Комплексные поверхности 3: гиперкэлеровы структуры и K3 поверхности

Задача 3.1. Пусть $L \in H^{1,1}(M,\mathbb{Z})$ – класс когомологий на K3-поверхности, причем $L^2 \geqslant -2$. Докажите, что либо L, либо -L можно представить голоморфной кривой.

Задача 3.2. Пусть $L \in H^{1,1}(M,\mathbb{Z})$ – класс когомологий на K3-поверхности M, причем $L^2=-2$. Докажите, что L представляется кривой, одна из компонент которой рациональна.

Задача 3.3. Пусть M – голоморфно симплектическая кэлерова поверхнисть, причем $b_1(M) \neq 0$. Докажите, что M это компактный тор.

Задача 3.4. Пусть на многообразии M заданы две симплектические формы ω_1, ω_2 , причем $\omega_1^2 = \omega_2^2$, а $\omega_1 \wedge \omega_2 = 0$. Докажите, что M – комплексное, голоморфно симплектическое многообразие, а $\dim_{\mathbb{C}} M = 2$.

Задача 3.5. Пусть ϕ – автоморфизм K3-поверхности, сохраняющий симплектическую структуру и кэлеров класс. Докажите, что ϕ – автоморфизм конечного порядка.

Определение 3.1. Решетка есть конечно-порожденный \mathbb{Z} -модуль без кручения. **Билинейная форма** на решетке есть билинейное симметричное отображение $L \otimes_{\mathbb{Z}} L \longrightarrow Z$

Задача 3.6. Пусть L – решетка с невырожденной неопределенной билинейной симметричной формой q (не обязательно унимодулярной). Докажите, что группа O(L,q) бесконечна.

Задача 3.7. Пусть L – решетка с неопределенной унимодулярной билинейной симметричной формой q, которая нечетна. Докажите, что q диагонализуется в каком-то базисе.

Задача 3.8 (*). Докажите аналогичную классификационную теорему для четных форм: в каком-то базисе, q будет выражаться как сумма блоков, состоящих из двумерных гиперболических решеток и $E_{\pm 8}$.