Комплексные поверхности 2: формула Римана-Роха

Задача 2.1. Докажите, что характер Черна мультипликативен: $ch_*(B \otimes B') = ch_*(B) \wedge ch_*(B')$.

Задача 2.2. Пусть M - проективное многообразие, не обязательно гладкое. Определим $K_0(M)$ как K-группу, порожденную когерентными пучками, а $K^0(M)$ – K-группу, порожденную векторными расслоениями. Приведите пример, когда естественное отображение $K^0(M) \longrightarrow K_0(M)$ – не изоморфизм.

Задача 2.3 (*). В ситуации предыдущей задачи, определите характер Черна $K_0(M) \longrightarrow H^{\mathrm{even}}(M)$, продолжающий обычный характер Черна $K^0(M) \longrightarrow H^{\mathrm{even}}(M)$. Докажите, что он аддитивен.

Задача 2.4. Докажите, что на каждой компактной комплексной кривой найдется нетривиальная мероморфная функция.

Задача 2.5. Пусть M — проективное многообразие. Докажите, что число $\chi(L)$ выражается через $c_1(L)$ и классы Черна M.

Задача 2.6 (*). Рассмотрим эйлерову характеристику как функционал на K-группе, $\chi: K(X) \longrightarrow \mathbb{Z}$. Докажите, что $\chi(F)$, как функция [F], зависит только от классов Черна F (по возможности - не выводя формулу Римана-Роха-Хирцебруха явно).

Задача 2.7 (*). Пусть M - компактное, односвязное 4-мерное многообразие с четной формой пересечения. Докажите, что $b_2^+ - b_2^- = 0 \mod 8$, где b_2^+, b_2^- – число положительных и отрицательных собственных значений.

Задача 2.8. Докажите, что форма пересечения К3-поверхности четная.

Задача 2.9. Поверхность Энриквеса есть фактор К3-поверхности по голоморфной инволюции, которая не имеет неподвижных точек. Докажите, что поверхность Энриквеса имеет $h^{2,0}=0$.

Задача 2.10. Докажите, что форма пересечения на поверхности Энриквеса - нечетная.