Cost-effective Outbhreak Detection in Networks

Jure Leskovec
Carnegie Mellon University

Christos Faloutsos
Carnegie Mellon University

ABSTRACT

Given a water distribution network, where should we place
sensors to quickly detect contaminants? Or, which blogs
should we read to avoid missing important stories?

These seemingly different problems share common struc-
ture: Outbreak detection can be modeled as selecting nodes
(sensor locations, blogs) in a network, in order to detect the
spreading of a virus or information as quickly as possible.

We present a general methodology for near optimal sensor
placement in these and related problems. We demonstrate
that many realistic outbreak detection objectives (e.g., de-
tection likelihood, population affected) exhibit the prop-
erty of “submodularity”. We exploit submodularity to de-
velop an efficient algorithm that scales to large problems,
achieving near optimal placements, while being 700 times
faster than a simple greedy algorithm. We also derive on-
line bounds on the quality of the placements obtained by
any algorithm. Our algorithms and bounds also handle cases
where nodes (sensor locations, blogs) have different costs.

We evaluate our approach on several large real-world prob-
lems, including a model of a water distribution network from
the EPA, and real blog data. The obtained sensor place-
ments are provably near optimal, providing a constant frac-
tion of the optimal solution. We show that the approach
scales, achieving speedups and savings in storage of several
orders of magnitude. We also show how the approach leads
to deeper insights in both applications, answering multicrite-
ria trade-off, cost-sensitivity and generalization questions.

Categories and Subject Descriptors: F.2.2 Analysis of
Algorithms and Problem Complexity: Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms; Experimentation.

Keywords: Graphs; Information cascades; Virus propaga-
tion; Sensor Placement; Submodular functions.

1. INTRODUCTION

We explore the general problem of detecting outbreaks in
networks, where we are given a network and a dynamic pro-

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

KDD’07, August 12—15, 2007, San Jose, California, USA.

Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

Andreas Krause
Carnegie Mellon University

Jeanne VanBriesen
Carnegie Mellon University

Carlos Guestrin
Carnegie Mellon University

Natalie Glance
Nielsen BuzzMetrics

o ° o, © Cascade 1
OQ{I;})\Q.%O@O o o Cascade 2

(@] 10! \O‘/‘O%f———() ‘/O
° o oo —jor
BIGg 1

Cascade n

T
BI&g 2

Figure 1: Spread of information between blogs.
Each layer shows an information cascade. We want
to pick few blogs that quickly capture most cascades.

cess spreading over this network, and we want to select a set
of nodes to detect the process as effectively as possible.
Many real-world problems can be modeled under this set-
ting. Consider a city water distribution network, delivering
water to households via pipes and junctions. Accidental or
malicious intrusions can cause contaminants to spread over
the network, and we want to select a few locations (pipe
junctions) to install sensors, in order to detect these contam-
inations as quickly as possible. In August 2006, the Battle of
Water Sensor Networks (BWSN) [19] was organized as an in-
ternational challenge to find the best sensor placements for a
real (but anonymized) metropolitan area water distribution
network. As part of this paper, we present the approach we
used in this competition. Typical epidemics scenarios also
fit into this outbreak detection setting: We have a social net-
work of interactions between people, and we want to select a
small set of people to monitor, so that any disease outbreak
can be detected early, when very few people are infected.
In the domain of weblogs (blogs), bloggers publish posts
and use hyper-links to refer to other bloggers’ posts and
content on the web. Each post is time stamped, so we can
observe the spread of information on the “blogosphere”. In
this setting, we want to select a set of blogs to read (or re-
trieve) which are most up to date, i.e., catch (link to) most
of the stories that propagate over the blogosphere. Fig. 1
illustrates this setting. KEach layer plots the propagation
graph (also called information cascade [3]) of the informa-
tion. Circles correspond to blog posts, and all posts at the
same vertical column belong to the same blog. Edges indi-
cate the temporal flow of information: the cascade starts at
some post (e.g., top-left circle of the top layer of Fig. 1) and
then the information propagates recursively by other posts
linking to it. Our goal is to select a small set of blogs (two in
case of Fig. 1) which “catch” as many cascades (stories) as
possible!. A naive, intuitive solution would be to select the

n real-life multiple cascades can be on the same or similar
story, but we still aim to detect as many as possible.

big, well-known blogs. However, these usually have a large

number of posts, and are time-consuming to read. We show,

that, perhaps counterintuitively, a more cost-effective solu-
tion can be obtained, by reading smaller, but higher quality,
blogs, which our algorithm can find.

There are several possible criteria one may want to opti-
mize in outbreak detection. For example, one criterion seeks
to minimize detection time (i.e., to know about a cascade as
soon as possible, or avoid spreading of contaminated water).
Similarly, another criterion seeks to minimize the population
affected by an undetected outbreak (i.e., the number of blogs
referring to the story we just missed, or the population con-
suming the contamination we cannot detect). Optimizing
these objective functions is NP-hard, so for large, real-world
problems, we cannot expect to find the optimal solution.

In this paper, we show, that these and many other realis-
tic outbreak detection objectives are submodular, i.e., they
exhibit a diminishing returns property: Reading a blog (or
placing a sensor) when we have only read a few blogs pro-
vides more new information than reading it after we have
read many blogs (placed many sensors).

We show how we can exploit this submodularity prop-
erty to efficiently obtain solutions which are provably close
to the optimal solution. These guarantees are important in
practice, since selecting nodes is expensive (reading blogs
is time-consuming, sensors have high cost), and we desire
solutions which are not too far from the optimal solution.

The main contributions of this paper are:

e We show that many objective functions for detecting
outbreaks in networks are submodular, including de-
tection time and population affected in the blogosphere
and water distribution monitoring problems. We show
that our approach also generalizes work by [10] on se-
lecting nodes maximizing influence in a social network.
We exploit the submodularity of the objective (e.g.,
detection time) to develop an efficient approximation
algorithm, CELF, which achieves near-optimal place-
ments (guaranteeing at least a constant fraction of the
optimal solution), providing a novel theoretical result
for non-constant node cost functions. CELF is up to
700 times faster than simple greedy algorithm. We
also derive novel online bounds on the quality of the
placements obtained by any algorithm.

e We extensively evaluate our methodology on the ap-
plications introduced above — water quality and blo-
gosphere monitoring. These are large real-world prob-
lems, involving a model of a water distribution network
from the EPA with millions of contamination scenar-
ios, and real blog data with millions of posts.

e We show how the proposed methodology leads to deeper
insights in both applications, including multicriterion,
cost-sensitivity analyses and generalization questions.

2. OUTBREAK DETECTION

2.1 Problem statement

The water distribution and blogosphere monitoring prob-
lems, despite being very different domains, share essential
structure. In both problems, we want to select a subset A of
nodes (sensor locations, blogs) in a graph G = (V,), which
detect outbreaks (spreading of a virus/information) quickly.

Fig. 2 presents an example of such a graph for blog net-
work. Each of the six blogs consists of a set of posts. Con-
nections between posts represent hyper-links, and labels show

i)

B Ponlg | B (o) 5 >
65
1 2
2 P (P

(b B4w5_/8

Figure 2: Blogs have posts, and there are time
stamped links between the posts. The links point
to the sources of information and the cascades grow
(information spreads) in the reverse direction of the
edges. Reading only blog Bs captures all cascades,
but late. Bs also has many posts, so by reading B;
and Bs we detect cascades sooner.

®x
&

)

the time difference between the source and destination post,
e.g., post pa1 linked pi2 one day after p12 was published).
These outbreaks (e.g., information cascades) initiate from
a single node of the network (e.g., pi1,pi2 and ps1), and
spread over the graph, such that the traversal of every edge
(s,t) € € takes a certain amount of time (indicated by the
edge labels). As soon as the event reaches a selected node,
an alarm is triggered, e.g., selecting blog Bgs, would detect
the cascades originating from post pi1, p12 and ps1, after 6,
6 and 2 timesteps after the start of the respective cascades.
Depending on which nodes we select, we achieve a certain
placement score. Fig. 2 illustrates several criteria one may
want to optimize. If we only want to detect as many stories
as possible, then reading just blog Bs is best. However, read-
ing Bi would only miss one cascade (ps1), but would detect
the other cascades immediately. In general, this placement
score (representing, e.g., the fraction of detected cascades,
or the population saved by placing a water quality sensor)
is a set function R, mapping every placement A4 to a real
number R(A) (our reward), which we intend to maximize.
Since sensors are expensive, we also associate a cost ¢(.A)
with every placement A, and require, that this cost does
not exceed a specified budget B which we can spend. For
example, the cost of selecting a blog could be the number of
posts in it (i.e., B has cost 2, while Bg has cost 6). In the
water distribution setting, accessing certain locations in the
network might be more difficult (expensive) than other loca-
tions. Also, we could have several types of sensors to choose
from, which vary in their quality (detection accuracy) and
cost. We associate a nonnegative cost ¢(s) with every sensor
s, and define the cost of placement A: ¢(A) =37, c(s).
Using this notion of reward and cost, our goal is to solve
the optimization problem

j <
r}g}(R(A) subject to ¢(A) < B, (1)
where B is a budget we can spend for selecting the nodes.

2.2 Placement objectives

An event ¢ € Z from set Z of scenarios (e.g., cascades,
contaminant introduction) originates from a node s’ € V of
a network G = (V, £), and spreads through the network, af-
fecting other nodes (e.g., through citations, or flow through
pipes). Eventually, it reaches a monitored node s € A CV
(i.e., blogs we read, pipe junction we instrument with a sen-
sor), and gets detected. Depending on the time of detection
t =T(i,s), and the impact on the network before the detec-
tion (e.g., the size of the cascades missed, or the population
affected by a contaminant), we incur penalty 7;(t). The

penalty function m;(¢) depends on the scenario. We discuss
concrete examples of penalty functions below. Our goal is to
minimize the expected penalty over all possible scenarios i:

m(A) =Y P@i)m(T(i, A)),

where, for a placement A CV, T@,A) = mingeaT(i,s) is
the time until event i is detected by one of the sensors in A,
and P is a (given) probability distribution over the events.
We assume ;(t) to be monotonically nondecreasing in t,
i.e., we never prefer late detection if we can avoid it. We also
set T'(i,0) = oo, and set 7;(c0) to some maximum penalty
incurred for not detecting event i.
Proposed alternative formulation. Instead of minimiz-
ing the penalty 7(A), we can consider the scenario specific
penalty reduction R;(A) = mi(c0) — mi(T(i,.A)), and the ex-
pected penalty reduction

R(A) = Z P(i)Ri(A) = m(0) — 7(A),

describes the expected benefit (reward) we get from placing
the sensors. This alternative formulation has crucial prop-
erties which our method exploits, as described below.

Examples used in our experiments. Even though the
water distribution and blogosphere monitoring problems are
very different, similar placement objective scores make sense
for both applications. The detection time T'(4, s) in the blog
setting is the time difference in days, until blog s partici-
pates in the cascade i, which we extract from the data. In
the water network, T'(i,s) is the time it takes for contam-
inated water to reach node s in scenario i (depending on
outbreak location and time). In both applications we con-
sider the following objective functions (penalty reductions):

(a) Detection likelihood (DL): fraction of information cas-
cades and contamination events detected by the selected
nodes. Here, the penalty is m;(t) = 0, and m;(c0) = 1,
i.e., we do not incur any penalty if we detect the outbreak
in finite time, otherwise we incur penalty 1.

(b) Detection time (DT) measures the time passed from
outbreak till detection by one of the selected nodes. Hence,
mi(t) = min{t, Tinax }, where Tiax is the time horizon we
consider (end of simulation / data set).

(¢) Population affected (PA) by scenario (cascade, out-
break). This criterion has different interpretations for both
applications. In the blog setting, the affected population
measures the number of blogs involved in a cascade before
the detection. Here, 7;(t) is the size of (number of blogs par-
ticipating in) cascade i at time ¢, and 7;(00) is the size of the
cascade at the end of the data set. In the water distribution
application, the affected population is the expected number
of people affected by not (or late) detecting a contamination.

Note, that optimizing each of the objectives can lead to
very different solutions, hence we may want to simultane-
ously optimize all objectives at once. We deal with this
multicriterion optimization problem in Section 2.4.

2.3 Properties of the placement objectives

The penalty reduction function? R(A) has several impor-
tant and intuitive properties: Firstly, R()) = 0, i.e., we
do not reduce the penalty if we do not place any sensors.
Secondly, R is nondecreasing, i.e., R(A) < R(B) for all

2The objective R is similar to one of the examples of
submodular functions described by [17]. Our objective,
however, preserves additional problem structure (sparsity)
which we exploit in our implementation, and which we cru-
cially depend on to solve large problem instances.

A C B C V. Hence, adding sensors can only decrease the
incurred penalty. Thirdly, and most importantly, it satisfies
the following intuitive diminishing returns property: If we
add a sensor to a small placement A, we improve our score
at least as much, as if we add it to a larger placement B O A.
More formally, we can prove that

THEOREM 1. For all placements A C B CV and sensors
s € V\ B, it holds that

R(AU{s}) — R(A) = R(BU {s}) — R(B).

A set function R with this property is called submodular.
We give the proof of Thm. 1 and all other theorems in [15].

Hence, both the blogosphere and water distribution mon-
itoring problems can be reduced to the problem of maxi-
mizing a nondecreasing submodular function, subject to a
constraint on the budget we can spend for selecting nodes.
More generally, any objective function that can be viewed as
an expected penalty reduction is submodular. Submodular-
ity of R will be the key property exploited by our algorithms.

24 Multicriterion optimization

In practical applications, such as the blogosphere and wa-
ter distribution monitoring, we may want to simultaneously
optimize multiple objectives. Then, each placement has a
vector of scores, R(A) = (Ri(A),...,Rm(A)). Here, the
situation can arise that two placements A; and Az are in-
comparable, e.g., Ri1(A1) > Ri(A2), but Ra(A1) < Ra(A2).
So all we can hope for are Pareto-optimal solutions [4]. A
placement A is called Pareto-optimal, if there does not exist
another placement A’ such that R;(A’) > R;(A) for all i,
and R;(A’) > R;(A) for some j (i.e., there is no placement
A’ which is at least as good as A in all objectives R;, and
strictly better in at least one objective R;).

One common approach for finding such Pareto-optimal
solutions is scalarization (c.f., [4]). Here, one picks posi-
tive weights A1 > 0,..., A, > 0, and optimizes the objec-
tive R(A) = >, MiRi(A). Any solution maximizing R(A)
is guaranteed to be Pareto-optimal [4], and by varying the
weights \;, different Pareto-optimal solutions can be ob-
tained. Omne might be concerned that, even if optimizing
the individual objectives R; is easy (i.e., can be approxi-
mated well), optimizing the sum R =) A\;R; might be
hard. However, submodularity is closed under nonnegative
linear combinations and thus the new scalarized objective
is submodular as well, and we can apply the algorithms we
develop in the following section.

3. PROPOSED ALGORITHM

Maximizing submodular functions in general is NP-hard
[11]. A commonly used heuristic in the simpler case, where
every node has equal cost (i.e., unit cost, ¢(s) = 1 for all
locations s) is the greedy algorithm, which starts with the
empty placement Ay = (), and iteratively, in step k, adds
the location s, which maximizes the marginal gain

s = argmax R(Ar_1U{s}) — R(Ax_1). (2)
sEV\AL_1
The algorithm stops, once it has selected B elements. Con-
sidering the hardness of the problem, we might expect the
greedy algorithm to perform arbitrarily badly. However, in
the following we show that this is not the case.

3.1 Boundsfor thealgorithm

Unit cost case. Perhaps surprisingly — in the unit cost
case — the simple greedy algorithm is near-optimal:

THEOREM 2 ([17]). If R is a submodular, nondecreas-
ing set function and R(Q) = 0, then the greedy algorithm
finds a set Aq, such that R(Ag) > (1—1/e) max| 4—p R(A).

Hence, the greedy algorithm is guaranteed to find a solution
which achieves at least a constant fraction (1—1/e) (= 63%)
of the optimal score. The penalty reduction R satisfies all
requirements of Theorem 2, and hence the greedy algorithm
approximately solves the maximization problem Eq. (1).
Non-constant costs. What if the costs of the nodes are
not constant? It is easy to see that the simple greedy algo-
rithm, which iteratively adds sensors using rule from Eq. (2)
until the budget is exhausted, can fail badly, since it is in-
different to the costs (i.e., a very expensive sensor providing
reward r is preferred over a cheaper sensor providing reward
r —e. To avoid this issue, the greedy rule Eq. (2) can be
modified to take costs into account:
Sk = argmax Ar-1U{sh) = R(Akfl), (3)
sEV\AL_1 C(S)

i.e., the greedy algorithm picks the element maximizing the
benefit/cost ratio. The algorithm stops once no element can
be added to the current set A without exceeding the budget.
Unfortunately, this intuitive generalization of the greedy al-
gorithm can perform arbitrarily worse than the optimal so-
lution. Consider the case where we have two locations, s1
and s2, ¢(s1) = € and ¢(s2) = B. Also assume we have only
one scenario 4, and R({s1}) = 2¢, and R({s2}) = B. Now,
R(({s1})—R(0))/c(s1) = 2, and R(({s2})—R(0))/c(s2) = 1.
Hence the greedy algorithm would pick s1. After selecting
s1, we cannot afford s2 anymore, and our total reward would
be . However, the optimal solution would pick s2, achieving
total penalty reduction of B. As e goes to 0, the performance
of the greedy algorithm becomes arbitrarily bad.

However, the greedy algorithm can be improved to achieve
a constant factor approximation. This new algorithm, CEF
(Cost-Effective Forward selection), computes the solution
Accp using the benefit-cost greedy algorithm, using rule (3),
and also computes the solution Aguc using the unit-cost
greedy algorithm (ignoring the costs), using rule (2). For
both rules, CEF only considers elements which do not ex-
ceed the budget B. CEF then returns the solution with
higher score. Even though both solutions can be arbitrarily
bad, the following result shows that there is at least one of
them which is not too far away from optimum, and hence
CEF provides a constant factor approximation.

THEOREM 3. Let R be the a nondecreasing submodular
function with R(Q) = 0. Then

1
max{R(Accg), R(Acue)} > 5(1 —1/e) A,?(lj)ng R(A).

Theorem 3 was proved by [11] for the special case of the
Budgeted MAX-COVER. problem?®, and here we prove this

result for arbitrary nondecreasing submodular functions. The-

orem 3 states that the better solution of Acpc and Acuc
(which is returned by CEF) is at most a constant factor
2(1 —1/e) of the optimal solution.

Note that the running time of CEF is O(B|V|) in the num-
ber of possible locations |V| (if we consider a function eval-
uation R(A) as atomic operation, and the lowest cost of a
node is constant). In [25], it was shown that even in the non-
constant cost case, the approximation guarantee of (1—1/¢)
can be achieved. However, their algorithm is Q(B|V|*) in the
size of possible locations |V| we need to select from, which

3In MAX-COVER, we pick from a collection of sets, such
that the union of the picked sets is as large as possible.

is prohibitive in the applications we consider. In addition,
in our case studies, we show that the solutions of CEF are
provably very close to the optimal score.

3.2 Onlineboundsfor any algorithm

The approximation guarantees of (1—1/e) and 3 (1—1/e)
in the unit- and non-constant cost cases are offline, i.e., we
can state them in advance before running the actual algo-
rithm. We can also use submodularity to acquire tight on-
line bounds on the performance of an arbitrary placement
(not just the one obtained by the CEF algorithm).

THEOREM 4. For a placement A C YV, and each s € V\.Z,
let 6, = R(AU {s}) — R(A). Let ry = ds/c(s), and let
S1,...,Sm be the sequence of locations with rs in decreas-
ing order. Let k be such that C' = Zfz_ll c(si) < B and

SF L e(si) > B. Let \= (B — C)/c(sk). Then

k—1
e R(A) < R(A) + ; S, + A, (4)

Theorem 4 presents a way of computing how far any given
solution A (obtained using CEF or any other algorithm)
is from the optimal solution. This theorem can be readily
turned into an algorithm, as formalized in Algorithm 2.

We empirically show that this bound is much tighter than
the bound (1 — 1/e), which is roughly 31%.

4. SCALING UP THE ALGORITHM
4.1 Speeding up function evaluations

Evaluating the penalty reductions R can be very expen-
sive. E.g., in the water distribution application, we need
to run physical simulations, in order to estimate the effect
of a contamination at a certain node. In the blog networks,
we need to consider several millions of posts, which make up
the cascades. However, in both applications, most outbreaks
are sparse, i.e., affect only a small area of the network (c.f.,
[12, 16]), and hence are only detected by a small number
of nodes. Hence, most nodes s do not reduce the penalty
incurred by an outbreak (i.e., R;({s}) = 0). Note, that
this sparsity is only present if we consider penalty reduc-
tions. If for each sensor s € V and scenario i € 7 we store
the actual penalty m;(s), the resulting representation is not
sparse. Our implementation exploits this sparsity by repre-
senting the penalty function R as an inverted indez®, which
allows fast lookup of the penalty reductions by sensor index
s. By looking up all scenarios detected by all sensors in our
placement A, we can quickly compute the penalty reduction

R(A) = P(i)max R;({s}),
W i detec;d by A v €A =)
without having to scan the entire data set.

The inverted index is the main data structure we use in
our optimization algorithms. After the problem (water dis-
tribution network simulations, blog cascades) has been com-
pressed into this structure, we use the same implementation
for optimizing sensor placements and computing bounds.

In the water distribution network application, exploiting
this sparsity allows us to fit the set of all possible intrusions
considered in the BWSN challenge in main memory (16 GB),
which leads to several orders of magnitude improvements in
the running time, since we can avoid hard-drive accesses.

4The index is inverted, since the data set facilitates the
lookup by scenario index i (since we need to consider cas-
cades, or contamination simulations for each scenario).

Function:LazyForward(G = (V, £),R,c, B, type)

A «— (; foreach s € V do 65 «— +o0;
while 3s € V\ A: ¢(AU {s}) < B do
foreach s € V\ A do cur, — false;
while true do
if type=UC then s* «— argmax 0s;
seV\A,c(AU{s})<B

if type=CB then s* «— argmax s ;
sEV\A,c(AU{s})<B c(s)
if curs then A+ AU s*; break ;
else 0, — R(AU{s})—R(A); curs < true;
return A;

Algorithm:CELF(G = (V,€&),R,c,B)

Avc «—LazyForward(G, R, ¢, B,UC);
Acp «LazyForward(G, R, c, B,CB);
return argmax{R(Avc), R(Acs)}

Algorithm 1: The CELF algorithm.

Algorithm:GetBound(G = (V,€),A,R,c,B)

A—0; B—0; R=R(A):

foreach s € V do 6s — R(AU{s}) — R(A); rs = C‘?;‘);
while 3s € V\ (AUB) : ¢c(AUBU{s}) < B do

5% — argmax Ts;
seV\{AUB},c(AUBU{s})<B
R«— R+ 0s+; B—BU{s"};
" — argmax
SEV\{AUB},c(AUBU{s})<B

return R+ Ads*;

R CON

Algorithm 2: Getting bound R on optimal solution.

4.2 Reducing function evaluations

Even if we can quickly evaluate the score R(A) of any
given placement, we still need to perform a large number
of these evaluations in order to run the greedy algorithm.
If we select k sensors among |V| locations, we roughly need
k|V| function evaluations. We can exploit submodularity
further to require far fewer function evaluations in prac-
tice. Assume we have computed the marginal increments
ds(A) = R(AU{s}) — R(A) (or §s(A)/c(s)) for all s € V\ A.
The key idea is to realize that, as our node selection A grows,
the marginal increments d,/ (and 04 /c(s)) (i.e., the benefits
for adding sensor s’) can never increase: For A C B C V,
it holds that d:(A) > ds(B). So instead of recomputing
§s = 0:(A) for every sensor after adding s’ (and hence re-
quiring |V| — |A| evaluations of R), we perform lazy eval-
uations: Initially, we mark all §s as invalid. When finding
the next location to place a sensor, we go through the nodes
in decreasing order of their d5. If the s for the top node
s is invalid, we recompute it, and insert it into the existing
order of the s (e.g., by using a priority queue). In many
cases, the recomputation of §s will lead to a new value which
is not much smaller, and hence often, the top element will
stay the top element even after recomputation. In this case,
we found a new sensor to add, without having reevaluated
for every location s. The correctness of this lazy procedure
follows directly from submodularity, and leads to far fewer
(expensive) evaluations of R. We call this lazy greedy al-

gorithm® CELF (Cost-Effective Lazy Forward selection). In
our experiments, CELF achieved up to a factor 700 improve-
ment in speed compared to CEF when selecting 100 blogs.
Algorithm 1 provides pseudo-code for CELF.

When computing the online bounds discussed in Section 3.2,
we can use a similar lazy strategy. The only difference is
that, instead of lazily ensuring that the best Js is correctly
computed, we ensure that the top k (where k is as in Eq. (4))
ds improvements have been updated.

5. CASE STUDY 1: BLOG NETWORK
5.1 Experimental setup

In this work we are not explicitly modeling the spread of
information over the network, but rather consider cascades
as input to our algorithms.

Here we are interested in blogs that actively participate in
discussions, we biased the dataset towards the active part
of the blogosphere, and selected a subset from the larger
set of 2.5 million blogs of [7]. We considered all blogs that
received at least 3 in-links in the first 6 months of 2006,
and then took all their posts for the full year 2006. So, the
dataset that we use has 45,000 blogs, 10.5 million posts, and
16.2 million links (30 GB of data). However, only 1 million
links point inside the set of 45,000 blogs.

Posts have rich metadata, including time stamps, which
allows us to extract information cascades, i.e., subgraphs
induced by directed edges representing the temporal flow
of information. We adopt the following definition of a cas-
cade [16]: every cascade has a single starting post, and other
posts recursively join by linking to posts within the cascade,
whereby the links obey time order. We detect cascades by
first identifying starting post and then following in-links.
We discover 346,209 non-trivial cascades having at least 2
nodes. Since the cascade size distribution is heavy-tailed,
we further limit our analysis to only cascades that had at
least 10 nodes. The final dataset has 17,589 cascades, where
each blog participates in 9.4 different cascades on average.

5.2 Objective functions

We use the penalty reduction objectives DL, DT and PA
as introduced in Section 2.2. We normalize the scores of
the solution to be between 0 and 1. For the DL (detection
likelihood) criterion, the quality of the solution is the frac-
tion of all detected cascades (regardless of when we detect
it). The PA (population affected) criterion measures what
fraction of the population included in the cascade after we
detect it, i.e., if we would be reading all the blogs initiating
the cascades, then the quality of the solution is 1. In PA our
reward depends on which fraction of the cascades we detect,
and big cascades count more than small cascades.

5.3 Solution quality

First, we evaluate the performance of CELF, and estimate
how far from optimal the solution could be. Note, that ob-
taining the optimal solution would require enumeration of
245:000 syhsets. Since this is impractical, we compare our al-
gorithm to the bounds we developed in Section 3. Fig. 3(a)
shows scores for increasing budgets when optimized the PA
(population affected) criterion. As we select more blogs to
read, the proportion of cascades we catch increases (bottom
line). We also plot the two bounds. The off-line bound

5[22] suggested a similar algorithm for the unit cost case.

T T
Offline bound

0.8 DT *
Online
bound

0.4 PA —

Penalty reduction

CELF
solution 02 b

Reduction in population affected

I I I I I I I I
20 80 100 20 80 100

40 60 40 60
Number of blogs Number of blogs

(a) Performance of CELF
Figure 3: (a) Performance of CELF algorithm and

off-line and on-line bounds for PA objective func-
tion. (b) Compares objective functions.

(b) Objective functions

(Section 3.1) shows that the unknown optimal solution lies
between our solution (bottom line) and the bound (top line).
Notice the discrepancy between the lines is big, which means
the bound is very loose. On the other hand, the middle line
shows the online bound (Section 3.2), which again tells us
that the optimal solution is somewhere between our current
solution and the bound. Notice, the gap is much smaller.
This means (a) that the our on-line bound is much tighter
than the traditional off-line bound. And, (b) that our CELF
algorithm performs very close to the optimum.

In contrast to the off-line bound, the on-line bound is al-
gorithm independent, and thus can be computed regardless
of the algorithm used to obtain the solution. Since it is
tighter, it gives a much better worst case estimate of the
solution quality. For this particular experiment, we see that
CELF works very well: after selecting 100 blogs, we are at
most 13.8% away from the optimal solution.

Figure 3(b) shows the performance using various objective
functions (from top to bottom: DL, DT, PA). DL increases
the fastest, which means that one only needs to read a few
blogs to detect most of the cascades, or equivalently that
most cascades hit one of the big blogs. However, the pop-
ulation affected (PA) increases much slower, which means
that one needs many more blogs to know about stories be-
fore the rest of population does. By using the on-line bound
we also calculated that all objective functions are at most
5% to 15% from optimal.

54 Cost of ablog

The results presented so far assume that every blog has
the same cost. Under this unit cost model, the algorithm
tends to pick large, influential blogs, that have many posts.
For example, instapundit.com is the best blog when opti-
mizing PA, but it has 4,593 posts. Interestingly, most of the
blogs among the top 10 are politics blogs: instapundit.
com, michellemalkin.com, blogometer.nationaljournal.
com, and sciencepolitics.blogspot.com. Some popular
aggregators of interesting things and trends on the blogo-
sphere are also selected: boingboing.net, themodulator.
org and bloggersblog.com. The top 10 PA blogs had more
than 21,000 thousand posts in 2006. They account for 0.2%
of all posts, 3.5% of all in-links, 1.7% of out-links inside the
dataset, and 0.37% of all out-links.

Under the unit cost model, large blogs are important, but
reading a blog with many posts is time consuming. This
motivates the number of posts (NP) cost model, where we
set the cost of a blog to the number of posts it had in 2006.

First, we compare the NP cost model with the unit cost in
Fig. 4(a). The top curve shows the value of the PA criterion
for budgets of B posts, i.e., we optimize PA such that the

o
o

Op&im‘izing
benefit/cost ratio

250

o
o

200 Score R=0.4
R=03

Number of blogs
=
@
3

Ignoring cost
in optimization

Reduction in population affected
o I
N kS

1 2 3 4 5
Cost (number of posts) x10* 0 5000 10000 15000

Number of posts
(a) Cost of a blog (b) Cost tradeoff

Figure 4: (a) Comparison of the unit and the num-
ber of posts cost models. (b) For fixed value of PA
R, we get multiple solutions varying in costs.

4
@

T
CELF

o
@
T
I

Blog out-links

o
Y

Blog
Out-links 7

In-links

o
=
T

All
Out-links
All outlinks

o
N
T

o
N

In-Links o

o
[

Reduction in population affected
)
S

Posts

Reduction in population affected
)
w
T

80 100 0 1000 2000 3000 4000 5000
Number of posts

0 20

40 60
Number of blogs

(a) Unit cost (b) Number of posts cost

Figure 5: Heuristic blog selection methods. (a) unit
cost model, (b) number of posts cost model.

selected blogs can have at most B posts total. Note, that
under the unit cost model, CELF chooses expensive blogs
with many posts. For example, to obtain the same PA ob-
jective value, one needs to read 10,710 posts under unit cost
model. The NP cost model achieves the same score while
reading just 1,500 posts. Thus, optimizing the benefit cost
ratio (PA/cost) leads to drastically improved performance.

Interestingly, the solutions obtained under the NP cost
model are very different from the unit cost model. Under
NP, political blogs are not chosen anymore, but rather sum-
marizers (e.g., themodulator.org, watcherofweasels.com,
anglican.tk) are important. Blogs selected under NP cost
appear about 3 days later in the cascade as those selected
under unit cost, which further suggests that that summa-
rizer blogs tend to be chosen under NP model.

In practice, the cost of reading a blog is not simply propor-
tional to the number of posts, since we also need to navigate
to the blog (which takes constant effort per blog). Hence, a
combination of unit and NP cost is more realistic. Fig. 4(b)
interpolates between these two cost models. Each curve
shows the solutions with the same value R of the PA ob-
jective, but using a different number of posts (x-axis) and
blogs (y-axis) each. For a given R, the ideal spot is the one
closest to origin, which means that we want to read the least
number of posts from least blogs to obtain desired score R.
Only at the end points does CELF tend to pick extreme so-
lutions: few blogs with many posts, or many blogs with few
posts. Note, there is a clear knee on plots of Fig. 4(b), which
means that by only slightly increasing the number of blogs
we allow ourselves to read, the number of posts needed de-
creases drastically, while still maintaining the same value R
of the objective function.

5.5 Comparison to heuristic blog selection
Next, we compare our method with several intuitive heuris-

tic selection techniques. For example, instead of optimizing

the DT, DL or PA objective function using CELF, we may

1)
IS
IS
S
S}

Exhaustive search

Split (All subsets) s

o
w
T
I
W
S
IS}
T

Naive a ’
greedy b
»

N

o

S}
T

No split h =
i »

1001 | . CELF, A

. CELF +Bounds

o
o
T
I

Running time (seconds)

A
A
o
—y
¥
2

Reduction in population affected
o
N
T
I

I I I I hd hd -
200 400 600 800 1000

Cost (number of posts)

4 6 8 10
Number of blogs selected

(a) Split vs. no split (b) Run time
Figure 6: (a) Improvement in performance by split-
ting big blogs into multiple nodes. (b) Run times of

exhaustive search, greedy and CELF algorithm.

just want to select the most popular blogs and hope to de-
tect many cascades. We considered several such heuristics,
where we order blogs by some “goodness” criteria, and then
pick top blogs (until the budget is exhausted). We consider
the following criteria: the number posts on the blog, the
cumulative number of out-links of blog’s posts, the number
of in-links the blog received from other blogs in the dataset,
and the number of out-links to other blogs in the dataset.

As Fig. 5(a) shows, the CELF algorithm greatly outper-
forms all the heuristic selection techniques. More interest-
ingly, the best heuristics (doing 45% worse than CELF) pick
blogs by the number of in- or out-links from/to other blogs
in the dataset. Number of posts, the total number of out-
links and random blog selection do not perform well.

Number of in-links is the indicator of a blog’s tendency to
create cascades, while number of out-links (to other blogs)
indicates blog’s tendency to summarize the blogosphere. We
also note, that the surprisingly good performance of the
number of out-links to blogs in the dataset is an artefact
of our “closed-world” dataset, and in real-life we can not
estimate this. The results also agree well with our intuition
that the number of in-links is a good heuristic, since it di-
rectly indicates the of propagation of information.

Fig. 5(b) explores the same setting under the NP cost
model. Here, given a budget of B posts, we select a set of
blogs to optimize PA objective. For the heuristics, we select
a set of blogs to optimize chosen heuristic, e.g., the total
number of in-links of selected blogs while still fitting inside
the budget of B posts. Again, CELF outperforms the next
best heuristics by 41%, and again the number of in- and
out-links are the best heuristics.

These results show that simple heuristics that one could
use to identify blogs to read do not really work well. There
are good summarizer blogs that may not be very popular,
but which, by using few posts, catch most of the important
stories propagating over the blogosphere.

5.6 Fractionally selecting blogs

Our framework also allows fractional selection of blogs,
which means that instead of reading a large blog every day,
we can read it, e.g., only one day per week. This also allows
us to ask: what is the best day of the week to read blogs?

In order to study whether fractional selection allows to
achieve better benefit cost ratio, we split the blogs which
had at least one post per day into 7 blogs, one for each day
of the week. Fig. 6(a) shows, that by splitting big blogs,
the population affected (PA) objective function increases for
12% over the setting where only whole blogs can be selected.

Returning to the original question, we performed the fol-
lowing experiment: given a budget of 1000 posts, what is
the best day of the week to read posts (optimizing PA)? We

o
N
o
N

Optimizing on future,
Result on future

o
e
5}

T
o
e
5}

T

I

Optimizing on future,
Result on future

Optimizing on historic.]
Result on future

o

o

5}
T

o

o

5}
T

Optimizing on historic,
) Resu‘ll on Iulu‘re

I 1
200 400 600 800 1000 200 400 600 800 1000
Cost Cost

Reduction in population affected
o
[
T

Reduction in population affected
o
[
T

(a) All blogs (b) Only big blogs
Figure 7: Generalization to future data when CELF
can select any blog (a), or only big blogs (b).

found that Friday is the best day to read blogs. The value of
PA for Friday is 0.20, while it is 0.13 for the rest of the week.
We consider this surprising, since the activity of the blogo-
sphere (number of posts and links created) drops towards
the end of the week, and especially over the weekend [16].

5.7 Generalization to future data

Since the influence and popularity of the blogs also evolves
over time we also want to know how well the selected blogs
will detect cascades in the future. To evaluate the general-
ization to unknown future, we use the first 6 months of the
dataset as historic data to select a set of blogs, and then use
second 6 months of the dataset to evaluate the performance
of selected blogs on unseen future cascades.

Fig. 7 compares the performance on the unknown future
data. Top dashed curve in both plots shows the optimal per-
formance on future data, i.e., we select the blogs directly us-
ing the (unknown) future data. The bottom curve presents
the realistic case where we select the blogs using historic
data and evaluate using hidden future data.

As Fig. 7(a) shows, CELF overfits when evaluated on the
future data, i.e., it selects small blogs with very few posts
that just by chance participate in cascades, and then these
blogs do not generalize well for the second half of the year.
One way to overcome this overfitting is to prevent CELF from
picking very small blogs. To understand this restriction we
show in Fig. 7(b) the performance when CELF can only select
blogs with at least one post per day (365 posts per year).

Comparing Fig. 7(a) and Fig. 7(b) we see that the opti-
mal performance (top curve) drops if CELF is limited on only
picking big blogs. This is expected since CELF has less choice
of which blogs to pick, and thus performs worse. However,
when limiting the selection to only big blogs (Fig. 7(b)) the
gap between the curves is very small (compared to the big
gap of Fig. 7(a)). Moreover, the performance on the future
data does not drop, and the method generalizes well.

5.8 Scalability

Figure 4(b) plots the running time of selecting k blogs. We
see that exhaustively enumerating all possible subsets of k
elements is infeasible (the line jumps out of the plot for k =
3). The simple greedy algorithm scales as Q(k|V|), since for
every increment of k£ we need to consider selecting all remain-
ing |V| — k blogs. The bottom line overlapping the x-axis
of Fig. 4(b) shows the performance of our CELF algorithm.
For example, for selecting 100 blogs, greedy algorithm runs
4.5h, while CELF takes 23 seconds (700 times faster). Calcu-
lation of the on-line bounds while running CELF takes 54s.

Exploiting the sparsity of the problem (c.f., Section 4) al-
lowed us to reduce the size of the inverted index from orig-
inally 3.5 GB to 50 MB, easily fitting it in main memory.

6. CASE STUDY 2: WATER NETWORKS
6.1 Experimental setup

In the water distribution system application, we used the
data and rules introduced by the Battle of Water Sensor
Networks (BWSN) challenge [19]. We considered both the
small network on 129 nodes (BWSN1), and a large, real-
istic, 12,527 node distribution network (BWSN2) provided
as part of the BWSN challenge. In addition we also con-
sider a third water distribution network (NW3) of a large
metropolitan area in the United States. The network (not
including the household level) contains 21,000 nodes and
25,000 pipes (edges). To our knowledge, this is the largest
water distribution network considered for sensor placement
optimization so far. The networks consist of a static descrip-
tion (junctions and pipes) and dynamic parameters (time-
varying water consumption demand patterns at different
nodes, opening and closing of valves, pumps, tanks, etc.)

6.2 Objectivefunctions

In the BWSN challenge, we want to select a set of 20 sen-
sors, simultaneously optimizing the objective functions DT,
PA and DL, as introduced in Section 2.2. To obtain cas-
cades we use a realistic disease model defined by [19], which
depends on the demands and the contaminant concentration
at each node. In order to evaluate these objectives, we use
the EPANET simulator [24], which is based on a physical
model to provide realistic predictions on the detection time
and concentration of contaminant for any possible contam-
ination event. We consider simulations of 48 hours length,
with 5 minute simulation timesteps. Contaminations can
happen at any node and any time within the first 24 hours,
and spread through the network according to the EPANET
simulation. The time of the outbreak is important, since wa-
ter consumption varies over the day and the contamination
spreads at different rates depending on the time of the day.
Altogether, we consider a set of 3.6 million possible con-
tamination scenarios and each of these is associated with a
“cascade” of contaminant spreading over the network.

6.3 Solution quality

We first used CELF to optimize placements of increasing
size, according to the three criteria DL, DT, PA. We again
normalized the scores to be between 0 and 1, where 1 is the
best achievable score when placing sensors at every node.

Fig. 8 (a) presents the CELF score, the off-line and on-line
bounds for PA objective on the BWSN2 network. Consis-
tently with the blog experiments, the on-line bound is much
tighter than the off-line bound, and the solutions obtained
by our CELF algorithm are very close to the optimum.

Fig. 8 (b) shows CELF’s performance on all 3 objective
functions. Similarly to the blog data, the population af-
fected (PA) score increases very quickly. The reason is that
most contamination events only impact a small fraction of
the network. Using few sensors, it is relatively easy to de-
tect most of the high impact outbreaks. However, if we want
to detect all scenarios, we need to place a large number of
sensors (2,263 in our experiment). Hence, the DL (and cor-
respondingly DT) increase more slowly than PA.

Fig. 9 shows two 20 sensor placements after optimizing DL
and PA respectively on BWSN2. When optimizing the pop-
ulation affected (PA), the placed sensors are concentrated in
the dense high-population areas, since the goal is to detect
outbreaks which affect the population the most. When op-

=
i
[N

offline boun

=

online bound

S
. o
@

o
@
o
o
=}
=1

o

Y
o
>

Penalty reduction

CELF
solution

S

o o
N
o
N
9
B

Reduction of population affected

20 0 10 20 30 40 50
Number of sensors selected

(b) Objective functions

5 10
Number of sensors selected

(a) Performance of CELF

Figure 8: (a) CELF with offline and online bounds
for PA objective. (b) Different objective functions.

(a) PA

(b) DL

Figure 9: Water network sensor placements: (a)
when optimizing PA, sensors are concentrated in
high population areas. (b) when optimizing DL, sen-
sors are uniformly spread out.

timizing the detection likelihood, the sensors are uniformly
spread out over the network. Intuitively this makes sense,
since according to BWSN challenge [19], outbreaks happen
with same probability at every node. So, for DL, the placed
sensors should be as close to all nodes as possible.

We also compared the scores achieved by CELF with sev-
eral heuristic sensor placement techniques, where we order
the nodes by some “goodness” criteria, and then pick the top
nodes. We consider the following criteria: population at the
node, water flow through the node, and the diameter and the
number of pipes at the node. Fig. 11(a) shows the results for
the PA objective function. CELF outperforms best heuristic
by 45%. Best heuristics are placing nodes at random, by de-
gree or their population. We see heuristics perform poorly,
since nodes which are close in the graph tend to have similar
flow, diameter and population, and hence the sensors will be
spread out too little. Even the maximum over one hundred
random trials performs far worse than CELF [15].

6.4 Multicriterion optimization

Using the theory developed in Section 2.4, we traded-off
different objectives for the water distribution application.
We selected pairs of objectives, e.g., DL and PA, and varied
the weights A to produce (approximately) Pareto-optimal
solutions. In Fig. 10 (a) we plot the tradeoff curves for
different placement sizes k. By adding more sensors, both
objectives DL and PA increase. The crves also show, that
if we, e.g., optimize for DL, the PA score can be very low.
However, there are points which achieve near-optimal scores
in both criteria (the knee in the curve). This sweet spot is
what we aim for in multi-criteria optimization.

We also traded off the affected population PA and a fourth
criterion defined by BWSN, the expected consumption of
contaminated water. Fig. 10 (b) shows the trade-off curve for
this experiment. Notice that the curves (almost) collapse to
points, indicating that these criteria are highly correlated,
which we expect for this pair of objective functions. Again,

N
N

k=50 < k=20—>8 '\
~09 k=3 £ k=50
& k=21 209 k=35
08 e s
B o k=10
go7 k=5 § 0.8 j\
- k=5

506 kf Bor
Zos £ N
s k=2 Eos k=3
Soar WX 5 k2

\ S o5

01 o 05 - 1

.2 0.3 0.4 4 0.6 0.8
Detection likelihood (DL) Population affected (PA)

(a) (b)

Figure 10: (a) Trading off PA and DL. (b) Trading
off PA and consumed contaminated water.

0.8
E 2 300- A
E 5 H Exhaustive search v
506 Degree Random é 1.~ (Allsubsets) T
s H s
% ;/ 200r H Naive e N
204 B £ ' greedy?""
2 =
< Diameter ' . CELF,
5 2100/ ¥ CELF +Bounds |
S = | .
502 c
] c
3 =1
4 "4

I

15 20 6 8
Number of sensors selected

(b) Runtime

Figure 11: (a) Solutions of CELF outperform heuris-
tic approaches. (b) Running time of exhaustive
search, greedy and CELF.

10
Number of sensors

(a) Comparison with random

the efficiency of our implementation allows to quickly gen-
erate and explore these trade-off curves, while maintaining
strong guarantees about near-optimality of the results.

6.5 Scalability

In the water distribution setting, we need to simulate 3.6
million contamination scenarios, each of which takes approx-
imately 7 seconds and produces 14KB of data. Since most of
the computer cluster scheduling systems break if one would
submit 3.6 million jobs into the queue, we developed a dis-
tributed architecture, where the clients obtain simulation
parameters and then confirm the successful completion of
the simulation. We run the simulation for a month on a
cluster of around 40 machines. This produced 152GB of
outbreak simulation data. By exploiting the properties of
the problem described in Section 4, the size of the inverted
index (which represents the relevant information for evalu-
ating placement scores) is reduced to 16 GB which we were
able to fit into main memory of a server. The fact that
we could fit the data into main memory alone sped up the
algorithms by at least a factor of 1000.

Fig. 11 (b) presents the running times of CELF, the naive
greedy algorithm and exhaustive search (extrapolated). We
can see that the CELF is 10 times faster than the greedy al-
gorithm when placing 10 sensors. Again, a drastic speedup.

7. DISCUSSION AND RELATED WORK

7.1 Relationship to I nfluence M aximization

In [10], a Triggering Model was introduced for modeling
the spread of influence in a social network. As the authors
show, this model generalizes the Independent Cascade, Lin-
ear Threshold and Listen-once models commonly used for
modeling the spread of influence. Essentially, this model de-
scribes a probability distribution over directed graphs, and
the influence is defined as the expected number of nodes
reachable from a set of nodes, with respect to this distri-

bution. Kempe et al. showed that the problem of selecting
a set of nodes with maximum influence is submodular, sat-
isfying the conditions of Theorem 2, and hence the greedy
algorithm provides a (1 —1/e) approximation. The problem
addressed in this paper generalizes this Triggering model:

THEOREM 5. The Triggering Model [10] is a special case
of our network outbreak detection problem.

In order to prove Theorem 5, we consider fixed directed
graphs sampled from the Triggering distribution. If we re-
vert the arcs in any such graph, then our PA objective cor-
responds exactly to the influence function of [10] applied to
the original graph. Details of the proof can be found in [15].

Theorem 5 shows that spreading influence under the gen-
eral Triggering Model is a special case of our outbreak de-
tection formalism. The problems are fundamentally related
since, when spreading influence, one tries to affect as many
nodes as possible, while when detecting outbreak, one wants
to minimize the effect of an outbreak in the network. Sec-
ondly, note that in the example of reading blogs, it is not
necessarily a good strategy to affect nodes which are very in-
fluential, as these tend to have many posts, and hence are ex-
pensive to read. In contrast to influence maximization, the
notion of cost-benefit analysis is crucial to our applications.

7.2 Reated work

Optimizing submodular functions. The fundamental
result about the greedy algorithm for maximizing submod-
ular functions in the unit-cost case goes back to [17]. The
first approximation results about maximizing submodular
functions in the non-constant cost case were proved by [25].
They developed an algorithm with approximation guarantee
of (1 —1/e), which however requires a number of function
evaluations Q(B|V|*) in the size of the ground set V (if the
lowest cost is constant). In contrast, the number of evalu-
ations required by CELF is O(B|V)|), while still providing a
constant factor approximation guarantee.

Virus propagation and outbreak detection. Work on
spread of diseases in networks and immunization mostly fo-
cuses on determining the value of the epidemic threshold [1],
a critical value of the virus transmission probability above
which the virus creates an epidemic. Several strategies for
immunization have also been proposed: uniform node immu-
nization, targeted immunization of high degree nodes [20]
and acquaintance immunization, which focuses on highly
connected nodes [5].In the context of our work, uniform im-
munization corresponds to randomly placing sensors in the
network. Similarly, targeted immunization corresponds to
selecting nodes based on their in- or out-degree. As we have
seen in Figures 5 and 11, both strategies perform worse than
direct optimization of the population affected criterion.
Information cascades and blog networks. Cascades
have been studied for many years by sociologists concerned
with the diffusion of innovation [23]; more recently, cas-
cades we used for studying viral marketing [8, 14], selecting
trendsetters in social networks [21], and explaining trends
in blogspace [9, 13]. Studies of blogspace either spend effort
mining topics from posts [9] or consider only the properties
of blogspace as a graph of unlabeled URLs [13]. Recently,
[16] studied the properties and models of information cas-
cades in blogs. While previous work either focused on em-
pirical analyses of information propagation and/or provided
models for it, we develop a general methodology for node
selection in networks while optimizing a given criterion.

Water distribution network monitoring. A number of
approaches have been proposed for optimizing water sensor
networks (c.f., [2] for an overview of the literature). Most of
these approaches are only applicable to small networks up
to approximately 500 nodes. Many approaches are based on
heuristics (such as genetic algorithms [18], cross-entropy se-
lection [6], etc.) that cannot provide provable performance
guarantees about the solutions. Closest to ours is an ap-
proach by [2], who equate the placement problem with a p-
median problem, and make use of a large toolset of existing
algorithms for this problem. The problem instances solved
by [2] are a factor 72 smaller than the instances considered
in this paper. In order to obtain bounds for the quality of
the generated placements, the approach in [2] needs to solve
a complex (NP-hard) mixed-integer program. Our approach
is the first algorithm for the water network placement prob-
lem, which is guaranteed to provide solutions that achieve at
least a constant fraction of the optimal solution within poly-
nomial time. Additionally, it handles orders of magnitude
larger problems than previously considered.

8. CONCLUSIONS

In this paper, we presented a novel methodology for select-
ing nodes to detect outbreaks of dynamic processes spread-
ing over a graph. We showed that many important objec-
tive functions, such as detection time, likelihood and affected
population are submodular. We then developed the CELF al-
gorithm, which exploits submodularity to find near-optimal
node selections — the obtained solutions are guaranteed to
achieve at least a fraction of (1 — 1/e) of the optimal solu-
tion, even in the more complex case where every node can
have an arbitrary cost. Our CELF algorithm is up to 700
times faster than standard greedy algorithm. We also de-
veloped novel online bounds on the quality of the solution
obtained by any algorithm. We used these bounds to prove
that the solutions we obtained in our experiments achieve
90% of the optimal score (which is intractable to compute).

We extensively evaluated our methodology on two large
real-world problems: (a) detection of contaminations in the
largest water distribution network considered so far, and (b)
selection of informative blogs in a network of more than 10
million posts. We showed that the proposed CELF algorithm
greatly outperforms intuitive heuristics. We also demon-
strated that our methodology can be used to study complex
application-specific questions such as multicriteria tradeoff,
cost-sensitivity analyses and generalization behavior. In ad-
dition to demonstrating the effectiveness of our method, we
obtained some counterintuitive results about the problem
domains, such as the fact that the popular blogs might not
be the most effective way to catch information.

We are convinced that the methodology introduced in this
paper can apply to many other applications, such as com-
puter network security, immunization and viral marketing.

Acknowledgements. This material is based upon work
supported by the National Science Foundation under Grants
No. CNS-0509383, SENSOR-0329549, 1IS-0534205. This
work is also supported in part by the Pennsylvania Infras-
tructure Technology Alliance (PITA), with additional fund-
ing from Intel, NTT, and by a generous gift from Hewlett-
Packard. Jure Leskovec and Andreas Krause were supported
in part by Microsoft Research Graduate Fellowship. Carlos
Guestrin was supported in part by an IBM Faculty Fellow-
ship, and an Alfred P. Sloan Fellowship.

9. REFERENCES

[1] N. Bailey. The Mathematical Theory of Infectious
Diseases and its Applications. Griffin, London, 1975.

[2] J. Berry, W. E. Hart, C. E. Phillips, J. G. Uber, and
J. Watson. Sensor placement in municipal water
networks with temporal integer programming models.
J. Water Resources Planning and Management, 2006.

[3] S. Bikhchandani, D. Hirshleifer, and I. Welch. A
theory of fads, fashion, custom, and cultural change as
informational cascades. J. of Polit. Econ., (5), 1992.

[4] S. Boyd and L. Vandenberghe. Conver Optimization.
Cambridge UP, March 2004.

[5] R. Cohen, S. Havlin, and D. ben Avraham. Efficient
immunization strategies for computer networks and
populations. Physical Review Letters, 91:247901, 2003.

[6] G. Dorini, P. Jonkergouw, and et.al. An efficient
algorithm for sensor placement in water distribution
systems. In Wat. Dist. Syst. An. Conf., 2006.

[7] N. S. Glance, M. Hurst, K. Nigam, M. Siegler,

R. Stockton, and T. Tomokiyo. Deriving marketing
intelligence from online discussion. In KDD, 2005.

[8] J. Goldenberg, B. Libai, and E. Muller. Talk of the
network: A complex systems look at the underlying
process of word-of-mouth. Marketing Letters, 12, 2001.

[9] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins.
Information diffusion through blogspace. WWW ’04.

[10] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
KDD, 2003.

[11] S. Khuller, A. Moss, and J. Naor. The budgeted
maximum coverage problem. Inf. Proc. Let., 1999.

[12] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen,
and C. Faloutsos. Efficient sensor placement
optimization for securing large water distribution
networks. Submitted to the J. of Water Resources
Planning an Management, 2007.

[13] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins.
On the bursty evolution of blogspace. In WWW, 2003.

[14] J. Leskovec, L. A. Adamic, and B. A. Huberman. The
dynamics of viral marketing. In ACM EC, 2006.

[15] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,

J. VanBriesen, and N. Glance. Cost-effective Outbreak
Detection in Networks. TR, CMU-ML-07-111, 2007.

[16] J. Leskovec, M. McGlohon, C. Faloutsos, N. S.
Glance, and M. Hurst. Cascading behavior in large
blog graphs. In SDM, 2007.

[17] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis
of the approximations for maximizing submodular set
functions. Mathematical Programming, 14, 1978.

[18] A. Ostfeld and E. Salomons. Optimal layout of early
warning detection stations for water distribution
systems security. J. Water Resources Planning and
Management, 130(5):377-385, 2004.

[19] A. Ostfeld, J. G. Uber, and E. Salomons. Battle of
water sensor networks: A design challenge for
engineers and algorithms. In WDSA, 2006.

[20] R. Pastor-Satorras and A. Vespignani. Immunization
of complex networks. Physical Review E, 65, 2002.

[21] M. Richardson and P. Domingos. Mining
knowledge-sharing sites for viral marketing. KDD ’02.

[22] T. G. Robertazzi and S. C. Schwartz. An accelerated
sequential algorithm for producing D-optimal designs.
SIAM J. Sci. Stat. Comp., 10(2):341-358, 1989.

[23] E. Rogers. Diffusion of innovations. Free Press, 1995.

[24] L. A. Rossman. The epanet programmer’s toolkit for
analysis of water distribution systems. In
Ann. Wat. Res. Plan. Mgmt. Conference, 1999.

[25] M. Sviridenko. A note on maximizing a submodular
set function subject to knapsack constraint.
Operations Research Letters, 32:41-43, 2004.

