
Algorithmic Methods 22/11/2010

Lecture Notes 6: Approximations for MAX-SAT

Professor: Yossi Azar Scribe:Alon Ardenboim

1 Introduction

Although solving SAT is known to be NP-Complete, in this lecture we will cover some
algorithms that give an approximated solution of the weighted version that comes close to
the maximal satisfaction of the clauses within a constant factor. Towards the end of the
lecture we will start discussing about the integer multi-commodity max-flow problem and
give a linear programming algorithm that approximates it.

2 Notes about Weighted Vertex Cover Approximation

On the last lecture, we gave a linear programming algorithm that approximates the weighted
version of the VC problem.

2.1 Reminder: Weighted-VC

In the weighted version of the VC problem you are given a graph G = (V,E) as input, and
a weight function on the vertices w : V 7→ R+. The goal is to find a subset S ⊆ V s.t.
∀(u, v) ∈ E u ∈ S or v ∈ S and the weight of the cover

∑
s∈S w(s) minimized.

2.2 Reminder: Approximation via Linear Programming

To find an approximation to the optimal solution, we defined an LP problem - we defined
a variable Xv for every v ∈ V , and our goal function was:

minimize
∑
v∈V

w(v)Xv

subject to:
Xv +Xu ≥ 1 ∀(u, v) ∈ E

Xv ≥ 0 ∀v ∈ V

For each Xv we rounded the result; those who got a value ≥ 1
2 were rounded to 1, the others

were rounded to 0. This way we got a 2-approximation of the problem. For more details,
check the notes of Lecture 5.

6 - 1

http://www.cs.tau.ac.il/~azar/Methods-Class5.pdf

2.3 Notes About the Approximation

1. Possible Values: After solving the linear program, we get that every Xv is assigned
one of the values {0, 12 , 1}.

2. Tight Bound: The bound we get on approximating the weighted-VC using linear
programming and rounding is tight. That is, it is possible to construct an example
for which ALG(G,w) ≈ 2 ·OPT (G,w). Let’s take a look at a graph G = (V,E) which
is a circle on 2n − 1 vertices, and let’s set w(v) = 1 for every v ∈ V . The optimal
solution in for the LP problem would set Xv = 1

2 for each v ∈ V , thus giving a total
weight of 1

2(2n− 1) = n− 1
2 , while the optimal solution for the problem would use n

vertices for the cover, while giving us a total weight of n. After the rounding of the
LP problem, we will set each Xv = 1, and will get a weight of 2n− 1.

V
1
 V

2

V
3

V
4

V
5

V
2n-1

V
2n-2

V
…

3 Approximating MAX-SAT

In the classic SAT problem we are given a conjunctive normal form (CNF) formula C that’s
comprised of a collection of clauses {C1, ..., Cm}. Each clause Cj is a disjunction of literals
(Xj1 ∨Xj2 ∨ · · · ∨Xjk). Each one of the variables in the formula can be assigned a boolean
value (True/False), and our goal is to give an assignment to the variables that satisfies all
the clauses. However, this problem is the most basic problem known to be NP-Complete. If
we look at the 2-SAT problem where every clause contains at most 2 literals, we can check
if it is satisfiable and find an assignment that satisfies it, if exists, in polynomial time. For
any k > 2, k-SAT is known to be NPC. Let’s look at the optimization problem.

3.1 MAX-SAT Definition

We are given a CNF formula C that’s comprised of a collection of clauses {C1, ..., Cm} and
a weight function w : C 7→ R+ on the clauses, and our goal is to give an assignment to the
variables σ : V ar 7→ {True, False} so that the weight of satisfied clauses is maximal.
Let’s denote the weight of the jth clause as wj and define an indicator function α : C×σ 7→
{0, 1} in which α(Cj , σ) = 1 ⇐⇒ Cj is satisfied by assignment σ. The weight that

6 - 2

assignment σ gives to the formula is now defined:

w(C, σ) =
m∑
j=1

wjα(Cj , σ)

Although this problem seems easier than the classic SAT problem since we don’t need to
satisfy all the clauses, MAX-2-SAT is actually known to be NP-Hard. Let’s try and give
an approximation of the problem.

3.2 First Attempt - “Guessing” the Assignment

Let’s assign independently each variable a boolean value in a uniform way. Each variable
would be given ′True′ w.p. 1

2 and ′False′ w.p. 1
2 . Let’s see what’s the expectation of the

the weight of the clauses that would get satisfied by this assignment. From the linearity of
expectation we get that:

Eσ [w (C, σ)] =
∑
j

wjEσ [α (cj , σ)] =
∑
j

wjPr [α (cj , σ) = 1]

since each clause isn’t satisfied w.p. 1

2lj
:

=
∑
j

wj ·
(

1− 1

2lj

)
since each clause has at least one literal:

≥ 1

2

∑
j

wj ≥
1

2
OPT (C,w)

If we know that each clause contains at least k different literals, then a random assign-
ment would give us an approximation factor of 1− 1

2k
. So with a random assignment we’re

expected to get as close to the optimal solution as a factor 1
2 . Can we achieve this result

deterministically?

3.3 De-randomization

We’ll use the conditioned expectation method to give a deterministic algorithm that would
achieve an approximation factor 1

2 . We know that:

Eσn [w(C, σn)] =
1

2
· Eσn−1 [w(C, σn−1)|X1 = False] +

1

2
· Eσn−1 [w(C, σn−1)|X1 = True]

From that we know that at least one assignment of X1 wouldn’t decrease the expectation of
the total weight of the formula. If we could calculate the expectation of the formula when
some of the variables are assigned a value and some are set randomly, we could choose the
assignment of X1 which gives us the higher expectation and continue assigning values to
all the variables until we have an assignment that gives us an approximation factor of 1

2 .
Fortunately, we can. All we need to do is to calculate E[α(c, σ)] for every c ∈ C. Let’s

6 - 3

look at a clause c ∈ C and let’s assume that variables X1, ..., Xl were assigned a value,
and variables Xl+1, ..., Xn are set randomly. If one of c’s literals satisfied c than it’s clear
that E[α(c, σn−l)] = 1. Otherwise, if c has k different literals that weren’t assigned a value,
E[α(c, σn−l)] = 1− 1

2k
.

Example: We are given the the following set of clauses:

X1 X1 ∨X2 X1 ∨X2 ∨X3 X1 ∨X2 ∨X3 X1 ∨X2 ∨X3

where each clause has a weight of 1. We’re expected to get a weight of:

1

2
+

3

4
+

7

8
+

7

8
+

7

8
= 3

7

8

If we set X1 = False we get an expectation of:

1 +
1

2
+

3

4
+ 1 +

3

4
= 4

If we set X1 = True we get an expectation of:

0 + 1 + 1 +
3

4
+ 1 = 3

3

4

Therefore, we’ll set X1 = False. Let’s continue to setting the second variable. If we set
X2 = False we get an expectation of:

1 + 1 +
1

2
+ 1 +

1

2
= 4

If we set X2 = True we get an expectation of:

1 + 0 + 1 + 1 + 1 = 4

Notice that if we set X2 = True we decide which of the clauses are satisfied deterministically,
and we get that the total weight is higher than the initial expectation.

3.4 Second Attempt - Guessing with a “Hunch”

Let’s take a formula C and try to “merge” all the clauses with a single literal of the same
variable. For instance, if we have four clauses:

C1 = X1 C2 = X1 C3 = X1 C4 = X1

with weights:
w1 = 17 w2 = 12 w3 = 42 w4 = 16

we can at first merge C1 and C3 to a single clause CX1 = X1 with weight wX1 = 17+42 = 59
and C2 and C4 to a single clause CX1 = X1 with weight wX1 = 12 + 16 = 28. We can now
again combine the two clauses into a single clause C̃X1 = X1 with weight w̃X1 = 59−28 = 31.
Note that every assignment of X1 would give us a weight smaller by 28. Notice that although
we reduce the weight of the formula, every approximation factor we get with the new formula

6 - 4

would also apply to the old formula. Let’s denote the new formula after merging all the
variables as C̃, set the weight shift constant as β > 0 and the approximation factor of C̃ as
α, we can see that:

ALGw(C)

OPTw(C)
=
ALGw(C̃) + β

OPTw(C̃) + β
≥ ALGw(C̃)

OPTw(C̃)
≥ α

Our approximation algorithm would first transform C into a reduced formula C̃ where each
variable can appear only once in a clause with a single literal. Afterwards, the algorithm
will guess the assignment for each variable independently, but with a “hunch”. Every literal
in C̃ that appears by himself in a clause would be set to True w.p. h > 1

2 , and therefore,
the complement to this literal would be set to True w.p. 1−h. Every variable that doesn’t
have a literal of his in a clause of size 1 would be assigned a value randomly as before. Let’s
calculate the expectation of the indicator function α for each clause with the new algorithm.
For clauses with a single literal:

E[α(Cj , σ)] = h

and for clauses with k ≥ 2 different literals:

E[α(Cj , σ)] ≥ 1− hk ≥ 1− h2

Therefore:
E[α(Cj , σ)] ≥ min{h, 1− h2}

Because h is monotonically increasing and 1− h2 is monotonically decreasing, we get that

that the expectation reaches a maximum when h = 1− h2 ⇒ h =
√
5−1
2 ≈ 0.618.

A de-randomization using the conditioned expectation method could be applied as before
to give us a deterministic algorithm with an approximation factor of ≈ 0.618.

3.5 Approximation using Linear Programming

Idealistically, we would like to define the following integer LP problem and find the optimum
value - let’s define an indicator Xi ∈ {0, 1} for each variable Xi(1 ≤ i ≤ m) and an indicator
Zj ∈ {0, 1} for each clause Cj(1 ≤ j ≤ n), and set the goal function to be:

max
∑
j

wj · Zj

subject to:

Zj ≤
∑
i∈C+

j

Xi +
∑
i∈C−

j

(1−Xi)

where C+
j are the variables that appear in Cj without negation, and C−j are the variables

that appear in Cj with negation. If we could solve such a problem in polynomial time,
we could do all sorts of cool stuff like solve 3-SAT and show that P=NP. Since ILP is an
NP-Complete problem, we’ll solve a relaxation of the problem. The goal function is the
same and the constrains are the same, but the possible values of the variables are:

0 ≤ Xi ≤ 1 0 ≤ Zj ≤ 1

6 - 5

After solving the LP problem we get Xi = Pi for every variable. We’ll do a probabilistic
rounding of the result. For each Xi, independently, we’ll set Xi = True w.p. Pi and
Xi = False w.p. 1− Pi. The probability that α(Cj) = 0 for a certain Cj is:

Pr[α(Cj) = 0] =
∏
i∈C+

j

(1− Pi)
∏
i∈C−

j

Pi

from the inequality of arithmetic and geometric means:

≤

(∑
i∈C+

j
(1− Pi) +

∑
i∈C−

j
Pi

k

)k
from the constraint on Zj :

≤
(
k − Zj
k

)k
=

(
1− Zj

k

)k
From that we get that:

Pr[α(Cj) = 1] ≥ 1−
(

1− Zj
k

)k
If we can show that for some constant βk ≥ β:

1−
(

1− Zj
k

)k
≥ βk · Zj ≥ β · Zj

then we get a β-approximation of MAX-SAT since:

E[w(C, σ)] =
∑
j

wj ·Pr[α(Cj) = 1] ≥
∑
j

wj ·Zj ·β = β·
∑
j

wj ·Zj ≥ β·OPTrelaxed(C, σ) ≥ β·OPT (C, σ)

Claim: The inequality 1−
(

1− Zj

k

)k
≥
(

1−
(
1− 1

k

)k) · Zj holds for 0 ≤ Zj ≤ 1.

Proof. When Zj = 0 we get that 0 ≥ 0. When Zj = 1 we get:

1−
(

1− 1

k

)k
≥

(
1−

(
1− 1

k

)k)
· 1

It’s easy to see that the second derivative of the left hand side of the inequality is negative
when 0 ≤ Zj ≤ 1 and therefore it is concave there, and because the right hand side of the
inequality is linear in Zj , we get the following:

6 - 6

Zj 0 1

Left-hand side

Right-hand side

From that, it is easy to see that the inequality holds when 0 ≤ Zj ≤ 1.

Since βk = 1 −
(
1− 1

k

)k ≥ 1 − 1
e ≈ 0.63, we get an approximation factor of β ≈ 0.63

using linear programming and rounding for the MAX-SAT problem.

3.6 Combining Linear Programming and Random Assignment

Note that random assignment gives us a good approximation for clauses containing many
literals, while linear programming gives us a good approximation for clauses containing few
literals. We’ll try combining them both - with probability 1

2 we’ll give all the variables the
value they get using LP and rounding, and with probability 1

2 we’ll give all the variables a
random assignment. Let’s try and calculate the expected weight that the assignment gives
on the formula (note that k = kj):

E[w(C, σcombined)] =
1

2
E[w(C, σLP)] +

1

2
E[w(C, σR)]

=
1

2

∑
j

wj · Zj · βkj +
1

2

∑
j

wj ·
(

1− 1

2kj

)
≥

∑
j

wj · Zj
(

1

2
βkj +

1

2

(
1− 1

2kj

))
If we’ll show that:

1

2
βk +

1

2

(
1− 1

2k

)
≥ 3

4

we’ll get a 3
4 approximation since:

E[w(C, σcombined)] ≥
∑
j

wj · Zj
(

1

2
βkj +

1

2

(
1− 1

2kj

))
≥ 3

4

∑
j

wj · Zj ≥
3

4
OPT (C, σ)

Claim: The following inequality holds:

1

2

(
1−

(
1− 1

k

)k)
+

1

2

(
1− 1

2k

)
≥ 3

4

6 - 7

Proof. Let’s first rearrange the equation:(
1− 1

k

)k
+

1

2k
≤ 1

2

For k = 1 we get:

0 +
1

2
≤ 1

2
For k = 2 we get:

1

4
+

1

4
≤ 1

2

For k ≥ 3 it’s clear that
(
1− 1

k

)k ≤ 1
e and 1

2k
≤ 1

8 , and that gives us:(
1− 1

k

)k
+

1

2k
≤ 1

e
+

1

8
≤ 1

2

Great! We got a 3
4 approximation when selecting the assignment of the LP approxima-

tion w.p. 1
2 and the random assignment w.p. 1

2 . Can we improve the approximation factor
if we choose which assignment to give to each variable w.p. 6= 1

2? Apparently, 1
2\

1
2 gives us

the best approximation factor.
If we cannot improve the approximation factor, can we at least reach the approximation
deterministically? This time the answer is positive. De-randomization, although a little
more complicated than the previous ones, works here as well.

4 Integer Routing via Multi-Commodity Flow

Consider the following problem - you are given a graph G = (V,E) with a capacity function
on the edges c : E 7→ R+ and a request set (si, ti). For each request we get a value vi if we
find a path with capacity 1 from si to ti. A feasible solution to this problem would be to
find a path Pi for each request or set Pi = ∅ if we choose not to serve the request, and the
value for this solution would be

∑
i|Pi 6=∅ vi. Our goal is obviously to maximize this value.

Let’s denote le = |{i|e ∈ Pi}|. We want to ensure that the feasible solution would maintain
le ≤ ce for every e ∈ E.

4.1 Linear Programming Approximation - Phase 1

We’ll make some relaxing assumptions:

1. We can replace the path from si to ti with a flow from si to ti.

2. We can serve a fraction of the request, and we’ll get a fraction of the appropriate vi.

Let’s define some new variables. Xi
e will denote the flow for request i on an edge e and Xi

would denote the total amount of flow for request i.
The goal function for the LP problem is:

maximize
∑
i

viXi

6 - 8

subject to: ∑
i

Xi
e ≤ ce ∀e ∈ E (Make sure each edge isn’t exceeding its capacity)∑

e|e=(u,v)

Xi
e −

∑
e|e=(v,u)

Xi
e = 0 ∀i ∀u ∈ V \ {si, ti} (Incoming flow equals to outgoing flow)

∑
e|e=(si,v)

Xi
e −

∑
e|e=(v,si)

Xi
e = Xi ∀i (What leaves the source minus what enters it)

As well as 0 ≤ Xi ≤ 1 and 0 ≤ Xi
e ≤ 1.

After we get a flow for each request, we’ll disassemble the flow from si to ti into at most
|E| different paths. The way of doing it is to take the flow graph for each request, which is
a directed a-cyclic graph (DAG), and start removing paths from it, one by one. For every
path we remove, we deduce it’s weight, which is the weight of the lightest edge in the path,
from each edge in the path, and continue on to the next path. Since every path removal
removes at least one edge, we can re-iterate at most |E| times. We’ll continue on to phase
2 of the approximation algorithm at the beginning of lesson 7.

6 - 9

	Introduction
	Notes about Weighted Vertex Cover Approximation
	Reminder: Weighted-VC
	Reminder: Approximation via Linear Programming
	Notes About the Approximation

	Approximating MAX-SAT
	MAX-SAT Definition
	First Attempt - ``Guessing" the Assignment
	De-randomization
	Second Attempt - Guessing with a ``Hunch"
	Approximation using Linear Programming
	Combining Linear Programming and Random Assignment

	Integer Routing via Multi-Commodity Flow
	Linear Programming Approximation - Phase 1

