified
reconstruction approach in either domain.

Finally, the proposed formulation allows, for the
first time, a quantitative evaluation of attenuation
masks for light field acquisition. We compare different
designs and demonstrate that the optimal choice, in
terms of signal-to-noise ratio, is dependent on camera
noise characteristics. We do not propose new optical
light modulation techniques to capture any of the
plenoptic dimension, but analyze and unify a variety
of existing methods; we outline important criteria for
the design of optimal light field attenuation masks.

2 Background and Related Work

Standard digital image sensors integrate over all
plenoptic dimensions. As a result, most visual infor-
mation is irreversibly lost during image capture. Three
fundamental approaches to overcome these limitations
are available: multi-device capture, time-sequential
imaging, and single-sensor plenoptic multiplexing.

Multi-device capture refers to approaches that
employ multiple image sensors or cameras to simultane-
ously sample different plenoptic dimensions. Examples
include multi-camera systems for capturing light fields
(Wilburn et al 2005) or high-speed events (Agrawal et al
2010a) as well as three-chip cameras, which have a sepa-
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rate image sensor for the red, green, and blue channel of
a color image. Similar approaches have been proposed
for high dynamic range (HDR) imaging (Aggarwal and
Ahuja 2004) and for general plenoptic image acquisition
(McGuire et al 2007).

Time-sequential imaging is commonly used
when the hardware requirements or the cost of multi-
sensor approaches are prohibitive. For example, light
fields can also be captured by moving a single cam-
era to different positions (Levoy and Hanrahan 1996;
Gortler et al 1996). Color images can be acquired
sequentially by applying different color filters (e.g.,
Wang and Heidrich (2004)), which is particularly at-
tractive when a large number of color channels is
desired. HDR images are usually computed from dif-
ferent exposures (Debevec and Malik 1997; Mitsunaga
and Nayar 1999) or using generalized image mosaicing
(Schechner and Nayar 2003). An obvious disadvantage
of time-sequential capture is the difficulty of capturing
dynamic environments and videos.

A common solution for encoding visual information,
however, is plenoptic multiplexing. Here, multiple
differently filtered images are encoded on a single sen-
sor. In effect, this approach trades spatial resolution for
the ability to simultaneously capture multiple slices of
the plenoptic function. In the literature, plenoptic mul-
tiplexing has been analyzed either in the spatial domain
or in the Fourier domain.

Spatial multiplexing includes imaging with CFAs to
capture color information (e.g., Compton (2007)), par-
allax barriers (Ives 1903) or lenslet arrays (Lippmann
1908; Adelson and Wang 1992; Ng 2005) for light field
acquisition, per-pixel light modulation for high-speed
photography (Bub et al 2010), and Assorted Pixels
(Narasimhan and Nayar 2005; Yasuma et al 2010)
as a framework generalizing all these techniques. In
each case, a sensor image is comprised of super-pixels
that each contain different plenoptic samples at some
location on the sensor; interpolating corresponding,
interleaved sub-images allows high-resolution imagery
to be directly reconstructed.

Optical heterodyning or Fourier multiplexing tech-
niques encode different slices of the plenoptic function
in different frequency bands. This approach has so far
been used for capturing light fields (Veeraraghavan et al
2007, 2008), occluder information (Lanman et al 2008),
high-speed events (Agrawal et al 2010b), and high dy-
namic range photographs (Wetzstein et al 2010). All
of these approaches have analyzed and reconstructed
captured data exclusively in the Fourier domain. The
main difference to spatial multiplexing is that each sen-
sor pixel captures a mixture of all the plenoptic di-
mensions, which has been shown to improve the light
transmission of employed optical filters (Veeraraghavan
et al 2007; Lanman et al 2008), but comes at the cost
of increased computational complexity. Although spa-

tially encoded data can be analyzed in Fourier space
(Alleyson et al 2005; Georgiev et al 2008), we are the
first to demonstrate how Fourier multiplexed data can
be reconstructed by performing a spatial interpolation
followed by a local per-pixel decorrelation of the inter-
polated data.

Recently, approaches to optically transferring one
plenoptic dimension to another, which may then be
more convenient to capture, have been proposed. Bando
et al (2008) mount a color filter array in the aperture
of a standard camera. This encodes the directions of a
light field in different colors; a full color light field is
subsequently reconstructed using natural image priors.
Horstmeyer et al (2009) also insert optical filters in
camera apertures, but directly capture a light field
with pinhole attenuation masks, where each direction
corresponds to a differently filtered version of the pho-
tographed scene from slightly different perspectives.
Georgiev and Lumsdaine (2010) propose a similar
approach using lenslet arrays instead of the pinhole
masks. Flexible post-capture resolution tradeoffs have
been discussed for spatio-temporal volumes (Gupta
et al 2010) and for the optical encoding of temporal
light variation in the directions of a light field (Agrawal
et al 2010b). The light field in the latter approach is
acquired with a sum-of-sinusoids mask, which requires
a Fourier-based reconstruction. We demonstrate how
the acquisition of mixed plenoptic dimensions, cap-
tured with such approaches, can be improved with a
spatial reconstruction enabled by our framework.

Compressive sensing (CS) has been introduced as
a non-linear reconstruction that aims at beating the
Nyquist limit. A single pixel camera, for instance, is
proposed by Takhar et al (2006), but requires a large
number of photographs; Veeraraghavan et al (2011) and
Reddy et al (2011) capture and reconstruct high-speed
videos using CS paradigms. Due to the lack of a periodic
sampling pattern, these specific CS approaches are not
directly supported by our framework.

Other, more exotic camera designs include the
focused plenoptic camera (Lumsdaine and Georgiev
2009), light field reconstruction with a Bayesian frame-
work (Levin et al 2008; Levin and Durand 2010),
and super-resolution techniques (Bishop et al 2009;
Ben-Ezra et al 2005).

3 Plenoptic Multiplexing

A popular approach to capturing high-dimensional vi-
sual information with a single photograph is multiplex-
ing. For this purpose, a modulator optically separates
this information so that a sensor records an image mo-
saic containing the desired data. Computational pro-
cessing is then applied to reconstruct the final full-
resolution image.
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Fig. 2 Upper left: RAW sensor image with close-up and cor-
responding CFA. Upper right: Fourier transform with channel
correlations illustrated for the entire image and the magnified
CFA. Reconstructions of the non-perfectly band-limited sig-
nal in the spatial (lower left) and Fourier (lower right) domain
reveal different aliasing artifacts.

Consider the example shown in Figure 2. A CFA,
in this case a Bayer pattern, optically filters the light
before it reaches a sensor so that the captured RAW
photograph consists of repetitive super-pixels, each
encoding four color samples (Fig. 2, upper left). A
standard reconstruction or demosaicing interpolates
all color channels to every pixel (Fig. 2, lower left).
Alternatively, the RAW image can be analyzed in the
Fourier domain (Alleyson et al (2005), Fig. 2, upper
right), where four different tiles are created that each
contain contributions from all color channels. These
tiles can be cropped and decorrelated before being
transformed back into the spatial domain (Fig. 2, lower
right). Although more sophisticated Fourier reconstruc-
tions (Li et al 2008) may mitigate visible artifacts, a
spatial reconstruction produces much better results in
this case, because it is usually more resilient to aliasing
artifacts (see Sec. 5).

Imaging with a Bayer pattern is a well-known prob-
lem and only serves as an intuitive, motivating exam-
ple. An additional processing step after interpolating
the sensor samples is, in this particular case, not nec-
essary. Here, a Fourier reconstruction is practically not
very useful; understanding the process, however, is es-
sential for later parts of the paper, where we consider
light field multiplexing approaches that have previously
been analyzed exclusively in the Fourier domain.

In the following, we introduce an image formation
model for plenoptic multiplexing (Secs. 3.1, 3.2) and
demonstrate how this can be used to derive a generic
spatial reconstruction algorithm (Sec. 3.3) as well as
a corresponding Fourier interpretation (Sec. 3.4). The
notation introduced in this section, along with physical
interpretations, is summarized in Table 1. All formula-
tions are continuous unless stated otherwise.

Fig. 3 1D illustration of the plenoptic modulator being sep-
arated into a spatial and a plenoptic basis. Left: imaging with
CFAs; right: light field capture with an array of pinholes.

3.1 Plenoptic Image Formation

We consider the acquisition of the plenoptic function on
the sensor plane, behind the main lens of a camera. A
sensor image i (~x) is formed by integrating the plenoptic
function lλ (~x, ~p) over the plenoptic domain P : Ω+ ×
R× R directly above the sensor

i (~x) =

∫
P

m (~x, ~p) lλ (~x, ~p) d~p. (1)

In this formulation, the plenoptic dimensions ~p, in-
cluding directional variation ~θ over the half-sphere Ω+,
the temporal domain t as well as the color spectrum
λ, are separated from the spatial location on the sen-
sor ~x. A plenoptic modulator m(~x, ~p), which is capable
of selectively attenuating each dimension at every loca-
tion, models a generic optical filter. In the case of color
imaging this modulator is the CFA, but we show in the
following sections that this general formulation includes
a wide variety of optical elements. Equation 1 not only
accounts for multiplexing different slices of one plenop-
tic dimension, such as different color channels, onto a
sensor, but also for the combined acquisition of multiple
dimensions.

3.2 Basis Decomposition

The plenoptic modulator introduced in Equation 1
gives rise to a linear operator describing the projection
of the plenoptic function onto the sensor. Transformed
into some domain, such linear operators are always sep-
arable. The singular value decomposition (SVD) and
Fourier analysis are only two examples; in either case a
linear operator is decomposed into a basis, and a cor-
responding inverse, in which the operator is separable.
Basis decompositions of this kind provide a powerful
tool for theoretical analysis and practical signal pro-
cessing. We propose a novel basis decomposition for
plenoptic imaging; for this purpose, the plenoptic mod-
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Symbol Definition Physical interpretation
Imaging with CFAs Light field capture

lλ (~x, ~p) The plenoptic function, Eqs. 1, 3–5, Sec. 4 Color photograph Light field

l̂λ(~ωx, ~p) Spatial Fourier transform of plenoptic function, Eq. 9
i(~x) Monochromatic sensor image, Eqs. 1, 4, 6, 8, Sec. 4 RAW sensor mosaic with one sample per pixel
~i(~x) Vector of interpolated sensor samples, Eq. 5 Sensor samples interpolated to all positions
~̂i(~ωx) Cropped & stacked Fourier tiles of sensor image, Eq. 9 Correlated, high-dimensional FT of lλ (~x, ~p)
σj(~x), σ̂j (~ωx) Spatial basis functions & FT, j = 1 . . . N , Eqs. 2, 4, 6–8 CFA Layout Layout / spatial frequencies
πj(~p) Plenoptic basis functions, Eqs. 2–4 Spectral transm. of CFA All angular frequencies
ρj (~x), ρ̂j(~ωx) Plenoptic coefficients & FT, Eqs. 3–6, 8, 9 Color channels Sampled angular frequencies

Σ, Σ̂ Spatial correlation matrix & FT, Eqs. 5, 9 Constant weights, defined by ρj (~x), in matrix form
Π {·} Projection operator onto the plenoptic basis, Eqs. 5, 9 Projection onto color channels or directions
F {·} Projection operator onto the Fourier basis, Eqs. 6, 8

i,~i,~̂i,~lλ,
~̂
lλ,Π,F Discrete versions of above quantities, Secs. 4, 6

Table 1 A summary of the notation used in this paper with references to the most important equations.

ulator is separated into a sum of mutually independent
spatial and plenoptic basis functions:

m (~x, ~p) =

N∑
j=1

σj (~x)× πj (~p) . (2)

In this formulation, the plenoptic basis π =
{πj | j = 1 . . . N} is a linear operator that acts on the
plenoptic domain, as opposed to the spatial domain,
of the plenoptic function. The spatial basis functions
σj(~x), j = 1 . . . N describe the layout and mixing of
the plenoptic samples on the sensor and only act on the
spatial domain of the transformed plenoptic function.

As an example, Figure 3 illustrates possible plenop-
tic basis functions πj(~p) in color imaging (left) that
model the spectral transmissions of the employed color
filters, whereas the spatial basis functions σj(~x) de-
scribe the layout of the color samples on the sensor.
Figure 3 (right) illustrates these bases for light field
cameras with a pinhole array mounted at a slight dis-
tance to the sensor.

The proposed basis decomposition, however, is not
unique. It is usually related to, but not fully defined by,
the optical properties of a specific plenoptic modulator.
In fact, any well-known basis can serve as a spatial or
plenoptic basis so long as it only acts on either the
spatial or the plenoptic domain. In Section 4, for in-
stance, we show that light field acquisition is a convo-
lution allowing us to employ Fourier decomposition as
its Eigen-decomposition and similarly as the spatial and
plenoptic basis. For the application of general plenoptic
image reconstruction and analysis, however, we demon-
strate that the proposed decomposition into a spatial
and a plenoptic basis facilitates a framework that gen-
eralizes multiplexing to all dimensions of the plenoptic
function and unifies many existing reconstruction ap-
proaches. Furthermore, it proves crucial for analyzing
aliasing and noise of a plenoptic imaging system.

In the remainder of this paper, we assume the spa-
tial basis functions to be periodic, thereby implement-
ing the super-pixel concept outlined in Section 1.2. All

digital imaging systems are designed to acquire a dis-
crete set of j = 1 . . . N plenoptic samples, such as colors
or directions, at every pixel. These samples represent
projections of the plenoptic function onto the set of
plenoptic basis functions

ρj (~x) =

∫
P

πj (~p) lλ(~x, ~p)d~p. (3)

We term these projections ρj (~x) plenoptic coeffi-
cients (see Table 1). Their number N often corresponds
to the number M of sensor pixels in each super-pixel,
but may be lower as in many CFAs where N = 3, M =
4. Combining Equations 1–3 as

i (~x) =

N∑
j=1

σj (~x)

∫
P

πj (~p) lλ(~x, ~p)d~p

=

N∑
j=1

σj (~x)ρj (~x) , (4)

allows us to model a sensor image at each position
~x as a linear combination of all plenoptic coefficients
ρj (~x). Spatial multiplexing approaches are designed
to directly sample one plenoptic coefficient per sensor
pixel. However, Equation 4 similarly models the acqui-
sition of differently weighted linear combinations of all
plenoptic coefficients at each pixel.

3.3 Spatial Reconstruction

The goal of a spatial reconstruction is the recovery of all
plenoptic quantities at every pixel of the full-resolution
sensor image; initially, only one sample is recorded at
each pixel. Under the assumptions of an underlying
band-limited signal and a super-pixel-periodic spatial
basis, this is a standard interpolation or demosaicing
of the M interleaved sensor sub-images in i (~x), result-

ing in the vector-valued image~i(~x). In order to compute

the desired plenoptic samples from~i(~x), the spatial and
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plenoptic bases subsequently need to be inverted in a
per-pixel manner.

Before interpolation, every sensor pixel in i (~x) is
associated with a single value of all N spatial basis
functions σj(~x) at ~x. Interpolating the k = 1 . . .M
sub-pixels within the super-pixels to all locations also
interpolates the spatial basis. Therefore, each posi-
tion in ~i(~x) is associated with an array of constants
Σ ∈ RM×N , as defined by the interpolated spatial
basis functions. With this notation, we can define

Theorem 1 (Plenoptic Spatial Multiplexing, PSM).

The interpolated sensor samples ~i(~x), representing
weighted combinations of all plenoptic coefficients at a
particular location ~x, are locally related to the plenop-
tic function as

~i(~x) = Σ~ρ(~x) = ΣΠ {lλ (~x, ~p)} . (5)

The operator Π {·} in Equation 5 projects the
plenoptic function onto the plenoptic basis and ~ρ(~x)
consists of the N corresponding plenoptic coefficients at
each position. Note thatΠ {·} is an operator acting on a
function, producing a vector ~ρ(~x) with N elements, i.e.

Π {lλ (~x, ~p)} = (<π1, lλ (~x, ~p)> . . . <πN , lλ (~x, ~p)>)
T

,
with < ·, · > being the inner product. All quantities
are spatially continuous; Π {·}, however, projects the
continuous plenoptic function onto a discrete set of
plenoptic basis functions. An inversion of this operator
can therefore only result in an approximation of the
underlying continuous plenoptic quantities. This recon-
struction is illustrated in the upper row of Figure 1;
the proof for Theorem 1 is included in Appendix A.

The PSM theorem shows that we can reconstruct
the plenoptic function lλ (~x, ~p) from sensor samples i(~x)
by performing a local decorrelation on the interpolated
measurement samples ~i(~x) followed by an inversion of
operator Π {·}; the latter inversion is optional. How-
ever, Theorem 1 not only shows that the correlation
between the measured samples is spatially local, but
also that the correlation is in fact a linear operator,
yielding

Corollary 1 Any linear filter can be applied to the
measured sensor samples i(~x) prior to decorrelation
while yielding equivalent results to application after the
decorrelation.

Image processing operations such as upsampling,
edge detection, blurring, sharpening, etc. can thus be
performed on the correlated image without affecting the
end result. Although this only applies to linear filters
in theory, we show in Section 4 that non-linear filters
can achieve high-quality reconstruction results in prac-
tice. Non-linear filters are already the preferred choice
for color demosaicing; we show that these can also be
applied to light field reconstruction.

3.4 Fourier Reconstruction

In recent literature, multiplexing strategies have of-
ten been analyzed exclusively in the Fourier domain
(Veeraraghavan et al 2007, 2008; Lanman et al 2008;
Georgiev et al 2008; Agrawal et al 2010b). For this
reason we provide the dual Fourier view of plenoptic
multiplexing and reconstruction in the following.

By applying the convolution theorem, the Fourier
transform of an acquired image (Eq. 4) is given as

Fx {i(~x)}=Fx


N∑
j=1

σj(~x)ρj(~x)

=

N∑
j=1

σ̂j (~ωx)⊗ρ̂j (~ωx) ,

(6)

where ˆ denotes the Fourier transformed version of a
quantity and ~ωx are the spatial frequencies. The Poisson
summation formula dictates that the Fourier transform
of a periodic function is a weighted set of Dirac peaks.
Thus, the Fourier transform of the super-pixel-periodic
spatial basis functions is given by

σ̂j (~ωx) =

M∑
k=1

σ̂ k
j δ (~ωx − k∆~ωx) , (7)

where ∆~ωx is the frequency offset or distance be-
tween successive Dirac peaks1 and the values σ̂ k

j are
complex weighting factors for spatial basis function j.
These weights correspond to the Fourier transform of a
single period of that specific basis function. Combining
Equations 6 and 7 as

Fx {i(~x)}=

M∑
k=1

δ (~ωx − k∆~ωx)⊗
N∑
j=1

σ̂ k
j ρ̂j (~ωx)

 (8)

shows that, under the band-limit assumption, M
different tiles containing linear combinations of Fourier
transformed plenoptic coefficients ρ̂j(~ωx) are created in
the frequency domain. As illustrated in Figure 2 (upper
right), these tiles can be cropped from the Fourier trans-

formed sensor image and arranged in a stack ~̂i(~ωx) (see
Fig. 1, bottom center). The correlation of these stacked
tiles is local in the spatial frequencies ~ωx. In analogy to
the PSM theorem, Equation 5, we can therefore state
the following

Theorem 2 (Plenoptic Fourier Multiplexing, PFM).
Cropping and stacking the individual Fourier tiles of a
multiplexed sensor image allows the plenoptic function

1 For a 2D sensor image the bases are periodic in both
spatial dimensions, but we will omit the second one in our
notation of k for clarity.
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to be expressed as a correlation in the Fourier domain
that is local for each spatial frequency:

~̂i(~ωx) = Σ̂ ~̂ρ (~ωx) = Σ̂Π
{
l̂λ(~ωx, ~p)

}
. (9)

The correlation matrix Σ̂jk = σ̂ k
j is determined by

the Fourier weights of the spatial basis. In case the spa-
tial basis is the identity Σ = I, its Fourier weights are
the Fourier basis itself Σ̂ = F . The projection onto
the plenoptic basis Π {·} remains unchanged because
of its independence of ~x (see Eq. 2), which allows us to
change the order of operation, i.e. Fx {Π {lλ (~x, ~p)}} =

Π {Fx {lλ (~x, ~p)}} = Π
{
l̂λ(~ωx, ~p)

}
. This theorem is il-

lustrated in the lower row of Figure 1; the proof is in-
cluded in Appendix B.

3.5 Discussion

Previously proposed Fourier multiplexing approaches
have analyzed the image formation and reconstruction
exclusively in the frequency domain. The mathemati-
cal framework presented in this section, however, for-
mulates plenoptic multiplexing and demultiplexing in
very general terms. Not only does our framework model
the acquisition and reconstruction of arbitrary combi-
nations of plenoptic dimensions, but Theorems 1 and 2
also allow us to analyze and process multiplexed data
in either the spatial or the Fourier domain. The nota-
tion introduced in this section makes it easy to under-
stand the close connections between the two different
interpretations, which is important because each has
its own advantages. A spatial reconstruction, that is an
interpolation of the sensor samples followed by a per-
pixel decorrelation, is generally the preferred method
for processing captured data (Sec. 4) and analyzing re-
construction noise (Sec. 6). A Fourier perspective of the
same problem, on the other hand, provides a powerful
tool for analyzing many important properties such as
aliasing (Sec. 5).

Our analysis demonstrates that both spatial and
Fourier multiplexing schemes are closely related. The
cropping operation in Fourier space is a multiplication
with a rect function, which is equivalent to a spatial sinc
filter (see App. B). Therefore, all previously proposed
Fourier reconstruction methods use a fixed spatial re-
construction filter: the sinc. We demonstrate in the next
section that this choice negatively affects the quality of
demultiplexed data. More sophisticated apodization ap-
proaches (i.e. using a soft roll-off rather than hard crop-
ping) can potentially improve the quality of Fourier-
based reconstructions, and are in fact equivalent to us-
ing non-sinc linear filters in a spatial reconstruction.

Note, however, that non-linear reconstruction filters, in-
cluding those commonly used for demosaicing, cannot
easily be interpreted as Fourier-domain operations.

A consequence of our analysis is that multiplex-
ing schemes have, independent of the reconstruction
domain, nominally the same band-limitation require-
ments. Due to the large choice of linear and non-linear
filters, however, a spatial reconstruction can be made
more resilient to residual high frequencies, thereby mit-
igating aliasing artifacts (see Secs. 4, 5).

4 Application to Light Field Reconstruction

In the following, we demonstrate how the general frame-
work introduced in the last section applies to the re-
construction of light fields. We show, for the first time,
how Fourier multiplexed light fields captured with non-
refractive attenuation masks can be reconstructed with
a superior quality in the spatial domain (Sec. 4.1). Al-
though the general plenoptic modulator introduced in
Section 3.1 only models selective attenuation for each
plenoptic dimension, we show in Section 4.2 how similar
concepts apply to a variety of acquisition systems with
refractive optical elements. In Section 4.3, we demon-
strate how our framework allows the tempo-directional
plenoptic manifolds proposed by Agrawal et al (2010b)
to be reconstructed with a higher quality than the orig-
inally proposed Fourier processing.

Throughout this section, we employ a two-plane pa-
rameterization for light fields. As illustrated for a 1D
case in Figure 4, this includes a position ~x on the sen-
sor and the relative distance on a plane at unit distance
~v = tan(~θ), which replaces the actual angle ~θ.

Sensor

Attenuation Mask m

Main Lens

z

1

v

Lig
ht

 R
ay

x-Plane
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x-zv
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Fig. 4 A light field can be parameterized by a spatial po-
sition x on the sensor plane and a relative distance v on a
plane at unit distance.

4.1 General Non-Refractive Modulators

Attenuation masks that do not include refractive op-
tical elements have recently been popularized for light



8

Fig. 5 An illustration of the optical setups, integration surfaces, spatial and plenoptic bases as well as the weighting factors
m̂ for a variety of super-pixel based light field cameras. The convolution of a light field and a periodic attenuation mask or
refractive optical element, resulting in the captured sensor image, can be separated into a spatial and a plenoptic part using the
Fourier basis (row 3). This allows us to perform a light field reconstruction in either the spatial or Fourier domain by applying
the PSM or PFM theorem, respectively. Please note that the camera and sensor coordinates for non-refractive elements are
identical; the integration surfaces for refractive optical elements already include the mapping from sensor space to world space
on the microlens plane.

Fig. 6 Comparison of reconstruction quality for Cones data
set (Veeraraghavan et al 2007) captured with a non-refractive
sum-of-sinusoids mask and lenslet-based Fluorescent Crayon
Wax data set (Levoy et al 2006). All results are three-times
upsampled during reconstruction. Top row: upsampling by
zero-padding the 4D inverse DFT. Middle row: low resolution
4D inverse DFT followed by bicubic upsampling. Bottom row:
bicubic up-sampling followed by local decorrelation. For the
right column, we show one of the light field views and a con-
trast enhanced difference image to the spatial reconstruction
in the magnifications. Ringing artifacts are clearly visible.

field acquisition (Veeraraghavan et al 2007, 2008; Lan-
man et al 2008; Georgiev et al 2008). All of these ap-
proaches have been analyzed and reconstructed exclu-
sively in the Fourier domain. Here, we show how the
employed periodic attenuation masks can be separated
into a spatial and a plenoptic basis. This separation al-
lows the aforementioned techniques to be expressed in
the framework introduced in Section 3.

As illustrated in Figure 4, the plenoptic modulator
(Eq. 1) for attenuation masks at a distance z to a sensor
is m(~x,~v) = m(~x − z~v). This formulation models the
light transport in free space from sensor to mask as well
as the attenuation caused by the latter. A separation
of this modulator into a purely spatial and a plenop-
tic, in this case directional, part can be achieved by
substituting the modulator m(~x− z~v) with its inverse-
transformed Fourier transform

i(~x) =

∫
~v

lλ(~x,~v)m(~x− z~v) d~v

=

∫
~v

lλ(~x,~v)

∫
~ωx

m̂(~ωx)e2πi(~x−z~v)·~ωx d~ωx d~v (10)

=

∫
~ωx

m̂(~ωx)e2πi~x·~ωx
∫
~v

lλ(~x,~v)e−2πiz~v·~ωx d~v d~ωx.

Equation 10 shows that the modulator projects the
light field onto its angular frequencies, which are then
multiplexed, with mask-dependent weights m̂(~ωx), into
the spatial frequencies of a sensor image. This decom-
position into the Fourier and the inverse Fourier ba-
sis satisfies the necessary requirements for the Fourier
transform to be interpreted as the plenoptic basis, only
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acting on the directional components of the incident
light field, and the inverse Fourier transform being the
spatial basis. An intuitive interpretation for why the
Fourier basis and its inverse serve as the plenoptic and
spatial bases in this case is that the image formation in
Equation 10 is a convolution; a Fourier decomposition
is the Eigen-decomposition of any circular convolution
process.

For a practical processing of digital images, the in-
tegrals can be discretized, both spatially and plenop-
tically, as ~i = F−1M̂F~lλ, with M̂ = diag(m̂). In

this case, ~lλ is a stack of N images containing the dis-
cretized plenoptic function. As illustrated in Figure 5
(center left), this formulation allows us to choose a
weighted inverse discrete Fourier transform (DFT) as
the spatial basis Σ = F−1M̂ , and the DFT as the dis-
cretized plenoptic projection Π = F . A spatial recon-
struction can therefore be performed by solving Equa-
tion 5. Again, a discrete spatial reconstruction is per-
formed by interpolating the measured samples in the
sensor image i to all positions and then decorrelating
the resulting, vector-valued, discrete image ~i in a per-
pixel manner as

~lλ = Π−1Σ−1~i = F−1M̂
−1
F~i. (11)

Equation 11 is a per-image-pixel deconvolution with
a kernel that is defined by the attenuation pattern of
the mask. As shown in Section 6, a deconvolution with
sum-of-sinusoids patterns (Veeraraghavan et al 2007;
Agrawal et al 2010b), for instance, represents a high-
pass filter. Unfortunately, this type of filter decreases
the signal-to-noise ratio (SNR) of the reconstructed
light field significantly by amplifying sensor noise.

Alternatively, the previously proposed discrete
Fourier reconstruction can be performed by directly
solving Equation 9 as:

~̂
lλ = Π−1Σ̂

−1~̂i = F−1M̂
−1~̂i. (12)

Equation 12 shows that the stacked discrete Fourier

tiles ~̂i need to be re-weighted on a per-spatial-frequency
basis; the weighting factors m̂ depend on the applied
mask. An inverse DFT is required to invert the plenop-
tic basis Π. An additional inverse DFT is applied

to compute the desired plenoptic samples ~lλ from
~̂
lλ,

which is equivalent to an inverse 4D Fourier trans-
form of cropped and stacked light field Fourier tiles
(Veeraraghavan et al 2007, 2008; Lanman et al 2008;
Georgiev et al 2008).

Figure 6 (left) shows comparisons of light field re-
constructions in the Fourier domain, as previously pro-
posed, and in the spatial domain. Noise and ringing
artifacts are significantly reduced in the spatial recon-
struction, which is enabled by our framework. Even

with a simple linear spatial interpolation scheme such
as cubic interpolation, common ringing artifacts asso-
ciated with Fourier-based techniques can be avoided.
A more detailed discussion on aliasing artifacts can be
found in Section 5.

Although Corollary 1 is theoretically only valid for
linear filters, Figure 7 demonstrates that a practical re-
construction works well with non-linear filters. The pre-
sented example shows two different viewpoints of the
reconstructed Mannequin dataset (Lanman et al 2008)
and, more importantly, a spatial reconstruction with a
non-linear joint bilateral filter. This filter is just one
of many possible choices for sophisticated spatial re-
construction filters facilitated by Theorem 1. The joint
bilateral filter can, in this case, reconstruct a slightly
sharper image than a bicubic filter.

4.2 Refractive Modulators

The general plenoptic modulator introduced in Sec-
tion 3.1 does not directly model ray deflections caused
by refractive optical elements. However, the image for-
mation can be modeled as a convolution of the plenoptic
function and a point spread function (PSF) k (~x, ~xc, ~vc)
(Levin et al 2009):

i (~x) =

∫
~xc

∫
~vc

k (~x, ~xc, ~vc) lλ (~xc, ~vc) d~xcd~vc, (13)

where ~x is the spatial coordinate on the sensor sur-
face and ~xc is the spatial coordinate defined on the
plane of the refractive elements (see Fig. 5, right). Here,
lλ (~xc, ~vc) is the light field on the plane of the refractive
elements; the directional coordinate ~vc describes the di-
rectional light variation before modulation by the PSF
inside the camera behind the main lens. PSFs for differ-
ent optical elements are well known. Under paraxial ap-
proximations and disregarding the element’s aperture
and wavelength of light, the PSF for most refractive
elements is of the form

k (~x, ~xc, ~vc) = δ (~x− z~vc − φ (~xc)) . (14)

The specific PSF for a lens at focal distance to the
sensor is given by φz=f (~xc) = 0. The term becomes
non-zero when the lens is moved away from the fo-
cal distance, as proposed by Lumsdaine and Georgiev
(2009): φz 6=f (~xc) = s~xc, with s = 1 − z/f being the
slope of the integration surface. Optical setups and in-
tegration surfaces for all of these cases are illustrated
in Figure 5.

In the following, we demonstrate how a separation of
the PSF into a spatial and a plenoptic basis can be per-
formed. This is shown for a single element of an array
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Fig. 7 Reconstruction results for Mannequin data set (Lanman et al 2008). The results are three-times upsampled and show
two different views of the reconstruction. The fifth column shows a reconstruction that was computed with a non-linear joint
bilateral filter. Close-ups are shown for the top row on the left and for the bottom row on the right.

of optical elements such as lenslets. The plenoptic func-
tion is assumed to be spatially band-limited, which in
this case requires it to be constant over a single optical
element, i.e. lλ (~xc, ~vc) = lλ (~vc). Combining Equations
13 and 14 and substituting the PSF with its inverse-
transformed Fourier transform yields

i (~x) =

∫
~xc

∫
~vc

lλ (~vc) δ (~x− z~vc − φ (~xc)) d~xcd~vc (15)

=

∫
~xc

∫
~vc

lλ (~vc)

∫
~ωx

e2πi(~x−z~vc−φ(~xc))·~ωxd~ωxd~xcd~vc

=

∫
~ωx

m̂(~ωx)e2πi~x·~ωx
∫
~vc

lλ (~vc) e
−2πiz~vc·~ωxd~vc d~ωx,

where the extra term m̂(~ωx) =
∫
~xc
e−2πiφ(~xc)·~ωxd~xc

varies for different refractive elements and represents
their optical transfer function (OTF, see Figure 5).
Lenses at focal distance to the sensor are not affected
by the extra term, i.e. m̂(~ωx) = 1, ∀~ωx.

Figure 6 (right) shows a comparison of spatial and
Fourier reconstructions of a light field that was cap-
tured inside a microscope using a lenslet array at focal
distance to the sensor (Levoy et al 2006). A decorrela-

tion of the interpolated sensor image ~i(~x) is in this case
redundant, as every sensor pixel measures uncorrelated
directional samples of the light field. Although artifacts
are visible in the magnifications of Figure 6 (right), they
are more subtle than those in mask-based light field
reconstructions (Fig. 6, left). This can be attributed
to pixels under each microlens integrating spatial light
variation over the entire lenslet area, which provides a
proper spatial band-limit and therefore minimizes alias-
ing (Levoy and Hanrahan 1996) (see Sec. 5).

Employing lenslets at a distance to the sensor that
is different to their focal lengths, i.e. z 6= f , was ex-
plored by Lumsdaine and Georgiev (2009). It was shown
that such a setup in combination with a custom resort-
ing algorithm is capable of reconstructing light fields
with a higher spatial but reduced angular resolution.

In this particular setup, the corresponding OTF is a
sinc (Fig. 5, right). Applying our theory would aim at
reconstructing the full spatial and directional resolu-
tion of the light field, which is ill-conditioned due to
the zero-crossings of the OTF, unless additional statis-
tical priors are incorporated.

4.3 Plenoptic Dimension Transfer

Agrawal et al (2010b) propose to equip a camera aper-
ture with a pinhole mask that can be moved throughout
the exposure time of a single photograph. This motion
encodes temporal light variation in the directions of a
light field. The light field itself is acquired by mount-
ing an additional sum-of-sinusoids attenuation mask at
a small distance to the camera sensor. Such a setup
allows the captured photograph to be reinterpreted as
either a high spatial resolution image, a light field, or a
video for different parts of the scene in post-processing.
Mathematically, the image formation can be formulated
as

i (~x)=

∫
~v

∫
t

lλ (~x,~v, t)mt (~x,~v, t)mv (~x,~v, t) dtd~v, (16)

where mv (~x,~v, t)=m (~x− z~v) is the non-refractive
attenuation mask, as introduced in Section 4.1, and
mt (~x,~v, t) = δ (~v − ψ~v (t)) is the moving pinhole aper-
ture. The pinhole motion is described by ψ~v (t). In our
framework, this can be expressed as

i (~x) =

∫
~v

∫
t

lλ (~x,~v, t) δ (~v − ψ~v (t))m (~x− z~v) dtd~v

=

∫
t

lλ (~x, ψ~v (t) , t)m (~x− zψ~v (t)) dt

=

∫
~ωx

m̂(~ωx)e2πi~x·~ωx∫
t

lλ (~x, ψ~v (t) , t) e−2πizψ~v(t)·~ωxdtd~ωx. (17)
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Fig. 8 Two different views of a light field reconstructed with
an upsampling factor of three. Each view encodes a different
temporal slice within the exposure time of a single photo-
graph, as proposed by Agrawal et al (2010b). The spatial re-
construction (bottom row) increases the reconstruction qual-
ity by reducing ringing artifacts that are visible in previously
proposed Fourier reconstructions (top and center row).

The pinhole motion ψ~v (t) introduces a manifold in
the tempo-directional domain of the plenoptic func-
tion over which the sensor integrates. A reconstruc-
tion can only recover this manifold; temporal and direc-
tional light variation are coupled. In our framework, the
plenoptic basis for this example is the Fourier transform
of the plenoptic manifold, whereas the spatial basis is,
just as in the case of attenuation masks and refractive
optical elements, the inverse Fourier transform.

Figure 8 shows spatial and Fourier-based recon-
structions of one of the datasets used by Agrawal et al
(2010b). Columns 1 and 2 show two different views
of the reconstructed light field. Each of these views
additionally encodes a different time in the animation:
the Rubik’s cube is moved away from the camera. As
seen in the close-ups, a spatial reconstruction, enabled
by Theorem 1, can reduce ringing artifacts as compared
to previously employed Fourier reconstructions.

5 Analyzing Aliasing

One of the main arguments throughout the last sec-
tion is that a spatial reconstruction of multiplexed data
can improve the image quality. We demonstrate in this
section, that the difference in quality is mainly due to
aliasing, that is violations of the band-limit assumption.

Fig. 9 Analyzing aliasing artifacts. Multiplexing a light field
with 5 × 5 views onto a sensor is simulated without (left
column) and with (right column) a synthetic optical anti-
aliasing filter applied. The Fourier tiles of the sensor image
slightly overlap without any filtering (upper left). A proper
anti-aliasing filter mitigates this overlap and thereby artifacts
in the reconstructions (right). A spatial processing of multi-
plexed data (lower left) is usually more robust to signal alias-
ing than a corresponding Fourier approach (center left).

While spatial processing with sophisticated reconstruc-
tion filters offers the benefit of improved image quality,
a Fourier perspective allows aliasing to be analyzed in
a convenient manner.

Consider the experiment in Figure 9. A light field
(cs.ubc.ca/˜wetzste1/SyntheticLightFields/) is multi-
plexed onto a single sensor with a MURA attenuation
mask. The mask consists of a repetitive pattern of
5 × 5 pixels, as introduced by Gottesman and Feni-
more (1989). Figure 9 (upper left) shows the Fourier
transform of a simulated sensor image without any
anti-aliasing applied. The grid of 5×5 different Fourier
tiles is clearly visible. Without optically filtering the
captured signal, the copies slightly overlap, thereby
causing pre-aliasing in the reconstructions (Fig. 9,
rows 2, 3). As expected from the results presented in
Section 4, aliasing artifacts in the Fourier reconstruc-
tion (Fig. 9, left center) are much stronger than in the
corresponding spatial reconstruction (Fig. 9, left bot-
tom). With a proper anti-aliasing filter applied to the
signal before capture, however, the quality differences
become more subtle (Fig. 9, right column). While a
spatial reconstruction is more resilient to pre-aliasing,
artifacts persist that can be mitigated for both types
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of reconstruction by optically anti-aliasing the signal
before capture.

For this experiment we applied a first-order Butter-
worth low-pass filter to each input image, before mul-
tiplexing them on the sensor. This filter significantly
reduces pre-aliasing in the recorded signal by eliminat-
ing high spatial frequencies from the light field. In the
Fourier domain, reduced aliasing is visible by less over-
lap of the frequency tiles (Fig. 9, upper right).

Optical anti-aliasing filters are common practice for
imaging with CFAs (e.g., Greivenkamp (1990)). While
attenuation masks have been optimized for the 4D fre-
quency distribution of natural scenes (Veeraraghavan
et al 2008), anti-aliasing mechanisms have yet to be
implemented for mask-based light field cameras.

6 Analyzing Light Field Reconstruction Noise

The last sections have discussed a theoretical frame-
work for modeling plenoptic multiplexing with practical
applications in high-quality reconstructions. In many
multiplexing tasks, however, there is a wide choice of
optical filters or modulators that can be employed to
acquire the same visual information. Several different
CFA designs are, for instance, available for color imag-
ing. While RGB-based color filters are usually preferred
in bright lighting conditions, CMY filters provide bet-
ter noise characteristics in low-light conditions (Sajadi
et al 2011). In this section, we analyze and compare a
variety of optical multiplexing filters for two different
applications: imaging with color filter arrays and light
field acquisition. While color imaging serves as an intu-
itive example to validate the noise model introduced in
this section, we present the first comparative analysis
of non-refractive light field multiplexing masks. Most
of the employed attenuation patterns (Veeraraghavan
et al 2007, 2008; Lanman et al 2008) have been ex-
clusively analyzed in the Fourier domain, which makes
it difficult to evaluate the noise characteristics of the
actual mask pattern. The spatial analysis enabled by
Theorem 1 allows us to compare the performance of al-
ternative attenuation masks with respect to the signal-
to-noise ratio (SNR) in reconstructed imagery.

We employ a noise model that is commonly applied
in computer vision (Wuttig 2005; Schechner et al 2007).
The total noise variance ς2 of a camera image is mod-
eled as the combination of a signal-independent addi-
tive term ς2

c , which includes dark current and amplifier
noise, as well as a signal-dependent photon shot noise
term i(~x)ς2

p. Following standard practice (Schechner
et al 2007), we approximate the image intensity term
in the photon noise by the mean light transmission τ

of the plenoptic modulator, yielding the following noise
variance in the captured image:

ς2 = ς2
c + τς2

p. (18)

In order to compare alternative plenoptic modula-
tors, we need to propagate the sensor noise ς of a spe-
cific setup to the demultiplexed reconstruction. For this
purpose, we introduce a noise amplification term α that
is based on our discretized image formation (Sec. 4, see
Schechner et al (2007) for more details):

α =

√
1

N
trace

(
(ΠΣ)

T
ΣΠ

)−1

. (19)

The signal-to-noise ratio in the demultiplexed
plenoptic function requires expressions for the sig-
nal and for the noise term. Assuming a normalized
plenoptic function and orthogonal plenoptic basis func-
tions, the signal term in the demultiplexed signal can
be approximated by 1/N , where N is the number of
sampled plenoptic coefficients (e.g, color channels or
light field views). The reconstruction noise term is the
standard deviation of the propagated sensor noise ας,
resulting in an SNR of

SNR = 10 log10

 1

Nα
√
ς2
c + τς2

p

 , (20)

where the SNR is defined in dB. The gain of SNR
for this demultiplexed signal compared to some demul-
tiplexed reference signal with a noise term of ςref is
then

gSNR = SNR− SNRref = 10 log10

(
αref ςref
ας

)
. (21)

A positive gain indicates an improved SNR, relative
to the reference signal, while a negative gain indicates
noise amplification. A plot of SNR gain for a stan-
dard Bayer CFA filter, which serves as the reference
signal, compared to the more transmissive cyan-yellow-
magenta-yellow (CYMY), cyan-yellow-magenta-green
(CYMG), and red-green-blue-white (RGBW) CFAs
is shown in Figure 10 (left). The plots demonstrate
that all alternative filters produce a slightly better
SNR than the Bayer pattern when the additive noise
term dominates (left part of the plot). However, per-
formance drops below that of the Bayer pattern once
photon shot noise becomes dominant. We employ the
notation introduced by Wuttig (2005), where a param-
eter χ = ςp/ςc describes the ratio of signal-dependent
and signal-independent noise terms. This makes it more
convenient to plot the performance of a multiplexing
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Fig. 10 SNR comparison of various alternative CFA patterns
to the Bayer pattern (left). SNR comparison of different light
field attenuation masks (right). The vertical lines indicate χ2

values for several machine vision cameras tested by Schechner
et al (2007). All cameras are operating in the gain region of
the filters, i.e. gSNR > 0. Note, however, that the lines can
be moved left and right along the χ2-axis by increasing and
decreasing the gain setting of a camera, respectively.

scheme with different camera noise parameters up to
a global scale, as seen in Figure 10. Our CFA noise
analysis helps to determine the exact gain regions of
a particular setup, which is especially important for
dynamically switchable implementations (Sajadi et al
2011).

Similarly, we compare the noise performance of var-
ious light field acquisition approaches, where the pin-
hole attenuation mask serves as the reference. The size
of the simulated pinhole matches that of a sensor pixel.
Sensor quantization and other non-linearities are disre-
garded in this experiment. The plot in Figure 10 (right)
shows that lenslets at focal distance to the sensor al-
ways perform best in terms of SNR. Among the non-
refractive multiplexing methods, MURA-based atten-
uation masks (Lanman et al 2008) perform very well
for a dominating additive noise term, i.e. at high cam-
era gain settings in low-light conditions. However, their
SNR gain drops below that of a pinhole for an increas-
ingly dominating photon noise term. Sum-of-sinusoids
masks (Veeraraghavan et al 2007; Agrawal et al 2010b)
always perform worse than a pinhole.

When considering only additive, signal-independent
noise in the captured sensor images, which is most of-
ten the case in low-light environments, the noise of the
reconstructed plenoptic slices can be quantified by the
covariance matrix C:

C = ς2
(

(ΣΠ)
T

(ΣΠ)
)−1

, (22)

where ς2 is the variance of an additive, zero-mean
Gaussian noise distribution in the sensor image i(~x).
Figure 11 shows the magnitudes of C for several light
field acquisition schemes assuming ς2 = 1. Values
larger than 1 amplify noise in the camera image and
off-diagonal entries accumulate noise from different re-
gions of the captured images. The covariance matrix of
the sum-of-sinusoids (SoS) mask has many large-valued

off-diagonal entries, which indicates noise amplification
in the reconstruction. The matrix for MURA masks
does have off-diagonal entries, but with much smaller
magnitudes than SoS masks. Similar interpretations
can be inferred from the plots of the singular values of
the multiplexing matrix ΣΠ in Figure 11 (right).

Based on the covariance analysis and predicted SNR
gain (Fig. 10, right), we expect SoS masks to amplify
sensor noise more than both pinhole and MURA atten-
uation masks for a dominating additive noise term. In
order to validate this prediction, we simulate the acqui-
sition of a light field with a variety of different methods
and camera noise parameters (Fig. 12). In this exper-
iment, we use attenuation masks with a resolution of
11 × 11 for each super-pixel and a similar sensor res-
olution. Each lenslet in the first column of Figure 12
covers the same area as a corresponding mask super-
pixel. As expected, for low-light conditions (Fig. 12,
row 2) lenslet arrays and MURA masks have a bet-
ter noise performance than pinhole masks, whereas SoS
masks perform worse (Fig. 12, column 3). The value
log(χ2) = −0.93 corresponds to a PointGrey Dragon-
fly camera (Schechner et al 2007) where the additive
noise term dominates. The lower two rows in Figure 12
show how the noise increases for an increasingly dom-
inating photon noise term up to a point where a pin-
hole mask performs better than even the MURA mask.
The same effect was described by Wenger et al (2005)
for Hadamard codes in an illumination multiplexing
application. Please note that for our analysis the ex-
posure times of the simulated sensors were equal for
each method, resulting in visible intensity differences
between the sensor images (Fig. 12, top row).

7 Discussion and Conclusions

In this paper, we have introduced a framework that
unifies a variety of plenoptic multiplexing approaches.
Previously, these techniques have been analyzed with
respect to a specific plenoptic dimension. In most
cases, reconstructions have been performed exclusively
in either the spatial or the Fourier domain. We have
demonstrated the importance of such a unified view:
certain properties, such as aliasing, can be theoretically
analyzed more conveniently in the frequency domain.
Other characteristics, such as noise amplification of the
employed optical modulators, are easier to be evaluated
in the spatial domain. We show, for the first time, how
the quality of practical reconstruction mechanisms for
some of the discussed techniques can be increased with
spatial processing, rather than previously proposed
Fourier-based algorithms. The latter, however, may
require fewer computational resources.
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Fig. 11 Covariance matrices and eigenvalues for different light field multiplexing schemes. Large values and especially off-
diagonal entries in the covariance matrices indicate amplification of additive noise in the sensor images. The sum-of-sinusoids
mask is thus expected to perform worse than a pinhole mask for dominating dark current noise in the sensor image, which can
also be inferred from the plots showing the multiplexing matrix’s singular values (right).

Fig. 12 Comparison of noise amplification for different light field acquisition schemes on the golgi stained neuron dataset
(lightfield.stanford.edu). Row 1 shows simulated sensor images with contrast enhanced close-ups. The other rows show a single
view of the reconstructed light field from a noisy sensor image. The ratio χ2 of signal-dependent photon noise and signal-
independent dark current noise varies for the different reconstructions. Row 2 simulates a reconstruction with a dominating
additive noise term, while rows 3 and 4 show the effect of an increasingly dominating photon noise term in the sensor images.

7.1 Benefits and Limitations

The proposed framework generalizes multiplexing sys-
tems where the underlying signal is sampled in a super-
pixel-periodic fashion. While this is the most common
approach for color image and light field acquisition, sev-
eral methods that sample the plenoptic function in a
completely random manner have been proposed (Veer-
araghavan et al 2011; Reddy et al 2011). Due to the
lack of a regular sampling structure, these specific ap-
proaches are not supported by our framework. How-
ever, we envision multiplexing approaches that combine

random plenoptic projections with super-pixel-periodic
spatial sampling patterns to be an exciting avenue of fu-
ture research. Our image formation unifies a wide range
of previously proposed multiplexing schemes and paves
the way for novel multiplexing techniques. We general-
ize the analysis and reconstruction to either the spatial
or the Fourier domain. Practically, this allows for higher
quality reconstructions of Fourier multiplexed data and
the formulation of optimality criteria of employed opti-
cal modulators.

We do not propose new optical multiplexing meth-
ods, but evaluate and unify a variety of existing ap-
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proaches. The theory presented in this paper allows
knowledge of color demosaicing, which has been built
up for decades within the computer vision community,
to be transferred to the reconstruction of light fields
and other dimensions of the plenoptic function.

7.2 Future Work

As mentioned above, we would like to explore strate-
gies that sample the plenoptic function in a random
but super-pixel-periodic fashion. A combination of
compressive sensing paradigms and traditional, peri-
odic sampling approaches could prove essential in the
quest for plenoptic resolution improvements beyond
the Nyquist limit. Application-specific reconstruction
filters, exploiting natural image statistics, could further
push the boundaries of conventional image acquisition.
The exploitation of natural image statistics is com-
mon practice for imaging with color filter arrays and
subsequent demosaicing. However, there is significant
potential to develop similar techniques for demosaicing
other multiplexed plenoptic information, for instance
light fields (Levin and Durand 2010).

7.3 Conclusion

The unifying theory presented in this paper is a cru-
cial step toward the “ultimate” camera capturing all
visual information with a single shot. Only within the
last few years has the research community started to in-
vestigate approaches to acquire the plenoptic function
with joint optical modulation and computational pro-
cessing. Our work ties many of these new techniques to
more traditional ways of sampling visual information.
The proposed framework is essential for the evaluation
and optimization of plenoptic multiplexing schemes of
the future.

Appendix A: Proof of PSM Theorem

Throughout this paper, we assume that the spatial basis
functions σj(~x) are super-pixel-periodic2, i.e. σj(~x) =
σj(~x + t∆~xs), ∀t ∈ Z. The offset between successive
super-pixels is denoted as ∆~xs. This notation allows us
to define a sampling operator as

Xk(~x) =
∑
t∈Z

δ (~x+ t∆~xs +∆~xk) , (23)

2 Following Sec. 3.4, we omit periodicity in the second spa-
tial dimension in our notation of t for clarity.

where ∆~xk is the offset of individual samples within
each super-pixel. This sampling operator basically ex-
tracts a sub-image or channel k = 1 . . .M from an in-
terleaved sensor image, where only corresponding sub-
pixels within the super-pixels are included in each chan-
nel. Sampling such a channel ĩk(~x) from a sensor image
i(~x), in combination with Equation 4, results in the
following expression

ĩk(~x) =Xk(~x)i(~x) =Xk(~x)

 N∑
j=1

σj(~x)ρj (~x)


=

N∑
j=1

σkjXk(~x)ρj (~x) . (24)

As discussed in Section 3.3, the spatial basis func-
tions σj(~x) become spatially-invariant constants σkj in
the sampled channels because of spatial periodicity of
the basis. Each channel ĩk(~x) is thus associated with
N constants σkj defined by the spatial basis. Recon-
structing a channel ik(~x) from its sampled represen-
tation ĩk(~x) is performed by convolving with a recon-
struction filter kernel f(~x):

ik(~x) = ĩk(~x)⊗ f(~x). (25)

According to the sampling theorem, the original sig-
nal must be spatially band-limited for this reconstruc-
tion to be a faithful representation.

Due to the spatial basis being a set of constants at
every position in the interpolated channels ik(~x), and
the plenoptic basis being spatially-invariant, a convolu-
tion with the filter kernel can be formulated as

ik(~x) =

 N∑
j=1

σkjXk(~x)ρj (~x)

⊗ f(~x) (26)

=

N∑
j=1

σkj

∫
P

πj(~p)

(
Xk(~x)lλ(~x, ~p)⊗ f(~x)

)
d~p

Equation 26 shows that all channels ik(~x) are lo-
cally related to the sampled and reconstructed plenop-
tic function via a linear combination. It also shows that
applying a linear filter to the measured channels, i.e.
before decorrelation, is equivalent to applying the same
filter to the plenoptic function itself, i.e. after decorre-
lation. ut
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not bandlimited bandlimited

Fig. 13 Information overlaps in the Fourier domain if the sig-
nal is not suitably band-limited (left). With the appropriate
band-limitation, the Fourier representation decomposes into

distinct correlated Fourier tiles îk. The arrow in the right
figure indicates the position ∆~ωkx of the Dirac peaks, i.e. the
center frequencies, of a Fourier tile.

Appendix B: Proof of PFM Theorem

The proof of Theorem 2 follows Equations 6-8. To pro-
vide additional detail, we start with Equation 8

Fx {i(~x)}=

M∑
k=1

δ (~ωx −∆~ωkx)⊗ N∑
j=1

σ̂ k
j ρ̂j (~ωx)

 , (27)

where k∆~ωx has been replaced by ∆~ωkx, a vector to
the center frequency of a Fourier tile (Fig. 13, right),
to allow for generalized sampling patterns. If the signal
is properly band-limited the image’s Fourier transform
separates into disjoint sets, each encoding one Fourier
tile îk(~ω′x) (Fig. 13, right). To separate the notation for
spatial frequencies in the sensor image and for Fourier
tiles we use the substitution ~ω′x = ~ωx −∆~ωkx.

The Fourier tiles can be cropped from the Fourier
transformed sensor image by applying a rect filter3:

îk(~ω′x) = rectk(~ω′x)δ (~ω′x)⊗
N∑
j=1

σ̂ k
j ρ̂j (~ω′x) (28)

= rectk(~ω′x)

N∑
j=1

σ̂ k
j

∫
P

π(~p)̂lλ(~ω′x, ~p)d~p.

The convolution with a Dirac train in Equation 8
reduces to a convolution with a single Dirac peak δ (~ω′x)
because of band-limitation. This is a unit operation and
thus removed from the equations. �

In addition, by inverse Fourier transforming and
sampling the Fourier tile îk(~ω′x) we see that the recon-
struction filter is indeed a sinc:

ik(~x)=

N∑
j=1

σkj

∫
P

πj(~p)

(
Xk(~x)lλ(~x, ~p)⊗ sinc(~x)

)
d~p

3 For other sampling patterns, corresponding, e.g. hexago-
nal, masking functions would be used. In addition, apodiza-
tion functions can be used to reduce ringing artifacts in the
reconstruction at the expense of decreasing the effective res-
olution, see e.g. (Veeraraghavan et al 2007). This does not
affect the proof.

(29)
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