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Abstract
Refactoring is a widely used technique in the software develop-
ment and maintenance process. However refactorings should pre-
serve the original behaviour of the system, developers want to be
convinced about that, thus they retest the software after some mod-
ifications. Software testing is said to be the most expensive part of
the lifecycle of software systems. Therefore our research focuses on
impact analysis of changes to select test cases affected by refactor-
ings that should be retested after the transformations. We describe
the used mechanism in case of a dynamically typed functional pro-
gramming language, Erlang.

1. Introduction
Refactoring [8] is the process of changing and improving the qual-
ity of the source code without altering its external behaviour. Refac-
toring can be done manually or using a refactoring tool. These
tools try to guarantee the correctness of transformations using com-
plex static source code analysis and accurate transformations. We
have been developing a refactoring tool for Erlang, called Refac-
torErl [5].

Erlang [6] is a dynamically typed functional programming lan-
guage that was designed for building concurrent, reliable, robust,
fault tolerant, distributed systems with soft real-time characteristic
like telecommunication applications. The language got widespread
in industrial applications in the last decade.

RefactorErl is a source code analyser and transformer tool [2].
It provides 24 refactoring steps for Erlang developers, such as
moving, renaming different language entities, altering the interface
of functions or the structure of expression, parallelisation, etc.
Besides the transformations RefactorErl has different features to
support code comprehension [18].

Since different refactorings are performed under the software
development and maintenance process, reducing the number of
used test cases under the regression testing could reduce the high
cost of testing. Impact analysis is a mechanism to find those source
code parts, that are affected by a change on the source code, so it
could help in test case selection.
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Our research focuses on selecting those test cases of the Erlang
applications that are affected by a change on the source code. In
other words, we want to calculate the impact of a source code
transformation. To calculate the affected program parts we use
dependence graph based program slicing [12, 21], so we have to
define the Dependence Graphs for Erlang.

Erlang applications are tested often with the property based
testing tool QuickCheck [1]: the tool checks some properties given
by the developers with random generated test inputs. Therefore we
want to select those QuickCheck properties that should be retested
after a refactoring performed by the tool RefactorErl.

The rest of this paper is structured as follows: Section 2 presents
our motivation through an example; Section 3 introduces the used
intermediate source code representations and Section 4 describes
how we build the Dependence Graph based on the Control-Flow
and Data-Flow Graphs; Section 5 describes the used program slic-
ing technique for test case selection; Section 6 presents related
work; and finally, Section 7 concludes the paper and contains some
future work.

2. Motivating Example
In this section we demonstrate a small example showing how we
can select affected test cases after a refactoring step.

The following module (test) contains the function add_mul/2
that adds and multiplies two numbers and returns the results in a
tuple. We introduce two QuickCheck properties to test the function:
the property prop_add/0 tests whether the first element of the
return value of add_mul/2 is the sum of the two parameters, and
the property prop_mul/0 tests whether the second element of the
return value is the product of the two parameters. The module test
also introduce the function pow to raise X to the power Y and a
property to check the power function: IJ = IJ−1 ∗ I

-module(test).
-export([add_mul/2, pow/2]).
-export([prop_add/0, prop_mul/0, prop_pow/]).

add_mul(X, Y) ->
Add = X + Y,
Mul = X * Y,
{Add, Mul}.

prop_add() ->
?FORALL({I, J}, {int(), int()},

element(1, sth(I, J)) == I + J).

prop_mul() ->
?FORALL({I, J}, {int(), int()},

element(2, sth(I, J)) == I * J).



pow(X, Y) ->
math:power(X, Y).

prop_pow() ->
?FORALL({I, J}, {int(), int()},

pow(I, J) == pow(I, J-1) * J).

We can transform this module by the Introduce function refac-
toring [3]. This refactoring takes an expression or a sequence of
expressions as an argument and creates a new function definition
from it, then replaces the selected expressions with a function ap-
plication that calls the newly created function. We can perform this
transformation by selecting the X + Y expression:

add_mul(X, Y) ->
Add = add(X, Y),
Mul = X * Y,
{Add, Mul}.

add(X, Y) ->
X + Y.

Our goal is to select those test cases that are affected by the
change made by the Introduce function refactoring. It is obvious
that the property prop_pow is not affected, but neither the property
prop_mul. The refactoring changed only the value of the variable
X that is the first element of the resulted tuple. Since prop_mul
uses only the second element of the result of the function, we can
deduce that this property is not affected by the change, so we should
recheck only the property prop_add.

It is hard to calculate this manually on a more complex source
code. We build a Dependence Graph containing the data and control
dependencies among expressions. Then we perform static program
slicing [12] on the Dependence Graph to determine the affected
code parts after a change on the source code, and finally based on
the program slice we calculate the properties to recheck.

3. Intermediate Program Representation
Static program slicing is a technique to calculate the impact of
a change on the source code. In order to calculate the program
slices different levels of knowledge should be available about the
source code: we have to calculate the data and control depen-
dence/relations among the expressions and we need static syntactic
and semantic information for that. We build different abstract pro-
gram representations for efficient calculation of the dependencies.
In this section we briefly introduce the used intermediate repre-
sentations, such as the Semantic Program Graph, Data-Flow and
Control-Flow Graph.

3.1 Semantic Program Graph
The RefactorErl system introduces a Semantic Program Graph
(later SPG) [11] to represent syntactic and static semantic infor-
mation about the source code. The SPG is a rooted, directed, la-
belled graph that is composed from three layers. The first layer in-
cludes the lexical layer, the middle layer is the Abstract Syntax
Tree (later AST) of the program, and the third layer extends the
AST to a SPG by adding different semantic information, like vari-
able binding structure, function call information etc. Because of the
graph representation and the semantic level that is more efficient to
gather information about the source code than traversing the AST.

3.2 Data-Flow Graph
Based on the information available in the SPG we can build a Data-
Flow Graph (DFG). The DFG = (N,E) is a directed, labelled
graph containing the expressions of the Erlang programs as nodes

(N ) and the direct data-flow relations between them as edges (E).
We have introduced six types of data-flow edges (ni ∈ N ):

• n1
flow−→ n2 – represent that the value of the node n2 can be a

copy of the value of n1.

• n1
call−→ n2, n3

ret−→ n4 – the former one represents data-
flow between the formal parameters of the functions and the
actual parameters of the function calls. The latter one represents
the data-flow between the return value of the function and the
function applications. These edges represents that the values of
the nodes are the same as in case of the

flow−→ edge.

• n1
sel−→ n2, n3

cons−→ n4 – this edges represent the data-flow
among a compound data type and its elements. The former one
represents that we select an element of an expressions, and the
latter one that we create a compound expression from elements.

• n1
dep−→ n2 – represents direct dependencies among expres-

sions: the value of n2 depends on the value of n1.

We build an interfunctional DFG based on syntax driven formal
rules and we have defined a relation on the DFG to express the
indirect data-flow among the expressions of the Erlang programs
called First order data-flow reaching [20]: n1

1f
; n2 means that

the value of n1 can flow into n2, so the two values are the same.

3.3 Control-Flow Graph
We have defined compositional rules [17] for building the Control-
Flow Graph (CFG) of Erlang functions according to the semantics
of the language. The CFG is built by traversing the AST, following
the semantic rules of the language.

The CFG = (N,E) is a directed, labelled graph containing
the expressions of the Erlang programs as nodes (N ) and the direct
data-flow relations between them as edges (E). We have introduced
six types of control-flow edges (ni ∈ N ):

• n1 −→ n2 – represents that before evaluating n2 we have to
evaluate n1

• n1
yes−→ n2, n3

no−→ n4 – represent conditional evaluation in
case of conditional branching and pattern matching

• n1
funcall−→ n2 – denotes that we have a function call. We build

intrafunctional CFG-s for each function, and we resolve the
function calls when creating a compound control dependence
graph (See in Section 4.1).

• n1
ret−→ n2 – represents a return to a previously partially

evaluated expression

• n1
send−→ n2 – represents that before evaluating n2 we send the

message that is the value of n1

• n1
rec−→ n2 – represents that before evaluating n2 we have to

receive an expression

4. Calculating Dependencies
We need both the data-flow and the control-flow graph to calculate
the real dependencies among expressions. However it is not so
efficient to use them for program slicing because every dependence
edge calculation could require several graph traversals. Therefore
we build a Control Dependence Graph from the CFG and then we
add the data dependencies calculated from the DFG to that graph.
The resulted graph is called Dependence Graph and contains the
direct data and control dependencies among expressions. We can
determine indirect dependencies by traversing this graph.



4.1 Control Dependence Graph
The Control-Flow Graph contains every execution path of a cer-
tain function, and it also contains the sequencing among the evalu-
ated expressions. However when we want to calculate the impact of
some change on the source, it is not necessarily true that the eval-
uation of an element in a sequence has effect on the next elements
of the sequence. Therefore we have to eliminate the unnecessary
sequencing from the CFG and only the real control dependencies
are taken into account.

To build the CDG we have to build the Post-Dominator Tree [13]
of the function (PDT). We say that a node n2 from the CFG post-
dominates the node n1 if every execution path from n1 to the exit
point of the function contains n2. Using the PDT and the CFG we
can calculate the CDG for a function. Since the CFGs are intrafunc-
tional the built CDGs do not contain the dependencies triggered by
the function calls, message passing and message receiving. Such
dependencies will be resolved while composing the intrafunctional
CDGs into a composed CDG [15].

While building the CFG graphs we examine the functions,
whether a function may fail or not and mark the expressions where
the CDGs will be connected. This information is used while com-
posing the CDGs to determine interfunctional dependencies.

The function may potentially fail at run-time, if it has no ex-
haustive patterns, contains an expression that may fail or throws an
exception. The function application may affect the evaluation of the
expressions following in the sequence, thus this dependency must
be taken into account. The expressions following the function ap-
plication node in the execution order will be directly dependent on
the application node. These dependencies apply only for functions
that may fail.

4.2 Dependence Graph
In the composed CDG, the edges of the graph denote control
dependencies among the statements and expressions of the involved
functions. This information in itself is insufficient for performing
impact analysis. To reveal real dependencies among the statements
of the program, data-flow and data dependency information is also
required. The data dependency is calculated from the data-flow
graphs of Erlang programs. We define data dependence between
two nodes n1

ddep
; n2 if:

• there is a direct dependency edge between them – n1
dep−→ n2

• n2 is reachable from n1, so the value of n1 can flow to n2 –
n1

1f
; n2

The data dependence relation (
ddep
; ) is transitive:

n1
ddep
; n2, n2

ddep
; n3

n1
ddep
; n3

The composed CDG is extended with the additional data de-
pendencies, thus we obtain the Dependence Graph (DG) and we
can perform program slicing on the DG.

This graph can be extended with some useful information like
behaviour dependencies [19], that provide information how the
behaviour of the function or the entire program is affected, if the
data at some statement is changed. With these additional edges we
make the DG more accurate.

4.3 Example Graphs
The following function implements the factorial function in Erlang.
When the factorial function takes 0 as an argument it returns 1,
otherwise if the value of the parameter is greater than zero it returns
with the product of N and the factorial of N-1.

fact(0) ->
1;

fact(N) when N > 0 ->
N * fact(N-1).

ERROR(form, 1)

RETURN(form, 1)

0

1

YES

N

NO

NO N>0

YES

NO

N

YES

fact

N

1

N-1

fact(N-1)

N*fact(N-1)

funcall

FORM(1)

YES

Figure 1. Control-Flow Graph of the factorial function

Figure 1 shows the Control-Flow Graph of the factorial func-
tion. The evaluation of the function branches on pattern matching
(0 and N) and also on the guard evaluation (N>0). The CFG contains
a

funcall−→ edge according to the function application fact(N-1).
Figure 2 presents the Control Dependence Graph of the facto-

rial function. The dd−→ edges represent direct control dependen-
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Figure 2. Control Dependence Graph of the factorial function

cies among expressions, the
inhdep−→ edges represents the inherited

control dependencies based on the function calls and the
resdep−→

edges denotes the resumption dependencies when the called func-
tion could fail.

Figure 3 introduces the Dependence Graph containing both
the control (black coloured edges) and the data dependencies (red
coloured and dashed edges:

ddep−→). Calculating the affect of a change
on the source code means to traverse this graph following the di-
rected dependence edges without regarding its label. For instance,
the expression 1 control depends on the expression0 and the ex-
pression fact(N-1) data depends on the expression 1, therefore
starting the slicing from the expression 0 results in a slice that con-
tains expression 1, expression fact(N-1), etc.

5. Program Slicing for Test Case Selection
There are some parts of the program that are affected by a trans-
formation of the source code, and there are some that are not.
Let’s consider the following simple example with three statements:
X = 2, Y = 3, Z = X + Y. Replacing the integer 2 in the first
match expression with another value does not affect the second
match expression, but affects the third one, because of the data
dependency among them (represented by the variable X). There-
fore our task is to select a subset of expressions that depend on
the value calculated at some point of interest, what is called static
forward slice of the program.

A forward program slice contains those expressions of the pro-
gram that depends on the slicing criteria. The slicing criteria is an
expression of the program. To calculate the program slice we have

to build the Dependence Graph of the program and gather the ex-
pressions depend on the slicing criteria.

The dependencies (control, data, behaviour, etc) among the ex-
pressions of the observed application are stored in the calculated
Dependency Graph (Section 4). If the expression B depends on the
expression A then there is a directed edge in the DG started from
node A to node B. Thus, to calculate the expressions that depends
on the value of another expression means to traverse the DG in for-
ward direction.

We note here, that traversing the DG in backward direction
results in the backward program slice of the program containing
those expressions that potentially affect the slicing criteria.

For our point of view, the slicing criteria is the set of expres-
sions changed by the performed refactorings. The slicing algorithm
extended with some more steps (we assume that the Semantic Pro-
gram of the program is available, because RefactorErl performs the
refactorings on the SPG of the programs):

• calculate the affected expressions (by a refactoring)
• determine the functions that contains the changed expressions
• calculate the function that are potentially affected by the refac-

toring: perform a transitive closure calculation on the call graph
in both directions (forward and backward) starting from the
changed functions

• build the Data-Flow and Control-Flow Graphs for the poten-
tially affected functions

• build the Control Dependence Graph
• create the compound DG and resolve the dependencies
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Figure 3. Dependence Graph of the factorial function

• calculate data dependencies among the expressions of the com-
pound DG based on the DFG

• traverse the DG in forward direction starting from the set of
changed expressions to collect all of the nodes that are affected
by them. The resulted slice is a non executable slice of the
program.

• analyse the resulted slice to select the test cases to be rechecked 5.1

5.1 Selecting QuickCheck Properties
Since the test cases of Erlang applications are mainly implemented
in Erlang modules (for example in EUnit [7], CommonTest [7],
TestServer [7], QuickCheck [1]) we have to add those test cases to
the Semantic Program Graph of RefactorErl. The analysis calcu-
lates the Dependency Graph based on the content of the SPG, and
the resulted slice will contain the test cases affected by the change
of the source code.

Further analysis could evaluate the resulted test case set. For
instance, an empty set of the cases means that the application was
not fully tested, and we can make suggestions for the type of further
test cases.

Based on the resulted slice we use the following method to se-
lect the affected properties to be rechecked after the transforma-
tion: every property that contains at least one expression from the
resulted program slice must be retested. Therefore we have to de-
termine the functions containing the expressions from the program
slice and then we have to check the body of the function whether
it defines an Erlang QuickCheck property (eqc property). Since
the programmers define the QuickCheck properties using the well-

defined set of eqc macros that are substituted to eqc* function calls,
we can calculate the affected properties based on the call graph of
the preprocessed programs.

Identifying non QuickCheck test cases is also possible, only
some background knowledge is required about the test suit. That
can be a naming convention (prop *, test *, * test) or the exact
set of test cases (name of the test suits, or modules containing the
tests).

6. Related Work
Program slicing (introduced by Mark Weiser [21]) is a well-known
technique in object-oriented area, and program slices are com-
monly used to measure the impact of a change on the source code.
There are different kinds of slicing techniques [16]. The most pop-
ular among them is the dependency graph based program slic-
ing [12]. These kinds of analysis are not really widespread in case
of functional languages, but control flow analysis techniques have
been presented [14] for some functional languages.

In order to perform static analysis on the given set of source
code an intermediate representation for the source code is needed.
This representation should include the expressions, language con-
structs and the relations/dependencies among them. Such represen-
tations are widely used in compiler techniques and source code
analysis, but mainly for imperative and object oriented program-
ming languages. This representation is the Program Dependence
Graph (later PDG), which includes control dependence and data de-
pendence information. As a first step in building the PDG a Control



Flow Graph (later CFG) is needed. By means of the CFG a Post-
dominator tree and the Control Dependence Graph (later CDG) is
built based on the well known techniques used at compilers [13].
Combining the CDG with data dependence information we obtain
the PDG. Our main goal was to develop similar methods for the
functional programming language, Erlang. It was not straightfor-
ward, because of the special language elements and semantics of
the Erlang language. The known techniques for imperative lan-
guages assume a distinguished main procedure that is in relation
with the other procedures or functions of the program. In Erlang,
there can be several functions that frame the interface of the mod-
ule. Thus we select a function or a set of functions that are affected
by the change of the performed refactoring, and start to build the
dependence graph from these functions. In addition, the language
was designed for developing parallel and distributed applications,
thus a detailed analysis is required to build appropriate CFGs.

Reducing the number of test cases is also an interesting topic [9].
For instance, the paper [4] describes a methodology for regression
test case selection for object oriented design using the Unified
Modelling Language. This paper gives a mapping among design
changes and gives a classification of test cases: reusable, retestable
and obsolete. In an other paper [10] the authors presented a method
for data-flow based selection using intraprocedural slicing algo-
rithms.

Our mechanism is built for the functional programming lan-
guage, Erlang, but it could be applicable in case of other strict func-
tional languages. The main task is to build a control and a data-flow
graph. Both require deep knowledge about the syntax and seman-
tics of the selected language.

7. Conclusions and Future Work
After some program transformations are made on the source code
regression testing should be performed. In this paper we have
presented an impact analysis mechanism to select a subset of test
cases that are affected by a change on the source code. Rerunning
an accurately selected test subset could result in the same testing
coverage as a full regression test, but it takes less time than the
complete test.

In this paper we briefly described the used mechanism for im-
pact analysis: dependency graph based program slicing. We de-
scribed how to build Dependence Graph from Erlang programs, and
the necessary intermediate source code representations (Control-
and Data-Flow Graph) to calculate it.

In the future we plan to refine the analysis: adding more Erlang
specific dependency edges to the Dependency Graph, reduce the
size of the resulted slices with more static and maybe also with
dynamic information. We also plan to analyse methods that can
approximate the resulted slice without building the Dependence
Graph, and in this way make the test case selection faster.
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[17] M. Tóth and I. Bozó. Building dependency graph for slicing Erlang
programs. Paper accepted to Periodica Politechnica, 2010.
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