Комплексные поверхности 8: диффеоморфность К3

Задача 8.1. Пусть M – K3, а $\mathfrak{R}_k \subset H^2(M,\mathbb{Z})$ – множество всех векторов v таких, что (v,v)=k, четно. Докажите, что множество предельных точек $\mathbb{P}\mathfrak{R}_k$ есть световой конус Null(M) (множество всех векторов с квадратом 0).

Задача 8.2 (*). Докажите, что группа $O(H^2(M,\mathbb{Z}))$ автоморфизмов решетки когомологий K3 действует транзитивно на множестве \mathfrak{R}_k , для кажлого k.

Задача 8.3 (*). Докажите, что группа $O(H^2(M,\mathbb{Z}))$ порождена инволюциями.

Задача 8.4. Пусть M – K3. Докажите, что M проективна тогда и только тогда, когда в $H^{1,1}(M,\mathbb{Z})$ найдется класс, квадрат которого положителен.

Задача 8.5. Пусть M есть K3, а L – обильное расслоение, которое порождает Pic(M). Предположим, что (L,L)=6. Докажите, что общее сечение L гладко, а L глобально порождено.

Задача 8.6. Пусть M есть K3, а $\phi: M \longrightarrow C$ – сюрьективное, голоморфное отображение на кривую. Докажите, что C есть $\mathbb{C}P^1$.

Задача 8.7. В условиях предыдущей задачи, докажите, что общий слой ϕ есть эллиптическая кривая.

Задача 8.8. Пусть L — обильное расслоение на K3, которое порождает Pic(M). Докажите, что $L \otimes L$ глобально порождено.