
Using Erlang Skeletons to Parallelise
Realistic Medium-Scale Parallel Programs

(Early Draft!)

Vladimir Janjic Christopher Brown Kevin Hammond
University of St Andrews, Scotland, UK.
{vj,cmb21,kh}@st-andrews.ac.uk

Abstract
This paper shows how the Erlang skeleton library, Skel, can be
used to parallelise the Discrete Haar Wavelet Transform applica-
tion. The Discrete Haar Wavelet Transform is a very important
wavelet transformation, which is heavily used in image and sig-
nal processing. Using the Skeleton version of the application, we
were able to achieve speedups of 16.63 on a 24-core shared mem-
ory machine. This demonstrates that, with relatively little effort, the
Skel library can be used for parallelisation of Erlang applications,
obtaining very good speedups.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords Erlang, Parallelism, Skeletons

1. Introduction
The single-core processor, which has dominated for more than half
a century is now obsolete. Machines with dual-, quad- and even
hexa-core CPUs are already common place in desktop machines
and CPUs with 50 cores as standard have already been announced
1. There has been a seismic shift between sequential and parallel
hardware, but programming models have been very slow to keep
pace. Indeed, many programmers still use outdated sequential mod-
els for programming parallel systems, where parallel concepts have
effectively been bolted-on to the language, rather than high-level
parallel constructs being first-class. What is needed is an effec-
tive solution to help programmers think parallel. In the context of
parallel programming, parallel design patterns represent a natural
language description of a recurring problem and of the associated
solution techniques that the parallel programmer may use to solve
that problem.

Porting existing sequential applications to large-scale shared-
memory parallel systems usually comprises of identifying where in
the application the potential parallelism lies and then, subsequently,

1 Intel’s Many Integrated Core Family

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

implementing low-level parallel code that exploits this parallelism
in a useful manner. The implementation is usually very tedious and
error-prone, since the programmer usually needs to explicitly han-
dle thread creation, communication and synchronisation. Algorith-
mic Skeleton Libraries [7] attempt to abstract away from these te-
dious details, by providing a set of high-level skeleton functions that
capture common parallelism patterns. The user then only needs to
provide the sequential code for the skeleton(s) that he choses, and
the low-level parallel details (such as thread creation, communica-
tion and synchronisation) are abstracted away.

In this paper we will introduce a number of new, ”real world”
use cases, demonstrating the effectiveness of using Erlang as a
parallel programming language. Our use cases build on top of a
recent new skeleton framework for Erlang, Skel, which provides a
set of classical, well-founded parallel implementations of the most
well known, and useful skeletons. We show, for each use case, its
performance results on a 24-core shared memory machine.

In the full paper, we promise to show

• A number of realistic use-cases implemented using the Skeleton
library, Skel in Erlang for parallel shared memory systems.
The use cases will include Ant Colony Optimization; Dialyzer,
Image Processing and Haar Transformation.
• An evaluation of the use-cases on a number of different shared-

memory many-core platforms.
• The identification of new parallel skeletons, by evaluation of

the use cases.

2. Background
2.1 Erlang
Erlang is a strict, impure, functional programming language with
support for first-class concurrency. This concurrency model allows
the programmer to be explicit about processes and communica-
tion, but implicit about placement and synchronisation. Erlang sup-
ports a lightweight threading model, where processes model small
units of computation (tasks) that are executed on a capability. The
scheduling of processes is handled automatically by the Erlang Vir-
tual Machine, which also provides basic load balancing mecha-
nisms. Erlang typically has three primitives for handling concur-
rency:

• spawn(), allowing new functions to execute in a lightweight
Erlang process;
• !, allow messages to be explicitly sent from one Erlang process

to another; and,
• receive , to allow messages to be received in another process

queue.

Furthermore, Erlang also supports fault tolerance, by allowing
groups of processes to be supervised, and new instances of pro-
cesses can be spawned in the case failure. Although Erlang sup-
ports concurrency, there has been little research into how Erlang
can be used to effectively support deterministic parallelism.

2.2 Skeletons
An algorithmic skeleton [7] is an abstract computational entity that
models some common pattern of parallelism (such as the parallel
execution of the sequence of computations over the set of inputs,
where the output of one computation is the input to the next one).
A skeleton is typically implemented as a high-level function that
takes care of the parallel aspects of a computation (e.g., the cre-
ation of parallel threads, communication and synchronisation be-
tween these threads, load balancing etc.), and where the program-
mer supplies sequential problem-specific code and any necessary
skeletal parameters.

Skel [5], is a Domain Specific Language implemented in Erlang
for expressing parallelism using algorithmic skeletons. It currently
provides a small number of classical skeletons that are considered
the most useful, including Map, Farm, Pipeline and Seq. In this
paper, we consider two skeletons:

• seq is a trivial wrapper skeleton that implements the sequential
evaluation of a function, f :: a− > b, applied to a sequence of
inputs, x1, x2, . . . , xn.
• pipemodels a parallel pipeline applying the functions f1, f2, . . . , fm

in turn to a sequence of independent inputs, x1, x2, . . . , xn,
where the output of fi is the input to fi+1. Parallelism arises
from the fact that, for example, fi(xk) can be executed in par-
allel with fi+1(fi(xk−1)). Here, each fi has type a− > b.
• A farm skeleton models the application of a single func-

tion, f :: a− > b, to a sequence of independent inputs,
x1, x2, x3, . . . , xn. Each of the f(x1), f(x2), f(x3), . . . , f(xn)
can be executed in parallel.
• A map skeleton is a variant of a farm where each independent

input, xi, can be x1, x2, x3, . . . , xn, is partitioned (p :: a− >
[b]) into a number of sub-parts that can be worked upon in
parallel, a worker function, f :: [b]− > [c], is then applied
to each element of the sublist in parallel, finally the result is
combined (c :: [c]− > d) into a single result for each input.

3. Ant Colony
Ant Colony Optimisation (ACO) is a heuristic for solving NP-
complete optimisation problems, inspired by the behaviour of ants
living in real ant colonies. An ACO algorithm consists of a number
of iterations. In one iteration, each ant independently computes a
solution to the problem, with the solution being partially guided by
a pheromone trail produced by ants. To compute one component
of a solution, an ant (with the designated probability q) follows
the pheromone trail for that component or (with the probability
1 − q) it performs a biased random selection of the component.
In this way, different ants generally produce different (but similar)
solutions. After the iteration is finished, and all ants have computed
solutions, the best solution is chosen and the pheromone trail is
updated according to that solution. After that, the next iteration,
where ants compute new solutions based on the new feromone trail,
is started.

An example ACO algorithm that we consider in this deliver-
able is computing a solution to a Single Machine Total Weighted
Tardiness Problem (SMTWTP). In SMTWTP, we are given n jobs,
whereas each job i is characterised by its processing time, pi, dead-
line, di, and weight, wi. The goal is to schedule execution of jobs
in a way that achieves minimal total weighted tardiness. The tardi-

(a) Before (b) After

Figure 1. An image before and after the Discrete Haar Transfor-
mation

ness of a job ,i, in a schedule is defined by TI = max{0, Ci−di},
where Ci is the completion time of the job i in that schedule. The
total tardiness of the schedule is defined as

∑
wiTi.

In the ACO solution to the SMTWTP problem, in each iteration
each ant independently computes a schedule. The pheromone trail
that guides the computation of schedules is defined by a matrix π,
where π[i, j] is the preference of assigning job j to the i-th place in
the schedule. Therefore, in each step of the solution computation,
an ant will either pick the job with the highest preference for that
position, or will choose a biased random selection (again based on
the pheromone trail). Once the iteration is finished and all ants have
computed their schedules, the schedule that obtains the minimal
total weighted tardiness is selected, and the pheromone trail is
modified to increase chances of selecting job in the same order as
in the currently found best solution.

4. Dialyzer
5. Merging and Filtering
6. The Discrete Haar Wavelet Transform
In mathematics, the Haar wavelet [11] is a sequence of “square-
shaped” functions that can be used to approximate any square-
integrable real function. An important example of the use of Haar
wavelets in Computer Science is the Discrete Haar Transform,
which is heavily used in image and signal processing. The Discrete
Haar Transform consists of applying the operation

y = TxTT , (1)

for an input vector x and a fixed Haar matrix T = 1√
2

[
1 1
1 −1

]
,

producing the output vector y. A 1-dimensional Discrete Haar
Transform, where x is a pair of real numbers, is used in signal
processing (e.g. sound compression). A 2-dimensional Discrete
Haar transform, on the other hand, where x is 2x2 matrix, is used
for image compression, as for each 2x2 matrix of pixels x, it gives
a 2x2 matrix of pixels y as a result, where most of the energy of
x is contained in the top left pixel of y. Applying the Discrete
Haar Transform to an image (signal) consists of splitting the image
(signal) into 2x2 subimages (pairs of elements) and applying the
Haar Transform to each subimage (pair). See Figure 1 for the
example of an image before and after the Discrete Haar Transform
is applied.

We consider two use cases of applying the Discrete Haar Trans-
form:

Figure 2. Basic Sequential Haar Transform

Figure 3. Haar Transform Using a Skeleton Task Farm

1. audio compression, where a 1D Discrete Haar Transform is
applied to a stream of audio files; and,

2. video compression, where a 2D Discrete Haar Transform is
applied to a stream of images captured by a camera.

We can observe two sources of parallelism in these use cases. At
the top level, we have outer-level parallellism, where the same op-
eration (Discrete Haar Transform) is applied to a set of independent
inputs (a stream of audio files or images). This is relatively coarse-
grained data-parallelism, which can be implemented using a task
farm. In the application of the Discrete Haar Transform to one au-
dio file or image, we can observe the inner-level parallelism, where
the same operation 1 is applied to a set of independent subvectors
or submatrices of an original audio file or image. This represents
much finer-grained data parallelism.

In this paper, we exploit only the outer-level parallelism in the
two use cases, using a Farm Erlang skeleton. We leave exploitation
of inner-level parallelism as future work, where we plan to use
an OpenCL kernel for dealing with fine-grained data-parallelism
in applying the Discrete Haar Transform to one audio file/image,
and to use Erlang/OpenCL bindings to execute this kernel within
the Erlang Virtual Machine. This OpenCL binding will be wrapped
inside a skeleton structure where both the OpenCL version and the
Erlang version can be operated in parallel, allowing us to study the
effectiveness of Heterogeneity in Erlang.

6.1 Implementing the Haar in Skel
In this section we illustrate the process of porting the sequential
Haar use-case to the Erlang parallel skeleton library, Skel. The
basic program comprises a three-stage function composition (see
Figure 2). In the first stage, a stream of files is read, where each
file comprises a video or an audio file. These audio files/images are
then passed to the second stage, where the Discrete Haar Transform
is applied (1D for audo files and 2D for images). Finally, in the
third stage, the transformed audio files/images are sent across a
network for further processing (if necessary). In order to parallelise
this algorithm, we decided to introduce a task farm for the second
stage (see Figure 3). In order to do this, we created a Skeleton

Algorithm 1 Basic Sequential Algorithm for 1D Haar Transform
at the Outer Level

s e q u e n t i a l 1 d (V e c t o r s) −>
[h a a r 1 d w r a p p e r (V) | | V <− V e c t o r s] .

h a a r 1 d w r a p p e r ({R , A, I , Lim}) −>
s e q h a a r 1 d a (R , A, I , Lim) .

Algorithm 2 1D Haar Transform Using a Skel Task Farm

t heSke l1D (V e c t o r s) −>
s k e l : run ([{ farm , [{ seq ,

?MODULE: h a a r 1 d w r a p p e r / 1}] ,
2 4}] ,
V e c t o r s) ,

r e c e i v e
{ s i n k r e s u l t s , R e s u l t s } −> R e s u l t s

end .

call to a Skel task farm, where the number of farm workers is
controlled by the user via an input argument. A task corresponds
to applying sequentially the Discrete Haar Transform to one audio
file/image. The tasks X1, X2, . . . , Xn are distributed to workers
using a farm emitter, in an on-demand fashion (where tasks are
sent to idle workers). The task results X ′1, X ′2, . . . , X ′n are sent to
the farm collector. Both the emitter and collector are hidden from
the user, and are provided by the basic library framework.

6.2 1D Haar Transform
The porting of the 1D Haar Transform proceeded in two stages,
where the original algorithm is shown in Listing 1. Here the se-
quential 1D Haar Transform, sequential1d , is defined as mapping
a function, haar 1d wrapper, over a list of Vectors.

Stage 1: Introducing a Task Farm Introducing parallelism into
the program was done by first identifying the sub-expression in the
program that generated the output list, and where each operation
on the list could be computed in parallel. In the 1D Haar Transform
example, the operation sequential1d is converted into a task farm,
where each worker computes the 1D Haar Transform for an input
vector. The result of the task farm is a list of transformed vectors,
as illustrated in Listing 2.

Here, the program can be broken down into a number of key
components:

• skel :run denotes a call to the top-level run function in the skel
library, where the parameter to run is a (nested) Skeleton;
• farm denotes a farm skeleton;
• seq denotes the workers of the farm skeleton are the sequential

function, 1d haar wrapper;
• 24 denotes the number of farm workers; and, finally,
• Vectors is the input list of tasks.
• sink results is an Erlang atom that is used to determine that

we have a result from the skeleton. The Erlang receive block
waits for a message to be returned from the skeleton, matching
sink results , and binding the result to the variable, Results .

Stage 2: Chunking While using a task farm for the 1D Haar
Transform creates a reasonable amount of parallelism, the paral-
lelism is too fine-grained and the program does not scale as we
would typically expect. This is a common problem in the early
stages of writing parallel programs. To combat this, we introduce

Algorithm 3 1D Haar Transform Using a Skel Task Farm with
Partitioning and Combining

t heSke lChunked (C , Vec to r s , Len) −>
s k e l : run ([{ farm , [{ seq , fun (V) −>

(l i s t s : map (fun (X) −>
h a a r 1 d w r a p p e r (X) end ,V)) end }] ,
2 4}] ,
p a r t i t i o n (Vec to r s , C , Len)) ,

r e c e i v e
{ s i n k r e s u l t s , R e s u l t s } −> combine (R e s u l t s)

end .

Algorithm 4 Partition and Combine Functions in Erlang

combine ([])−> [] ;
combine ([X |Xs]) −> l i s t s : append (X, combine (Xs)) .

p a r t i t i o n ([] , ChunkSize , Len) −> [] ;
p a r t i t i o n (L i s t , ChunkSize , Len) −>

c a s e (l e n g t h (L i s t) < ChunkSize) o f
t r u e −> [L i s t] ;
f a l s e −> Chunk = l i s t s : s u b l i s t (L i s t ,

ChunkSize) ,
NewList = l i s t s : s u b l i s t (L i s t ,

ChunkSize +1 ,
Len) ,

[Chunk | p a r t i t i o n (NewList ,
ChunkSize ,
Len)]

end .

Algorithm 5 Partition and Combine Functions in Erlang

s e q u e n t i a l 2 D (Images) −> [h a a r 2 d w r a p p e r (I)
| | I <− Images] .

chunking to the task farm, allowing us to group together a num-
ber of small tasks into one larger parallel task, where each par-
allel thread operates over a sub-list rather than just one element.
We want each worker to be busy, so we chunk by groups of 4 ele-
ments, (2048/4 = 512 tasks for each worker). By chunking in this
way, we also decrease the communication costs, and reduce paral-
lel overheads. Chunking can generally be achieved in a variety of
different ways. In our example, we modify the task farm, manually
refactoring it to a pipeline with a partition and combine stage, as
illustrated in Listing 3.

We also have to introduce two new functions, partition and
combine, as illustrated in Listing 4. Here, combine simply takes
a list, where the head of the list, X, is also a list, and appends X
to the combined tail of the list, Xs. Partitioning a list is imple-
mented by the partition function, where a new list is created that
is ChunkSize elements in length. This sublist is then appended to
the remaining sublists of the input list, List . The partitioning ter-
minates when no new sublists can be created.

6.3 2D Haar Transform
The porting process for the 2D Haar Transform proceeded in a sim-
ilar way to the 1D Haar Transform, where the sequential algorithm
is shown in Listing 5.

Here, a function, haar 2d wrapper is applied to each element, I,
of the list of input images, Images. Porting this code to use a skel

Algorithm 6 Partition and Combine Functions in Erlang

t h e S k e l 2 d (V e c t o r s) −>
s k e l : run ([{ farm , [{ seq ,

fun ?MODULE: 2 d w r a p p e r / 1}] ,
2 4}] , V e c t o r s) ,

r e c e i v e
{ s i n k r e s u l t s , R e s u l t s } −> R e s u l t s

end .

1 2 4 8 12 16 20 24

1
2

4

6

8

10

12

14

16

18

20

22

24

No. Farm Workers

Sp
ee

du
p

Speedups for 1D Haar Transform (Skel Task Farm)

Skel Task Farm
Skel Task Farm with Chunk Size = 4

Figure 4. Speedup figures for a 1D Haar Transform, for 2048
audio files, with a sample size of 4400.

task farm comprised of rewriting the above code into a call to the
skel library, introducing a farm skeleton, where the work function
is 2d wrapper, as shown in Listing 6.

Here we introduce a call to skel :run, which is the top-level
skeleton call, parameterised by a nested skeleton. In our example,
we use the farm skeleton, with 24 workers, and each worker is a
sequential function, 2d wrapper. In this example, it is not necessary
to employ chunking, as the tasks are already large enough to give
sufficiently large computation, without saturating the system with
an abundance of parallel tasks.

7. Evaluation Results
In this section we evaluate our 1D and 2D Haar Transforma-
tions, where all measurements have been made on an 800 Mhz
24 core, dual AMD Opteron 6176 architecture, running Centos
Linux 2.6.18-274.el5. and Erlang 5.9.1 R15B01, averaging over 10
runs. We report absolute speedups against the original sequential
versions.

7.1 1D Haar Transform
For the 1D Discrete Haar Transform, we executed the application
over 2048 audio samples, each with a sample size of 4400. This
translates to 2048 vectors, each with 4400 elements, where a single
execution of a 1D Discrete Haar Transform operates over a single
vector. Figure 4 shows the speedup results for the parallel version of
the 1D Discrete Haar Transform using 1 – 24 farm workers. In the
figure, the blue line corresponds to the speedups of the simple task

1 2 4 8 12 16 20 24

1
2

4

6

8

10

12

14

16

18

20

22

24

No. Farm Workers

Sp
ee

du
p

Speedups for 2D Haar Transform (Skel Task Farm)

Skel Task Farm

Figure 5. Speedup figures for a 2D Haar Transform, for 24 images,
1024*1024.

farm variant of the application, where a task corresponds to pro-
cessing one vector. The red line shows the chunked version (where
the input list of vectors is partitioned into groups of 4 vectors). The
chunked version still uses a task farm, but here one tasks corre-
sponds to processing 4 vectors. The simple task farm variant (blue
line) shows a maximum speedup of 13.6, where the version with
chunking shows an improvable speedup of 16.63. Although more
investigation is needed at this stage, we speculate that in the simple
task farm variant, there is an abundance of parallelism, where the
system is saturated with many fine-grained tasks. In the chunking
version, the number of tasks is reduced, but the computation size is
increased, therefore reducing the communication overheads.

7.2 2D Haar Transform
Figure 5 shows speedup results for the 2D Haar Transform, over 24
images, each 1024∗1024 in size. Here, we only consider the simple
task farm without chunking. As it can be seen, the application starts
to scale reasonably well, tailing off with around 12 workers with
a speedup of 7.2. This is due to a fact that there are 24 tasks, so
with 12 workers, each worker gets exactly 2 tasks. Increasing the
number of workers to 13 (and up to 23) results in imbalance in the
number of tasks allocated to workers. Therefore, some workers may
be idle for considerable time, waiting for workers that got more
tasks to finish. This further results in only small improvements in
speedups when there are between 13 and 23 workers. Balance is
again restored when there are 24 workers, hence the much better
speedup of 14.15.

8. Related Work
The Skel framework was introduced in [5], together with a method-
ology for parallelising Erlang programs using refactoring tools and
cost-models. In this paper we attempted to follow the methodology,
replacing the refactoring tool-support with a manual refactoring
process instead. Since the nineties, the “skeletons” research com-
munity has been working on high-level languages and methods for
parallel programming [3, 4, 6–9]. Skeleton programming requires
the programmer to write a program using well-defined abstractions
(called skeletons) derived from higher-order functions that can be
parameterized to execute problem-specific code. Skeletons do not

expose to the programmer the complexity of concurrent code, for
example synchronization, mutual exclusion and communication.
They instead specify abstractly common patterns of parallelism –
typically in the form of parametric orchestration patterns – which
can be used as program building blocks, and can be composed or
nested like constructs of a programming language. A typical skele-
ton set includes the pipeline, the task farm, map and reduction.
There has been a few previous attempts at parallelising Erlang ap-
plications, such as parallelising Dialyzer [1], and a suite of Erlang
benchmarks [2]. However, none of the attempts exploit structured
parallelism in the form of algorithmic skeletons, as outlined in this
paper. Parallelism has been exploited in other functional languages,
such as Haskell, using a strategies approach for implicit parallelism
in GpH [12], and an explicit structured parallelism approach, using
algorithmic skeletons, for Eden [10].

9. Conclusions and Future Work
We have presented evaluation results for a 1D and 2D Discrete
Haar Wavelet Transform. For the 1D Discrete Haar Transform,
we presented two variants, both using a task farm skeleton from
the Erlang Skel library. The first variant was a basic task farm
skeleton with 24 workers, and the second variant was a task farm
skeleton with partitioning. Our evaluation showed that the basic
task farm variant achieves a speedup of 13.6 on a 24-core shared-
memory machine, where the partitioning version gives an improved
speedup of 16.6. The partitioning version gives a 21% increase
in performance over the basic task farm variant. For the 2D Haar
Transform, we evaluated the application using a simple task farm
skeleton from the Erlang Skel library, demonstrating a speedup
of 14.15 of 24 cores. Clearly this shows reasonable and scalable
speedups of the Haar Transform use case. For future work, we
intend on performing more experiments on a range of platforms,
and also evaluating an OpenCL variant, which would also allow us
to take into account GPU architectures.

Acknowledgments
This work has been supported by EU Framework 7 grants IST-
288570 “ParaPhrase: Parallel Patterns for Adaptive Heterogeneous
Multicore Systems” (http://www.paraphrase-ict.eu), and
IST-248828 “Advance: Asynchronous and Dynamic Virtualisation
through performance ANalysis to support Concurrency Engineer-
ing (ADVANCE)” (http://www.project-advance.eu).

References
[1] S. Aronis and K. Sagonas. On using erlang for parallelization :

Experience from parallelizing dialyzer.

[2] S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris,
and I. E. Venetis. A scalability benchmark suite for erlang/otp. In
Proceedings of the eleventh ACM SIGPLAN workshop on Erlang
workshop, Erlang ’12, pages 33–42, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1575-3. . URL http://doi.acm.org/
10.1145/2364489.2364495.

[3] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi.
P3L: A Structured High level programming language and its struc-
tured support. Concurrency Practice and Experience, 7(3):225–255,
May 1995.

[4] G. H. Botorog and H. Kuchen. Skil: An imperative language with
algorithmic skeletons for efficient distributed programming. In Proc.
of the 5th International Symposium on High Performance Distributed
Computing (HPDC’96), pages 243–252. IEEE Computer Society
Press, 1996.

[5] C. Brown, M. Danelutto, P. Kilpatrick, K. Hammond, and A. Elliott.
Cost directed refactoring for parallel erlang programs. International
Journal of Parallel Programming. To Appear, 2013.

[6] M. Cole. Algorithmic Skeletons: Structured Management of Parallel
Computations. Research Monographs in Par. and Distrib. Computing.
Pitman, 1989.

[7] M. Cole. Bringing skeletons out of the closet: a pragmatic manifesto
for skeletal parallel programming. Parallel Comput., 30(3):389–406,
Mar. 2004. ISSN 0167-8191. . URL http://dx.doi.org/10.
1016/j.parco.2003.12.002.

[8] J. Darlington, Y. Guo, Y. Jing, and H. W. To. Skeletons for structured
parallel composition. In Proc. of the 15th Symposium on Principles
and Practice of Parallel Programming, 1995.

[9] M. Hamdan, P. King, and G. Michaelson. A scheme for nesting algo-
rithmic skeletons. In K. Hammond, T. Davie, and C. Clack, editors,
Proc. of the 10th International Workshop on the Implementation of
Functional Languages (IFL’98), pages 195–211. Department of Com-
puter Science, University College London, 1998.

[10] R. Loogen, Y. Ortega-mallén, and R. Peña marı́. Parallel functional
programming in eden. J. Funct. Program., 15(3):431–475, May
2005. ISSN 0956-7968. . URL http://dx.doi.org/10.1017/
S0956796805005526.

[11] P. Porwik and A. Lisowska. The Haar-Wavelet Transform in Digital
Image Processing: Its Status and Achievements. Machine Graphics
and Vision, 13:79–98, 2004.

[12] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. L. Peyton Jones.
Algorithm + strategy = parallelism. J. Funct. Program., 8(1):23–60,
Jan. 1998. ISSN 0956-7968. . URL http://dx.doi.org/10.
1017/S0956796897002967.

