Efficient Data Structures for Tamper-Evident Logging

Scott A. Crosby Dan S. Wallach
scroshy@cs.rice.edu dwallach@cs.rice.edu

Department of Computer Science, Rice University

siders with high-level access and the ability to subvert the
strac g y

o) logging system, may want to perform unlogged activities

Many real-world applications wish to collect tampety tamper with the recorded history. While tamper-

evident logs for forensic purposes. This paper considgggistance for such a system might be impossible, tamper-
the case of an untrusted logger, serving a number Qftection should be guaranteed in a strong fashion.
clients who wish to store their events in the log, and A yariety of hash data structures have been proposed
kept honest by a number of auditors who will challengg he |iterature for storing data in a tamper-evident
the logger to prove its correct behavior. \We propO$gshion, such as trees [34, 49], RSA accumulators [5, 11],
semantics of tamper-evident logs in terms of thls_ au_d.|tnggip lists [24], or general authenticated DAGs. These
process. The logger must be able to prove that individug!,,ctures have been used to build certificate revocation
logged events are still present, and that the log, as S§efd 149, to build tamper-evident graph and geometric
now, is consistent with how it was seen in the past. Tarching [25], and authenticated responses to XML
accomplish this efficiently, we describe a tr.ee—base.d datferies [19]. All of these store static data, created by a
structure that can generate such proofs with logarithygeed author whose signature is used as a root-of-trust
size and space, improving over previous linear Copy 5 thenticating responses of a lookup queries.
structions. Where a classic hash chain might require aRwhile authenticated data structures have been adapted

800 MB trace to prove that a randomly chosen event isgp) dynamic data [2], they continue to assume a trusted
a log with 80 million events, our prototype returns a 3 K uthor, and thus they have no need to detect inconsis-

proof with the same semantics. We also present a flexi é cies across versions. For instance, in SUNDR [36], a

medchanlsm fo_rdthe log sr(?rver Ito fpresITnt authenuc:;\]& ted network filesystem is implemented on untrusted
an ta;jmper-evlrhe_nt searc” reslu ts for al e\l/ents matc Qgrage. Although version vectors [16] are used to detect
a predicate. Is can allow large-scale log Servers [on the server presents forking-inconsistent views to

sel_ectlvely del_ete Old_ gvents, In an agreed_—upon fash'%ﬁents, only trusted clients sign updates for the filegyste
while generating efficient proofs that no inappropriate Tamper-evident logs are fundamentally different: An
events were deleted. We describe a prototype implﬁ]—

tati d i f 80 mill trusted logger is the sole author of the log and is respon-
mentation and measure its performance on an 4 MR, o t4r poth building and signing it. A log is a dynamic
event syslog trace at 1,750 events per second usin

8afh structure, with the author signing a stream of commit-
single CPU core. Performance improves to 10,500 even?l ' gning

X A gnts,anew commitment each time a new event is added
per second if cryptographic signatures are offload‘k

. : 'the log. Each commitmemshapshots the entire log u
corresponding to 1.1 TB of logging throughput per wee that p%int. If each signed ilca)mmitment is the gr;oolz of

; an authenticated data structure, well-known authenticate

1 Introduction dictionary techniques [62, 42, 20] can detect tampering

There are over 10,000 U.S. regulations that govern tvithin each snapshot. However, without additional mech-
storage and management of data [22, 58]. Many countré@gsms to preventit, an untrusted logger is free to have dif-
have legal, financial, medical, educational and privaégrent snapshots maleconsistent claims about the past.
regulations that require businesses to retain a varietyTof be secure, a tamper-evident log system must both de-
records. Logging systems are therefore in wide use (allteitt tampering within each signed le@yd detect when
many without much in the way of security features). different instances of the log make inconsistent claims.

Audit logs are useful for a variety of forensic purposes, Current solutions for detecting when an untrusted
such as tracing database tampering [59] or buildingsarver is making inconsistent claims over time require
versioned filesystem with verifiable audit trails [52]inear space and time. For instance, to prevent undetected
Tamper-evident logs have also been used to build Byzaampering, existing tamper evident logs [56, 17, 57]
tine fault-tolerant systems [35] and protocols [15], aslwalhich rely upon a hash chain require auditors examine
as to detect misbehaving hosts in distributed systems [28}ery intermediate event between snapshots. One pro-

Ensuring a log’s integrity is a critical component in thposal [43] for a tamper-evident log was based on a skip
security of a larger system. Malicious users, including ifist. It has logarithmic lookup times, assuming the log

is known to be internally consistent. However, provindigital records that are in the custody of a Byzantine log-
internal consistency requires scanning the full contehtsger. Replication strategies, outside the scope of thispape
the log. (See Section 3.4 for further analysis of this.) can help ensure availability of the digital records [44].

In the same manner, CATS [63], a network-storage Tamper-evidence requires auditing. If the log is never
service with strong accountability properties, snapshetgamined, then tampering cannot be detected. To this end,
the internal state, and only probabilistically detectge divide a logging system into three logical entities—
tampering by auditing a subset of objects for correctnesanyclients which generate events for appending to a log
between snapshots. Pavlou and Snodgrass [51] show lpwistory, managed on a centralized but totally untrusted
to integrate tamper-evidence into a relational databaksger, which is ultimately audited by one or more
and can prove the existence of tampering, if suspectedstedauditors. We assume clients and auditors have
Auditing these systems for consistency is expensiwary limited storage capacity while loggers are assumed
requiring each auditor visit each snapshot to confirm that have unlimited storage. By auditing the published
any changes between snapshots are authorized. commitments and demanding proofs, auditors can be

If an untrusted logger knows that a just-added evesdnvinced that the log’s integrity has been maintained.
or returned commitment will not be audited, then ant least one auditor is assumed to be incorruptible. In
tampering with the added event or the events fixed by tlmair system, we distinguish between clients and auditors,
commitment will be undiscovered, and, by definitiorwhile a single host could, in fact, perform both roles.
the log is not tamper-evident. To prevent tratamper- ~ We must trust clients to behave correctly while they
evident log requires frequent auditing. To this end, we are following the event insertion protocol, but we trust
propose a tree-based history data structure, logarithmlients nowhere else. Of course, a malicious client could
for all auditing and lookup operations. Events may hgsert garbage, but we wish to ensure that an event, once
added to the log, commitments generated, and audjggrectly inserted, cannot be undetectably hidden or mod-
may be performed independently of one another andifaéd, even if the original client is subsequently colluding
any time. No batching is used. Unlike past designs, with the logger in an attempt to tamper with old data.
explicitly focus on how tampering will be discovered, To ensure these semantics, an untrusted logger must
through auditing, and we optimize the costs of thesggularly prove its correct behavior to auditors and
audits. Oulhistory tree allows loggers to efficiently proveclients. Incremental proofs, demanded of the logger,
that the sequence of individual logs committed to, ovgfove that current commitment and prior commitment
time, make consistent claims about the past. make consistent claims about past everitéembership

In Section 2 we present background material and pfigroofs ask the logger to return a particular event from the
pose semantics for tamper-evident logging. In Sectiongg along with a proof that the event is consistent with
we present the history tree. In Section 4 we descriee current commitment. Membership proofs may be
Merkle aggregation, a way to annotate events wittjemanded by clients after adding events or by auditors
attributes which can then be used to perform tampgerifying that older events remain correctly stored by the
evident queries over the log amsdfe deletion of events, |ogger. These two styles of proofs are sufficient to yield
allowing unneeded events to be removed in-place, with gnper-evidence. As any vanilla lookup operation may be
additional trusted party, while still being able to provatth fg|lowed by a request for proof, the logger must behave

no events were improperly purged. Section 5 descrilggghfully or risk its misbehavior being discovered.
a prototype implementation for tamper-evident loggi

n
of syslog data traces. Section 6 discusses approac%e% Semantics of a tamper evident history

for scaling the logger's performance. Related work is\ye now formalize our desired semantics for secure

presented in Section 7. Future work and conclusiofgories. Each time an eveltis sent to the logger, it

appear in Section 8. assigns an indeixand appends it to the log, generating a
. versioni commitmenC; that depends on all of the events

2 Securlty Model to-date, Xp...X;. The commitmenC; is bound to its

In this paper, we make the usual cryptographic assunwersion numbet, signed, and published.

tions that an attacker cannot forge digital signatures orAlthough the stream of histories that a logger commits

find collisions in cryptographic hash functions. Furthete (Cp...Ci,Ci;+1,Ci;2...) are supposed to be mutually-

more we are not concerned with protecting the secremynsistent, each commitment fixes &ndependent

of the logged events; this can be addressed with externistory. Because histories are not known, a priori, to

techniques, most likely some form of encryption [50, 2&e consistent with one other, we will use primést¢

54]. For simplicity, we assume a single monolithic log odistinguish between different histories and the events

a single host computer. Our goal is to detect tamperirgpntained within them. In other words, the events in log

It is impractical to prevent the destruction or alteratién &; (i.e., those committed by commitme@f) are Xg... X

and the events in log] areX...X/, and we willneed to 2.3 Definition: tamper evident history

prove their correspondence. We now define a tamper-evident history system as a

2.1.1 Membership auditing five-tuple of algorithms:

Membership auditing is performed both by client$y App(X) —C;j. Given an eveni, appends it to the
verifying that new events are correctly inserted, and by hjstory, returning a new commitment.

auditors, investigating that old events are still present

and unaltered. The logger is given an event indand H.INCR.GEN(C;,Cj) — P. Generates an incremental
a commitmenC;, i < j and is required to return tigh proof betweer€; andC;, wherei < j.

element in the logX;, and a proof thaC; implies X is

theith event in the log. H.MEMBERSI.-IIP.GEN(I,CJ') — (P,X;). Genergtes a
membership proof for everitfrom commitmentC;,
2.1.2 Incremental auditing wherei < j. Also returns the evenx;.

While a verified membership proof shows that an evepj NCR.VF(C/,Cj) — {T, L}. Checks thaP proves that

was logged correctly irsome log, represented by its c; fixes every entry fixed b/ (wherei < j). Outputs
commitmentC;j, additional work is necessary to verify T if no divergence has been detected.

that the sequence of logs committed by the logger is _

consistent over time. licremental auditing, the logger PMEMBERSHIRVF(i,Cj,X/) — {T, L}. Checks thatP

is given two commitment€; andC;, wherej <k, and proves that evenX/ is thei’th event in the log defined

is required to prove that the two commitments make con-by Cj (wherei < j). OutputsT if true.

sistent claims about past events. A verified incremental) _

proof demonstrates thag, = X, for all a € [0, j]. Once The first three algorithms run on the logger and are used
verified, the auditor knows th&; andC, commit to the 0 @ppend to the lobi and to generatproofs P. Auditors
same shared history, and the auditor can safely digardOr clients verify the proofs with algorithmgINCR.VF,

A dishonest logger may attempt to tamper with it¥EMBERSHIRVF}. Ideally, the proof sent to the au-
history by rolling back the log, creating a new fork offitor is more concise than retransmitting the full history
which it inserts new events, and abandoning the old fofd;: ©Only commitments need to be signed by the log-
Such tampering will be caught if the logging syster8€" Proofs do not require digital signatures; either they
satisfieshistorical consistency (see Section 2.3) and bydemonstrate consistency of the commitments and the con-
a loggers inability to generate an incremental pro(lﬁnts of an event or they don’t. With these five operations,

between commitments on different (and inconsistetff® "OW define “tamper evidence” as a system satisfying:

forks when challenged. Historical Consistency If we have a valid incremental
. . . proof between two commitment€; and Cy, where
2.2 Clientinsertion protocol j <k, (PINCR.VF(Cj,C) — T), and we have a valid

Once clients receive commitments from the logger aRembership prod? for the even/, wherei < j, in the
ter inserting an event, they must immediately redistribug fixed byC; (i.e.,P.MEMBERSHIRVF(i,Cj,X{) — T)
them to auditors. This prevents the clients from subg&d a valid membership proof fof” in the log fixed
quently colluding with the logger to roll back or modifydy Ck (i-e., P".MEMBERSHIRVF(i,Cy, X") — T), then
their events. To this end, we need a mechanism, such¥agnust equaX”. (In other words, if two commitments
a gossip protocoL to distribute the Signed Commitmerﬁgmmit consistent histories, then they must both fix the
from clients to multiple auditors. It's unnecessary foy@me events for their shared past.)
every auditqr to audit every c_:ommitment, so long assomeq Other threat models
auditor audits every commitment. (We further discuss
tradeoffs with other auditing strategies in Section 3.1.) Forward integrity Classic tamper-evident logging
In addition, in order to deal with the logger presentingses a different threat model, forward integrity [4]. The
different views of the log to different auditors and clignt§orward integrity threat model has two entities: clients
auditors must obtain and reconcile commitments receivetio are fully trusted but have limited storage, and loggers
from multiple clients or auditors, perhaps with the gossipho are assumed to be honest until suffering a Byzantine
protocol mentioned above. Alternatively the logger mdgilure. In this threat model, the logger must be prevented
publish its commitment in a public fashion so that affom undetectably tampering with events logged prior
auditors receive the same commitment [27]. All thab the Byzantine failure, but is allowed to undetectably
matters is that auditors have access to a diverse collectamper with events logged after the Byzantine failure.
of commitments and demand incremental proofs to verify Although we feel our threat model better characterizes
that the logger is presenting a consistent view. the threats faced by tamper-evident logging, our history

tree and the semantics for tamper-evident logging are Y
applicable to this alternative threat model with only /
minor changes. Under the semantics of forward-integrity, I

membership auditing just-added events is unnecessary 0.2
because tamper-evidence only applies to events occurring @ 154
before the Byzantine failure. Auditing a just-added event ’

is unneeded if the Byzantine failure hasn’t happened and X X @5 \h

irrelevant afterwards. Incremental auditing is still nec-
essary. A client must incrementally audit received com- g 1: A version 2 history with commitmer@, = I 5.
mitments to prevent a logger from tampering with events "

occurring before a Byzantine failure by rolling back the v

log and creating a new fork. Membership auditing is 03
required to look up and examine old events in the log. % / \I”

ltkis [31] has a similar threat model. His design 0’2\ 42\
exploited the fact that if a Byzantine logger attempts to @ y @ 2
roll back its history to before the Byzantine failure, the ¢\ ’
history must fork into two parallel histories. He proposed ~ x” X/ @ @ Xy XY \|:|

a procedure that tested two commitments to detect
divergence without online interaction with the logger
and proved arO(n) lower bound on the commitment
size. We achieve a tighter bound by virtue of the logger

e . lo
cooperating in the generation of these proofs. / 3\

Figure 2: A version 6 history with commitmer@g = I 5.

Trusted hardware Rather than relying on auditing, an lo2 la2
alternative model is to rely on the logger’s hardware itself ' \ ' \

to be tamper-resistant [58, 1]. Naturally, the security of @ I21 @ le1
these systems rests on protecting the trusted hardware and \ \I:I
the logging system against tampering by an attacker with @

complete physical access. Although our design could cer-
tainly use trusted hardware as an auditor, cryptographic Figure 3: An incremental proof® between a version 2 and
schemes like ours rest on simpler assumptions, name|yversion 6 commitment. Hashes for the circled nodes are

.. . included in the proof. Other hashes can be derived from their
the |Ogger can and must prove itis operating CorreCtly' children. Circled nodes in Figures 1 and 2 must be shown to

be equal to the corresponding circled nodes here.

3 History tree
represented asl. This can be seen starting in Figure 1,
We now present our new data structure for representiagersion-2 tree having three events. Figure 2 shows a
atamper-evident history. We start with a Merkle tree [46]ersion-6 tree, adding four additional events. Although
which has a long history of uses for authenticating stalige trees in our figures have a depth of 3 and can store
data. In a Merkle_ tree, data is s_tored at the leaves and {f}eto 8 leaves, our design clearly extends to trees with
hash at the root is a tamper-evident summary of the c@jteater depth and more leaves.

tents. Merkle trees support logarithmic path lengths from . . , .
Each node in the history tree lisheled with a crypto-

the root to the leaves, permitting efficient random access.

Although Merkle trees are a well-known tamper-evideﬂfaphic hash which, like a Merkle tree, fixes the contents

data structure and our use is straightforward, the ndfthe subtree rooted at that node. For aleaf node, the label
elty in our design is in using a versioned computation Iss the hash of the event; fqr an interior node,.the Igbel is
hashes over the Merkle tree to efficiently prove that difidle hash of the concatenation of the labels of its children.

ent log snapshots, represented by Merkle trees, #éth An interesting property of the history tree is the ability
tinct root hashes, make consistent claims about the pasb efficiently reconstruct old versions views of the tree.

A filled history tree of depthd is a binary Merkle Consider the history tree given in Figure 2. The logger
hash tree, storing®events on the leaves. Interior nodesould reconstruc€; analogous to the version-2 tree in
lir are identified by their indekand layerr. Each leaf Figure 1 by pretending that nodgs, andXg wered and
nodel;, at layer O, stores even§. Interior nodeli, then recomputing the hashes for the interior nodes and
has left childli ;1 and right childl; , »-1, ;. (Figures 1 the root. If the reconstructed; matched a previously
through 3 demonstrate this numbering scheme.) Whadvertised commitmer,, then both trees must have the
a tree is not full, subtrees containing no events asame contents and commit the same events.

3.1 Is it safe to skip nodes during an audit?

In the pruned tree in Figure 3, we omit the events
fixed by lp1, yet we still preserve the semantics of a
tamper-evident log. Even though these earlier events
may not be sent to the auditor, they are still fixed by the
. . . unchanged hashes above them in the tree. Any attempted
Xo X1 Xo Xz X4 Xs Xg tampering _WiII bg discovered .in future incremeqtal or
membership audits of the skipped events. With the
Figure 4: Graphical notation for a history tree analogous to the history tree, auditors only receive the portions of the
o G s s i Do v e Sy they need to audit the events they have chaser
Fepresent values that can be recomputed from the vzluew belo to "j_lUdlt' Sklpplng evenFS makes it possible to C_O_n_dU(_:t a
them; dots may change as new events are added while open cir- Variety of selective audits and offers more flexibility in
cles will not. Grey circle nodes are unnecessary for thefproo designing auditing policies.
. . Existing tamper-evident log designs based on a classic
. This forms the intuition of how the Iogger generates 3{L sh_chain have the for@ = H(G_1 ||), C_1 = D and
incremental proof between two commitment€; and 5 ot permit events to be skipped. With a hash chain,
Cs. Initially, the auditor only possesses commitme®§s , jncremental or membership proof between two com-
andCg; it doe_s not kn(_)W the underlying Merkle trees thahiiments or between an event and a commitment must
these commitments fix. The logger must ?ho)f" tha/t baikiude every intermediate event in the log. In addition,
hlstorl/es commit the same events, iX),= Xo, X{' = X{, pecause intermediate events cannot be skipped, each audi-
andX; = X;. To do this, the logger sendspauned tree 4, client acting as an auditor, must eventually receive
P to the auditor, shown in Figure 3. This pruned r€gery event in the log. Hash chaining schemes, as such,
includes 195'[enough of the full history tree to compuigo only feasible with low event volumes or in situations
the commitment£; andCe. Unnecessary subtrees argheare every auditor is already receiving every event.

elided out and replaced witktubs. Events can be either When membershin proofs are used to investigate old
included in the tree or replaced by a stub containing their bP g

. . . évents, the ability to skip nodes can lead to dramatic
hash. Because an incremental proof involeee history reductions in proof size. For example. in our brototvbe
trees, the trees committed I8} andC{ with unknown P , P, Pro"olyp

contents and the pruned tré we distinguish them by d_escnbed in Section 5, in a log of 80 million events, our
. . . history tree can return a complete proof for any randomly
using a different number of prime9 (

chosen event in 3100 bytes. In a hash chain, where
From P, shown in Figure 3, we reconstruct the corrébtermediate events cannot be skipped, an average of 40
sponding root commitment for a version-6 tr€g, We re- Million hashes would be sent.

compute the hashes of interior nodes based on the has{igsiting strategies In many settings, it is possible that
of their children until we compute the hash for ndde, not every auditor will be interested in every logged event.
which will be the commitmert@s. If Cg = C then the cor- cjients may not be interested in auditing events inserted or
responding nodes, circled in Figures 2.and 3, in the prunggymitments received by other clients. One could easily
treeP and the implicit tree committed b§5 must match. jmagine scenarios where a single logger is shared across
many organizations, each only incentivized to audit the in-
tegrity of its own data. These organizations could run their
wn auditors, focusing their attention on commitments
rom their own clients, and only occasionally exchanging
0cg,mmitments with other organizations to ensure no fork-
Ing has occurred. One can also imagine scenarios where
independent accounting firms operate auditing systems
that run against their corporate customers’ log servers.

If the events committed b, andC{ are the same The log remains tamper-evident if clients gossip their
as the events committed WB8; then they must be equalyreceived commitments from the logger to at least one hon-
we can then conclude that the tree committedddyis est auditor who uses it when demanding an incremental
consistent with the tree committed I8. By this we proof. By not requiring that every commitment be audited
mean that the history trees committed 8y and C{ by every auditor, the total auditing overhead across all
both commit the same events, X§ = Xj, X{ = X{, and auditors can be proportional to the total number of events
X3 = X3, even though the eveni§' = X, X' = X{, X;, in the log—far cheaper than the number of events times
andX¢ are unknown to the auditor. the number of auditors as we might otherwise require.

Similarly, from P, shown in Figure 3, we can recon
struct the version-2 commitmek by pretending that
the nodesXsz andls» ared and, as before, recomputin
the hashes for interior nodes up to the rootCjf= C,
then the corresponding nodes, circled in Figures 1 an
in the pruned tred and the implicit tree committed by
C, must match, oty ; = o1 andX; = Xa.

Ao={HO|X) ifv>i (1) N
@

A= HLIA, 1 110) ifv<it2r? @

i H(1||A?fr,l||A?’+2,71’r71) ifv>ito1

Cn = 3) ¢
Ap=FHir whenevew > i+2'—1 (4) Xo X1 Xo Xa X4 X X

) Figure 6: A proof skeleton for a version-6 history tree.
Figure 5: Recurrence for computing hashes.

Skini q ff her i , q ffthe proof given in Figure 3, representing an incremental
Ipping nodes offers other time-security tradeo Broof from C, to Csz. Dots represent unfrozen nodes

Auditors may co_nduct_audits pr_obabilistically, §(_3Iectin\g,hose hashes are computed from their children. Open
only a subset of incoming commltr_nentS for au_dmng. If jrcles represent frozen nodes which are not included in
Iogge_r were to regularly tamper with the !og_, its odds qfq proof because their hashes can be recomputed from
remaining undetected would become vanishingly Smalltheir children. Solid discs represent frozen nodes whose
3.2 Construction of the history tree inclusion is necessary by being leaves or stubs. Grayed
out nodes represent elided subtrees that are not included
Now that we have an example of how to use a tregr the pruned tree. From this pruned tree and equations
based history, we will formally define its construction and)-(4) (shown in Figure 5) we can compufg = A8,
semantics. A version-history tree storesi+1 events, .42 commitment from an earlier version-2 vie@%?’
Xo...%y. Hashes are computed over the history tree Ny pruned tree is incrementally built from moof

a manner that permits the reponstr_uction of the has'%ﬁaeton, seen in Figure 6—the minimum pruned tree of a
of interior nodes of oldervverspns STENS. we Qenote version-6 tree consisting only of frozen nodes. The proof
the hash'or.I nodé, by A Wh.'Ch 'S parametrlzed bY ckeleton for a versiom-ree consists of frozen hashes for
the pode S index, layer _and View being computed. f(he left siblings for the path frorK, to the root. From the
VETSIonV VIew on a Versiom history treg rgconstructsincluded hashes and using equations (1)-(4), this proof
the hashes on interior nodes for a versiohistory tree skeleton suffices to compuBa — A83-

that only included event?(o...x\,. Whenv = n, the From Figure 6 the logger incrementally builds Figure 4
reconstructgd root commitment G‘ '!'he_hashes areby splitting frozen interior nodes. A node is split by
compu_ted with the recurrence deﬁne_d n Flg_ure S. including its children’s hashes in the pruned tree instead
_ A history tree can support arbitrary 5|zedlogs bY¥ itself. By recursively splitting nodes on the path to
Increasing the depth when the tree fills (ie= 2° —1) a leaf, the logger cainclude that leaf in the pruned
and definingd = [log,(n+ 1)]. The new root, one Ieveltree. In this example, we split nodés, and ;. For
up, is c_reated _with the old tree as its left child and g, 1, commitmenG; that is to be reconstructable in an
empty _”ght chﬂd_where_new events can be added. Rt omenty) proof the pruned tré&&must include a path
S|mpI|(_:|ty in our illustrations and proofs, we assume f the eventX,. The same algorithm is used to generate
tree with f|x_ed deptid. .)) the membership proof for an evext
Once a given subtree in the history tree is complete andsjy e, these constraints, we can now define the five
has no more slots to add events, the hash for the root ngglg,ry operations in terms of the equations in Figure 5.
of that subtree idrozen and will not change as future
events are added to the log. The logger caches thPﬁﬁDD(X) . Cn. Eventis assigned the next free siot,
frozen hashes (i.e., the hashes of frozen nodes) inte FH Cn is computed by equations (1)-(4).
to avoid the need to recompute them. By exploiting the
frozen hash cache, the logger can recomm}{‘pe‘or any H.INCR.GEN(G;,Cj) — P. The pruned treeP is a
node with at mosO(d) operations. In a version-ree, versionq proof skeleton including a path).
nodel;, is frozen whem > i+2"— 1. When inserting
a new event into the logD(1) expected case and(d) H.MEMBERSHIRGEN(i,Cj) — (P,X). The pruned tree
worse case nodes will become frozen. (In Figure 1, nodeP is a versionj proof skeleton including a path .
lg41 is frozen. If eveniXz is added, nodelg ; andl , will _
become frozen.) ’ ’ PINCR.VF(C,Cj) — {T,L}. From P apply equations
Now that we have defined the history tree, we will (1)-(4) to computeAy 4 and A(J).d. This can only be
describe the incremental proofs generated by the loggerdone if P includes a path to the lea§. ReturnT if
Figure 4 abstractly illustrates a pruned tree equivalent toC" = Aio‘d andC;j = A(J,‘d.

PMEMBERSHIRVF(i,Cj,X/) — {T, L}. From P apply between the paths t§j andX,. This devolves td(1)

equations (1)-(4) to computk{)d. Also extractX; from If @ proof is requested after every insertior_l. The auditor

the pruned tre®, which can only be done P includes need only cachd frozen hashes to make this work.

a path to even¥;. ReturnT if Cj = Aé).d andX =X/. Tree history time-stamping service Our history

tree can be adapted to implement a round-based time-

Although incremental and membership proofs have dftamping service. After every round, the logger publishes
ferent semantics, they both follow an identical tree strughe last commitment in public medium such as a news-
ture and can be built and audited by a common implemegsaper. LetC, be the commitment from the prior round
tation. In addition, a single pruned trBean embed pathsandC, be the commitment of the round a client requests
to several leaves to satisfy multiple auditing requests. that its documentX; be timestamped. A client can

What is the size of a pruned tree used as a proof? The '€quest a pruned tree including a path to leageX;, X«
pruned tree necessary for satisfying a self-contained 1€ pruned tree can be verified against the published
cremental proof betwed®) andC; or a membership proof COMmitments to prove tha(; was submitted in the round
nodesX; andX;. This resulting pruned tree contains &2 the logger. o _
most 2 frozen nodes, logarithmic in the size of the log. If a separate history tree is built for each round, our his-
In a real implementation, the log may have moved onlgry tree is equivalent to the threaded authentication tree
a later versionk. If the auditor requested an incrementdifoposed by Buldas et al. [10] for time-stamping systems.
latest commitmenCy, and a pruned tree of at mostl 3 .) .
nodes, based around a versiotree including paths t; Qur history tree offers_a curious property: it can be
andX;. More typically, we expect auditors will reques€asily mapped onto write-once append-only storage.
an incremental proof between a commitméntand the Once nodes become frozen, they become immutable, and
latest commitment. The logger can reply with the late@f€ thus safe to output. This ordering is predetermined,

commitmenCy and pruned tree of at mostihodes that Starting with(Xo), (X1,l01), (X2), (Xs,121,10.2), (Xa).. .
included a path te;. Parentheses denote the nodes written by eamh #ans-

L action. If nodes within each group are further ordered by

T_he frozen hash ca_che In our descrllptlon of the their layer in the tree, this order is simply a post-order
history tree, we described tifi| representation when we traversal of the binary tree. Data written in this linear
stated that the logger stores frozen hashes for all fro%ﬁghion will minimize disk seek overhead, improving
interior nodes in the history tree. This cache is redundqﬂ disk’s write performance. Given this layout, and
Wh_enever a node’s hash can t,’e recompu'Fed from_ étossuming all events are the same size on disk, converting
ch!ldren. We expect that Io_gger |mplementat|_ons, Wh'?Fbm an (index,layer) to the byte index used to store
build pruned trees fo_r audits anq_quenes, will mainta ¢ node take®(logn) arithmetic operations, permitting
and use the cache to improve efficiency. efficient direct access.

When generating membership proofs, incremental|, o qer to handle variable-length events, event data
proofs, and query lookup results, there is no need foX, pa stored in a separate write-once appendaahie
the resulting pruned tree to include redundant hashess%}e, while the leaves of the history tree contain offsets
i”t?”or nodes when they can be recomputed from thﬁ%‘io the value store where the event contents may be
children. We assume that pruned trees used as pProgi§yg. pecoupling the history tree from the value store
will use this minimum representation, containing frozen 444 ajiows many choices for how events are stored, such
hashes only for stubs, to reduce communication Costs. 5q databases, compressed files, or standard flat formats.
Can overheads be reduced by exploiting redundanc .
between proofs? If an audit)(/)r ispin regular comml}/-3'4 Comparing to other systems
nication with the logger, demanding incremental proofs In this section, we evaluate the time and space tradeoffs
between the previously seen commitment and the latbstween our history tree and earlier hash chain and skip
commitment, there is redundancy between the pruned structures. In all three designs, membership proofs
subtrees on successive queries. have the same structure and size as incremental proofs,

If an auditor previously requested an incremental proaifid proofs are generated in time proportional to their size.
betweerC; andC;j and later requests an incremental proof Maniatis and Baker [43] present a tamper-evident log
P betweerC; andC,, the two proofs will share hashes omsing a deterministic variant of a skip list [53]. The skip
the path to leak;. The logger may send partial proof list history is like a hash-chain incorporating extra skip
that omits these common hashes, and only contains lih&s that hop over many nodes, allowing for logarithmic
expected)(log,(n— j)) frozen hashes that are not sharddokups.

Hash chain Skip list History tree

ADD Time 0(1) 0(1) O(logyn)
INCR.GEN proof size taCy O(n—Kk) O(n) O(log,n)
MEMBERSHIRGEN proof size forXy ~ O(n—Kk) O(n) O(logyn)
Cache size - O(log, n) O(log,n)
INCR.GEN partial proof size - Oo(n—j) O(logy(n—j))
MEMBERSHIRGEN partial proof size - O(logy (n—i)) O(logy(n—1i))

Table 1: We characterize the time to add an event to the log and theosizdl and partial proofs generated in termsmfthe number of
events in the log. For partial proofs audijsjenotes the number of events in the log at the time of the ladit andi denotes the index
of the event being membership-audited.

In Table 1 we compare the three designs. All threelding new events, but this advantage is fleeting. If
designs haveO(1) storage per event an®(1) com- the logger knows that a given commitment will never
mitment size. For skip list histories and tree historiebg audited, it is free to tamper with the events fixed
which support partial proofs (described in Section 3.4)y that commitment, and the log is no longer provably
we present the cache size and the expected proof sizesper evident. Every commitment returned by the
in terms of the number of events in the lag, and the logger must have a non-zero chance of being audited and
index, j, of the prior contact with the logger or the indexany evaluation of tamper-evident logging must include
i of the event being looked up. Our tree-based histattye costs of this unavoidable auditing. With multiple
strictly dominates both hash chains and skip lists auditors, auditing overhead is further multiplied. After
proof generation time and proof sizes, particularly whanserting an event, hash chains and skip lists suffer an
individual clients and auditors only audit a subset of th@(n — j) disadvantage the moment they do incremental
commitments or when partial proofs are used. audits between the returned commitment and prior

Canonical representation A hash chain history andcommitments. They cannot reduce this overhead by, for

our history tree have a canonical representation of b&}gamplg, only auditing a ra_ndom subset of commitments.
the history and of proofs within the history. In particular, EVen if the threat model is weakened from our always-
from a given commitmert,, there exists one unique patwntrusted .Iogger to the forwqrd—lntegnt){ threat model
to each even;. When there are multiple paths auditingS€€ Section 2.4), hash chains and skip lists are less
is more complex because the alternative paths must?’c@@c'em than the history tree_. Cllen_ts can forgo auditing
checked for consistency with one another, both withiHSt-added events, but are still required to do incremental
a single history, and between the stream of histori@¥dits to prior commitments, which are expensive with
Gi,Gi.1,... committed by the logger. Extra paths ma}}ash chains or skip lists.

improve the efficiency of looking up past events, such .

in a skip list, or offer more functionality [17], but c:anno?ls Merkle aggregatlon

be trusted by auditors and must be checked.

i :) . Our history tree permit®©(log,n) access to arbitrary
Maniatis and Baker [43] claim to support logarithmiCayents given their index. In this section, we extend our

sized proofs, however they suffer from this multi-paflssory tree to support efficient, tamper-evident content
probl_em. To verlfy internal consistency, an auditor witha 5 -ches through a feature we deliérkle aggregation,

no prior contact with the logger must receive every eveihich encodes auxiliary information into the history
in the log in every incremental or membership proof. oo Merkle aggregation permits the logger to perform

Efficiency improves for auditors in regular contact withthorized purges of the log while detecting unauthorized
the logger that use partial proofs and caClitog, n) state yeletions. a feature we catife deletion.

bety\{een incremental_audits. If an _auditor has previouslyAS an example, imagine that a client flags certain events
verified the logger’s internal consistency up @, the ;. 4 o log as “important’ when it stores them. In the

auditor will be ?ble to verify the Iogggrr’]s |rr]1ternal _Consf'sﬁistory tree, the logger propagates these flags to interior
tency up toa utoure commltdmeﬁ]r(wit the r(:]celpl)(t. OI' nodes, setting the flag whenever either child is flagged.
eventsXj.1... Xy Once an auditor knows that the skip list, g re that the tagged history is tamper-evident, this

is internally consistent the links that allow for logaritiom flag can be incorporated into the hash label of a node
lookups can be trusted and subsequent membersgp'% checked during auditing. As clients are assumed

proofs on old events will run i®(log, n) time. Skip list 'tﬁ be trusted when inserting into the log, we assume

histories were designed to function in this mode, Witfionts will properly annotate their events. Membership
each auditor eventually receiving every eventin the 109, qiting will detect if the logger incorrectly stored a leaf
Auditing is required Hash chains and skip lists onlywith the wrong flag or improperly propagated the flag.
offer a complexity advantage over the history tree whémcremental audits would detect tampering if any frozen

node had its flag altered. Now, when an auditor requests

a list of only flagged events, the logger can generate that /\
list along with a proof that the list is complete. If there
are relatively few “important” events, the query results .})\
can skip over large chunks of the history.

To generate a proof that the list of flagged events is . .
complete, the logger traverses the full history tide
pruning any subtrees without the flag set, and returns X X X Xa Xs

a pruned tred® containing only the visited nodes. The)))

. . Figure 7: Demonstration of Merkle aggregation with some
auditor can ensure that no flagged nodes were Omlttecjevents flagged as important (highlighted). Frozen nodes tha
in P by performing its own recursive traversal &and would be included in a query are represented as solid discs.
verifying that every stub is unflagged.

Figure 7 shows the pruned tree for a query against aMerkle aggregation is extremely flexible because
version-5 history with events, andXs flagged. Interior can beany deterministic computable function. However,
nodes in the path fror%, andXs to the root will also be once a log has been creatdd,®,I") are fixed for that
flagged. For subtrees containing no matching events, siRgh and the set of queries that can be made is restricted
as the parent 0f, andXy, we only need to retain the rootoased on the aggregation strategy chosen. In Section 5
of the subtree to vouch that its children are unflagged. We describe how we were able to apply these concepts to

the metadata used in Syslog logs.
4.1 General attributes

4.2 Formal description
Boolean flags are only one way we may flag log

events for later queries. Rather than enumerate everyfo make attributes tamper-evident in history trees, we
possible variation, we abstract an aggregation strateg@dify the computation of hashes over the tree to include
over attributes into a 3-tuplér,®,I). T represents the them. Each node now has a hash label denotef’ by
type of attribute or attributes that an event has.is a and an annotation denoted BY, .A for storing attributes.
deterministic function used to compute the attributes dagether these form the node data that is attached to each
an interior node in the history tree kaggregating the node in the history tree. Note that the hash label of node,
attributes of the node’s childrenI” is a deterministic A',.H, doesnot fix its own attrlbutesA}’ A. Instead, We
function that maps an event to its attributes. In ogefine asubtree authenticator Al x=HA HI[AA
example of client-flagged events, the aggregation stratéggt fixes the attributes and hash of a node, and recurswely
is (1:=BoOL,® =V, (x) := x.isFlagged). fixes every hash and attribute in its subtree. Frozen hashes
For example, in a banking application, an attribufeHir-A and FH,.H and FH, .« are defined analogously
could be the dollar value of a transaction, aggregat&the non-Merkle-aggregation case.
with the MAX function, permitting queries to find all We could have defined this recursion in several differ-
transactions over a particular dollar value and detectif tant ways. This representation allows us to elide unwanted
logger tampers with the results. This correspondste- subtrees with a small stub, containing one hash and one
INT,® := MAX , T (x) ;= x.value). Or, consider events hav-set of attributes, while exposing the attributes in a way
ing internal timestamps, generated by the client, arrivitigat makes it possible to locally detect if the attributes
at the logger out of order. If we attribute each node in thveere improperly aggregated.
tree with the earliest and latest timestamp found among it<Our new mechanism for computing hash and aggre-
children, we can now query the logger for all nodes withigates for a node is given in equations (5)-(10) in Figure 8.
a given time range, regardless of the order of event arrivBhere is a strong correspondence between this recurrence
There are at least three different ways to implemeaind the previous one in Figure 5. Equations (6) and (7)
keyword searching across logs using Merkle aggregatiextract the hash and attributes of an event, analogous
If the number of keywords is fixed in advance, then te equation (1). Equation (9) handles aggregation of
attribute t for events can be a bit-vector or sparse bigttributes between a node and its children. Equation (8)
vector combined withp := V. If the number of keywords computes the hash of a node in terms of the subtree
is unknown, but likely to be smalf, can be a sorted list authenticators of its children.
of keywords, with@ := U (set union). If the number of INCR.GEN and MEMBERSHIRGEN operate the same
keywords is unknown and potentially unbounded, thexss with an ordinary history tree, except that wherever
a Bloom filter [8] may be used to represent them, witha frozen hash was included in the proof (FH we
being a bit-vector and := V. Of course, the Bloom filter now include both the hash of the node,lFii, and its
would then have the potential of returning false positivedtributes Fhi;.A. Both are required for recomputing
to a query, but there would be no false negatives. A/;.A and A/|.H for the parent node. BD,INCR.VF,

subtrees does not mat€)h .

\ \ \2
A =HAHIALA ©®) P.QUERY.VF(C},Q") — {T, L} Checks the pruned tree
ApH = {H (0[[%) ifv>i (6) P and returnsT if every stub inP does not matci®"
. . and the reconstructed commitméltis the same &G;.
A}”O.A:{I'(Xi) if v>i :
v i o Building a pruned tree containing all events matching
A H = HLIA 1+ 15) ! V<f+2 a predicateQ" is similar to building the pruned trees
" HA g [|AY 1, y%) if v=i+21 for membership or incremental auditing. The logger

|
(8) starts with a proof skeleton then recursively traverses

it, splitting interior nodes WherQr(FHi,r.A) is true.

i (L or-1
A A= A 1A !f Vi 2 (9) Because the predica@ is stable, no eventin any elided
’ A 1 ABA g A v>i+2rt subtree can match the predicate. If there mevents
Co= Al .5 (10) matching the predicat®", the pruned tree is of size at

mostO((1+t)log,n) (i.e., t leaves with logn interior

_ _ tree nodes on the paths to the root).
Figure 8: Hash computations for Merkle aggregation To verify thatP includes all events matchir@r, the
auditor does a recursive traversal oer If the auditor
and MEMBERSHIRVF are the same as before except fqr o b where" _ . h
using the equations (5)-(10) for computing hashes a”c]ids. an interior stub wher@ (FHir A) is true, the ver-
. . L9 ﬁcatlon fails because the auditor found a node that was
propagating attributes. Merkle aggregation inflates the

Storage and oot izes by a ctort.) Auneres 00500 01848 e i (Ui todes sy
is the size of a hash amglis the size of the attributes. P y P P y

_ _ on the path fronX; to the root.) The auditor must also
4.2.1 Queries over attributes verify that pruned tre® commits the same events as the

In Merkle aggregation queries, we permit query resuf@mmitmentCj by reconstructing the root commitment
i iti i HUsing th ti 5)-(10) and checking that C;

to contain false positives, i.e., events that do not matehusing the equations (5)-(10) and checking gt Cj. |
the queryQ. Extra false positive events in the result only AS With an ordinary history tree, a Merkle aggregating
filtered by the auditor. We forbid false negatives; eveREVer audited, then there is no guarantee_that its attsbute
event matching will be included in the result. have been properly included. Also, a dishonest logger

Unfortunately, Merkle aggregation queries can onff client could deliberately insert false log entries whose
match attributes, not events. Consequently, we m@&iibutes are aggregated up the tree to the root, causing
predicateQ” over attributes and require that it bble, is stable, a malicious logger cannot hide matching events
with the following properties: 1) matches an event therffom query results without detection.
Q" matches the attribute_s of that event (i.\a(,Q(_x) = 4.3 Applications
Q" (I (x))). Furthermore, ifQ" is true for either child of a _ _
node, it must be true for the node itself (i.é, Q" (x) Vv Safg_ deletion Merkle aggregation can be u_sed for
Q" (y) = Q (x@y) andvy Q" (x) v Q" (0) = Qr(x@D)) expiring old and obsolete events that do not satisfy some

Stable predicates can falsely match nodes or eventsREfdicate and prove that no other events were deleted
fwo reasons: events’ attributes may math without inappropriately. While Merkle aggregation queries prove
the events matchingd, or nodes may occur wherdhat no matching event is excluded from a query result,
(Q"(x) v QT (y)) is false, butQ" (x@y) is true. We call safe deletion requires the contrapositive: proving to an

a predicate exact if there can be no false matches. Thiguditor that each purged event was legitimately purged

because it did not match the predicate.
occurs whenQ(x) < Q' (F'(x)) and Q" (x) vV Q' (y) < :
Q" (x@y). Exact queries are more efficient because aLetQ(x) be a stable query that is true for all events that

r :
query result does not include falsely matching events attf '099€er must keep. L&D’ (x) be the corresponding

the corresponding pruned tree proving the correctnesfdicate over attributes. The logger stores a pruned tree
the query result does not require extra nodes. that includes aII_ r_lodes and leaf events whefex) is
Given these properties, we can now define the adHHe' The remaining nodes may be elided and replaced

tional operations for performing authenticated queries " Stubs. When a logger cannot generate a path to a
the log for events matching a predic&E. previously deleted everX;, it instead supplies a pruned
tree that includes a path to an ancestor na@déXx; where

H.QUERY(Cj,Q") — P Given a predicateQ" over Q' (A) is false. Becaus® is stable, ifQ" (A) is false,
attributest, returns a pruned tree where every elidetienQ" (I'(X;)) andQ(X;) must also be false.

Safe deletion and auditing policies must take intotel Core 2 Duo 2.4GHz CPU with 4GB of RAM in
account that if a subtree containing eveids..X; is 64-bit mode under Linux. Our present implementation is
purged, the logger is unable to generate incrementalsimgle-threaded, so the second CPU core is underutilized.
membership proofs involving commitmer@s...C;j. The Our implementation uses SHA-1 hashes and 1024-bit
auditing policy must require that any audits using tho§¥SA signatures, borrowed from the OpenSSL library.
commitments be performed before the correspondindn our implementation, we use the array-based post-
events are deleted, which may be as simple as requirgrder traversal representation discussed in Section 3.3.
that clients periodically request an incremental proof toTdne value store and history tree are stored in separate
later or long-lived commitment. write-once append-only files and mapped into memory.

Safe deletion will not save space when using tidodes in the history tree use a fixed number of bytes,
append-only storage described in Section 3.3. Howeveermitting direct access. Generating membership and
if data-destruction policies require destroying a sub$etincremental proofs requires RAM proportional to the
events in the log, safe deletion may be used to prove teite of the proof, which is logarithmic in the number of
no unauthorized log events were destroyed. events in the log. Merkle aggregation query result sizes
“Private” search Merkle a " bl Ere presently limited to those which can fit in RAM,

ggregation enapies a Weaapproximately4 million events.

variant of private information retrieval [14], permitting . .
. . o . The storage overheads of our tamper-evident history
clients to have privacy for the specific contents of their) .
. tree are modest. Our prototype stores five attributes for
events. To aggregate the attributes of an event, the logger
. ach event. Tags and host names are encoded as 2-0f-32
only needs the attributes of an evelnfX;), not the event

. . L bit Bloom filters. Facilities and hosts are encoded as
itself. To verify that aggregation is done correctly alsQ.

only requires the attributes of an event. If clients encry&t-vectors. To permit range queries to find every event

. - n a particular range of time, an interval is used to encode
their events and digitally sign their public attribute .
E?e message timestamp. All together, there are twenty

auditors may verify that aggregation is done correc :
. : y fy aggregat tes of attributes and twenty bytes for a SHA-1 hash for
while clients preserve their event privacy from the logge . : .

. . each node in the history tree. Leaves have an additional
and other clients and auditors.

Bloom filters, in addition to providing a compact an(tjwelve bytes to store the offset and length of the event

) contents in the value store.
approximate way to represent the presence or absen ; .
e ran a number of simulations of our prototype to

of a large number of keywords, can also enable privaggtermine the processing time and space overheads of
indexing (see, e.g., Goh [23]). The logger has no idﬁﬁa P 9 b

what the individual keywords are within the Bloon}oe history tree. To this end, we collected a trace of

filter: many keywords could map to the same bit Thlsur million events from thirteen of our departmental
’ y key | server hosts over 106 hours. We observed 9 facilities,

allows for private keywords that are still protected by thhe levels, and 52 distinct tags. 88.1% of the events are

integrity mechanisms of the tree. from the mail server and 11.5% are from 98,743 failed
; ; ssh connection attempts. Only .393% of the log lines
S SySIOg prototype Implementatlon are from other sources. In testing our history tree, we
Syslog is the standard Unix-based logging system [38play this trace 20 times to insert 80 million events. Our
storing events with many attributes. To demonstrate thgslog trace, after the replay, occupies 14.0 GB, while the
effectiveness of our history tree, we built an implementhistory tree adds an additional 13.6 GB.
tion capable of storing and searching syslog events. Usj
events from syslog traces, captured from our departmerﬁ:g]' Performance of the logger
servers, we evaluated the storage and performance cosi®he logger is the only centralized host in our design
of tamper-evident logging and secure deletion. and may be a bottleneck. The performance of a real world
Each syslog eventincludes a timestamp, the host geregger will depend on the auditing policy and relative
ating the event, one of Zécilities or subsystem that gen-frequency between inserting events and requesting audits.
erated the event, one of 8 loggitayels, and thamessage. Rather than summarize the performance of the logger for
Most events also include tag indicating the program one particular auditing policy, we benchmark the costs of
generating the event. Solutions for authentication, mahe various tasks performed by the logger.
agement, and reliable delivery of syslog events over theOur captured syslog traces averaged only ten events per
network have already been proposed [48] and are in #econd. Our prototype can insert events at a rate of 1,750
process of being standardized [32], but none of this woglents per second, including DSA signature generation.
addresses the logging semantics that we wish to providaserting an event requires four steps, shown in Table 2,
Our prototype implementation was written in a hybridith the final step, signing the resulting commitment,
of Python 2.5.2 and C++ and was benchmarked on msponsible for most of the processing time. Throughput

Step | Task % of CPU Rate roughly 10% slower on the larger log.
(events/sec)
A | Parse sysiog message _ 2.4% gr,000; 5.2 Performance of auditors and clients
(B: g‘:ﬁretrz;’sz;';t;iltc;?ent li'gz//z ig'ggg The history tree places few demands upon auditors
D Sign commitment 83:3% 2:100 or che_nts. Auqlltors and clients must \{erlfy the logger’s
Membership proofs - 8.600 commitment signatures and ‘must verify the correctness
(with locality) of prungd tree replies to audl'qng requests. Our machine
Membership proofs . 32 | can verify 1,900 DSA-1024 signatures per second. Our
(no locality) current tree parser is written in Python and is rather slow.

It can only parse 480 pruned trees per second. Once
Table 2: Performance of the logger in each of the four steps re- the pruned tree has been parsed our machine can verify
quired to insert an event and sign the resulting commitmiedt a . .
in generating membership proofs. Rates are given assuming 9,000 incremental or membership proofs per second.
nothing other than the specified step is being performed. Presently, one auditor cannot verify proofs as fast as the
logger can generate them, but auditors can clearly operate

would increase to 10,500 events per second if the D®fependently of one another, in parallel, allowing for
signatures were computed elsewhere (e.g., leveragiii@eptional scaling, if desired.

multiple CPU cores). (Section 6 discusses scalabilit .
in more detail.) This corresponds to 1.9MB/sec 5/ Merkle aggregation results
uncompressed syslog data (1.1 TB per week). In this subsection, we describe the benefits of Merkle
We also measured the rate at which our prototype caggregation in generating query results and in safe
generate membership and incremental proofs. The sizalefetion. In our experiments, due to limitations of our
an incremental proof between two commitments deperidglementation in generating large pruned trees, our
upon the distance between the two commitments. As tMerkle aggregation experiments used the smaller four
distance varies from around two to two million eventsnillion event log.
the size of a self-contained proof varies from 1200 bytesWe used 86 different predicates to investigate the
to 2500 bytes. The speed for generating these probénefits of safe deletion and the overheads of Merkle
varies from 10,500 proofs/sec to 18,000 proofs/sec, waligregation queries. We used 52 predicates, each match-
shorter distances having smaller proof sizes and fasteg one tag, 13 predicates, each matching one host, 9
performance than longer distances. For both incremergeddicates, each matching one facility, 6 predicates, one
and membership proofs, compressing by gzip [18] halvestching each level, and 6 predicates, each matching the
the size of the proofs, but also halves the rate at whiklighest logging levels.
proofs can be generated. The predicates matching tags and hosts use Bloom
After inserting 80 million events into the history treefilters, areinexact, and may have false positives. This
the history tree and value store require 27 GB, sevef@uses 34 of the 65 Bloom filter query results to include
times larger than our test machine’s RAM capacitjiore nodes than our “worst case” expectation for exact
Table 2 presents our results for two membership auditingedicates. By using larger Bloom filters, we reduce
scenarios. In our first scenario we requested memberdhip chances of spurious matches. When a 4-of-64
proofs for random events chosen among the most recBiom filter is used for tags and hostnames, pruned trees
5 million events inserted. Our prototype generated 8,60pulting from search queries average 15% fewer nodes,
self-contained membership proofs per second, averagaighe cost of an extra 64 bits of attributes for each node
2,400 bytes each. In this high-locality scenario, the mdstthe history tree. In a real implementation, the exact
recent 5 million events were already sitting in RAM. Ouparameters of the Bloom filter would best be tuned to
second scenario examined the situation when audit Féatch a sample of the events being logged.

quests had low locality by requesting membership progfferkle aggregation and safe deletion Safe deletion
for random events anywhere in the log. The loggefglows the purging of unwanted events from the log.
performance was limited to our disk’s seek latency. Progfiditors define a stable predicate over the attributes of
size averaged 3,100 bytes and performance degradegignts indicating which events must be kept, and the
32 membership proofs per second. (We discuss how tfgjgger keeps a pruned tree of only those matching events.
might be overcome in Section 6.2.) In our first test, we simulated the deletion of all events
To test the scalability of the history tree, we benclexcept those from a particular host. The pruned tree was
marked insert performance and auditing performance generated in 14 seconds, containing 1.92% of the events
our original 4 million event syslog event trace, withouh the full log and serialized to 2.29% of the size of the
replication, and the 80 million event trace after 20full tree. Although 98.08% of the events were purged, the
replication. Event insertion and incremental auditing alegger was only able to purge 95.1% of the nodes in the

1F T T T T T T = 1le+06 T T
Non-bloom
g ° = x Bloom, 2-0f-32 bits
° g g 100000 | © Bloom, 4-0f-64 bits ~ ©
L~ 01F . < p] s Worst case
5] o °) o ?g R ‘o Best case
< ¥ Xxy © L e % 2 10000 | 9 x
L o *
g 0ol ® g o s
g ° Se o & n = 1000 F .
« £ 60 o
S 0001} ox °°° 2 8, o °
< « k=]) ©
- X 5 100 p ® ooX) x
g *o ® 5 © - OO i @
S 00001f &0 &, g w o goo
g © 10 + =)
i s A Non-bloom % opm ® o2 3
05 | * Bloom, 2-0f-32 bits ~ * i 5 X @ L
1e-:05 Bloom. 4-0f-64 bits o g 1f TN
Worst Case < ®
Best Case
16-06 ‘ ‘ ‘ ‘ ; ‘ ‘ 01 ‘ ‘ ‘ ‘ ‘ ‘
le-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1 le-07 1e-06 1le-05 0.0001 0001 001 01 1
Fraction of events kept Fraction of events in the query result
Figure 9: Safe deletion overhead. For a variety of queries, Figure 10: Query overhead per event. We plot the ratio be-
we plot the fraction of hashes and attributes kept aftertidele tween the number of hashes and matching events in the result
versus the fraction of events kept. of each query versus the fraction of events matching theyquer

history tree because the logger must keep the hash laheted, per event, for authentication information. We also
and attributes for the root nodes of elided subtrees. plot the analytic best-case and worst-case bounds, based

When measuring the size of a pruned history tr@& a continuous approximation. The minimum overhead
generated by safe deletion, we assume the logger cade@!rs when the matching events are contiguous in the
hashes and attributes for all interior nodes in order to I8@. The worst-case occurs when events are maximally
able to quickly generate proofs. For each predicate, weparated in the log. With exact predicates, the overhead
measure théept ratio, the number of interior node orof authenticated query results is very modest, and again,
stubs in a pruned tree of all nodes matching the prediciitexact Bloom filter queries will sometimes do worse
divided by the number of interior nodes in the full histor{han the “worst case.”

tree. In Figure 9 for each predicate we plot the kept ra\t:ge . .
versus the fraction of events matching the predicate. Scalmg atam per-ewdent Iog

also plot the analytic best-case and worst-case boundsy, yhg section, we discuss techniques to improve the

based on a continuous approximation. The mlnlmuirllilsertthroughput of the history tree by using concurrency,

overhead occurs when the matching events are contigugyy improve the auditing throughput with replication.

in the log. The worst-case occurs when events are Mggs 4150 discuss a technique to amortize the overhead of
imally separated in the log. Our Bloom-filter queries dg digital signature over several events
worse than the “worst-case” bound because Bloom filter

matches are inexact and will thus trigger false positiel Faster inserts via concurrency
matches on interior nodes, forcing them to be kept in theour tamper-evident log offers many opportunities to

resulting pruned tree. Although many Bloom filters difjeverage concurrency to increase throughput. Perhaps

far worse than the Worst-c:lse, among the_BIoom filte Re simplest approach is to offload signature generation.
that matched fewer than 1% of the events in the log, t fom Table 2 signatures account for over 80% of the

logger is still able to purge over 90% of the nodes in the . : : .
. . runtime cost of an insert. Signatures are not included
history tree and often did much better than that. 9

in any other hashes and there are no interdependencies
Merkle aggregation and authenticated query results between signature computations. Furthermore, signing
In our second test, we examine the overheads for Merkleommitment does not require knowing anything other
aggregation query lookup results. When the loggt#ran the root commitment of the history tree. Conse-
generates the results to a query, the resulting prursgeently, it's easy to offload signature computations onto
tree will contain both matching events and history tremglditional CPU cores, additional hosts, or hardware
overhead, in the form of hashes and attributes for aesgypto accelerators to improve throughput.

stubs. For each predicate, we measurejtieey overhead Itis possible for a logger to also generate commitments
ratio—the number of stubs and interior nodes in a prunedncurrently. If we examine Table 2, parsing and inserting
tree divided by the number of events in the pruned trements in the log is about two times faster than generating
In Figure 10 we plot the query overhead ratio versus thbemmitments. Like signatures, commitments have no
fraction of events matching the query for each of our 86terdependencies on one other; they depend only on the
predicates. This plot shows, for each event matchindhistory tree contents. As soon as ev¥pis inserted into
predicate, proportionally how much extra overhead is ithe tree an®(1) frozen hashes are computed and stored,

a new event may be immediately logged. Computiggger has insufficient CPU to sign every commitment,
the commitmen€; only requires read-only access to ththe logger could instead delay returni@g until it has
history tree, allowing it to be computed concurrently ba signature for some later commitmeyt (j > i). This
another CPU core without interfering with subsequelatter signed commitment could then be sent to the client
events. By using shared memory and taking advantagesgpecting an earlier one. To ensure that the exgrin
the append-only write-once semantics of the history tréke log committed byC; was X, the client may request
we would expect concurrency overhead to be low. a membership proof from commitme@i to eventi and

We have experimentally verified the maximum rateerify thatX; = X. This is safe due to the tamper-evidence
at which our prototype implementation, described f our structure. If the logger were ever to later sigG; a
Section 5, can insert syslog events into the log at 38,0@0onsistent witlC;, it would fail an incremental proof.
events per second using only one CPU core on commodityn our prototype, inserting events into the log is twenty
hardware. This is the maximum throughput our hardwdiges faster than generating and signing commitments.
could potentially support. In this mode we assume thahe logger may amortize the costs of generating a signed
digital signatures, commitment generation, and aug@mmitment over many inserted events. The number of
requests are delegated to additional CPU cores or host®nts per signed commitment could vary dynamically
With multiple hosts, each host must build a replica ofith the load on the logger. Under light load, the logger
the history tree which can be done at least as fast cild sign every commitment and insert 1,750 events per
our maximum insert rate of 38,000 events per secorsgcond. With increasing load, the logger might sign one in
Additional CPU cores on these hosts can then be useddgery 16 commitments to obtain an estimated insert rate of
generating commitments or handling audit requests. 17,000 events per second. Clients will still receive signed

For some applications, 38,000 events per second nggynmitments within a fraction of a second, but several
still not be fast enough. Scaling beyond this woulgients can now receive the same commitment. Note that
require fragmenting the event insertion and storage tagiis analysis only considers the maximum insert rate for
across multiple logs. To break interdependencies betwée@log and does not include the costs of replying to audits.
them, the fundamental history tree data structure Wée overall performance improvements depend on how
presently use would need to evolve, perhaps into disjoftften clients request incremental and membership proofs.
logs that occasionally entangle with one another as i
timeline entanglement [43]. Designing and evaluatin Related work

such a structure is future work. There has been recent interest in creating append-only
6.2 Logs larger than RAM datab_ases for_ _regulatory complianc_e. These databases
permit the ability to access old versions and trace tam-

For exceptionally large audits or queries, where thgring [51]. A variety of different data structures are
working set size does not fit into RAM, we observegsed, including a B-tree [64] and a full text index [47].
that throughput was limited to disk seek latency. Similghe security of these systems depends on a write-once
issues occur in any database query system that us@santics of the underlying storage that cannot be
secondary storage, and the same software and hardwagiependently verified by a remote auditor.
techniques used by databases to speed up queries m@brward-secure digital signature schemes [3] or stream
be used, including faster or higher throughput storaggthentication [21] can be used for signing commitments
systems or partitioning the data and storing it in-memoiiy our scheme or any other logging scheme. Entries in the
across a cluster of machines. A single large query c@@ may be encrypted by clients for privacy. Kelsey and
then be issued to the cluster node managing each sub-t&@ineier [57] have the logger encrypt entries with a key
The results would then be merged before transmitting thestroyed after use, preventing an attacker from reading
results to the auditor. Because each sub-tree would fityst log entries. A hash function is iterated to generate
its host's RAM, sub-queries would run quickly. the encryption keys. The initial hash is sent to a trusted
6.3 Signing batches of events auditor so that it may decrypt events. Logcrypt [29]

extends this to public key cryptography.

When large computer clusters are unavailable and theMa and Tsudik [41] consider tamper-evident logs built
performance cost of DSA signatures is the limiting factarsing forward-secure sequential aggregating signature
in the logger’s throughput, we may improve performansghemes [39, 40]. Their design is round-based. Within
of the logger by allowing multiple updates to be handlashch round, the logger evolves its signature, combining
with one signature computation. a new event with the existing signature to generate a new

Normally, when a client requests an evefitto be signature, and also evolves the authentication key. At the
inserted, the logger assigns it an indexgenerates theend of a round, the final signature can authenticate any
commitmentC;, signs it, and returns the result. If theeventinserted.

Davis et. al. [17] permits keyword searching in a logte a secure aggregate of a set of measurements. In Merkle
by trusting the logger to build parallel hash chains faggregation, we use intermediate aggregates as a tool for
each keyword. Techniques have also been designedgerforming efficient queries. Also, our Merkle aggre-
keyword searching encrypted logs [60, 61]. A tampegation construction is more efficient than these designs,
evident store for voting machines has been proposeetjuiring fewer cryptographic hashes to verify an event.
based on append-only signatures [33], but the signature .
sizes grow with the number of signed messages [6]. 8 Conclusions

Many timestamping services have been proposed N, this work we have shown that regular and continous

the literature. Haber and Stornetta [27] introduce a tim&aditing is a critical operation for any tamper-evident log

stamping service based on hash chains, which influenggdie for without auditing, clients cannot detect if a

the design of Surety, a commercial timestamping Servigg antine logger is misbehaving by not logging events,
that publishes their head commitment in a newspapgh,oying unaudited events, or forking the log. From this
once a week. Chronos is a digital timestamping Servifgyuirement we have developed a new tamper-evident
inspired I_Jyaskip list, but With a hashing strL_Jcture sim_il%g design, based on a new Merkle tree data structure
to our history tree [7]. This and other timestamping,at permits a logger to produce concise proofs of its
designs [9, 10] are round-based. In each round, the 109g8frect hehavior. Our system eliminates any need to trust
collects a set of events and stores the events within t logger, instead allowing clients and auditors of the
round in a tree, skip list, or DAG. At the end of the rounghqer t9 efficiently verify its correct behavior with only a
the logger publicly broadcasts (e.g., in a newspapgghstant amount of local state. By sharing commitments
the commitment for that round. Clients then obtain &nong clients and auditors, our design is resistant even
logarithmically-sized, tamper-evident proof that thejy, gophisticated forking or rollback attacks, even in cases

events are stored within that round and are consistgfiare 5 client might change its mind and try to repudiate
with the published commitment. Efficient algorithms,,ants that it had logged earlier.

have been constructed for outputting time stamp auye 4150 proposed Merkle aggregation, a flexible
thentication information for successive events within fechanism for encoding auxiliary attributes into a

round in a streaming fashion, with minimal storage on tho e tree that allows these attributes to be aggregated
server [37]. Unlike these systems, our history tree allowg,, the leaves up to the root of the tree in a verifiable
events to be added to the log, commitments generatgdyion This technique permits a wide range of efficient,
and audits to be performed atany time.. amper-evident queries, as well as enabling verifiable,
Maniatis and Baker [43] introduced the idediofieline gafe deletion of “expired” events from the log.
entanglement, where every participant in a distributed oyr prototype implementation supports thousands of
system maintains a log. Every time a message is receivignts per second, and can easily scale to very large
it is added to the log, and every message transmltqggs_ We also demonstrated the effectiveness of Bloom
contains the hash of the log head. This process sprefisrs to enable a broad range of queries. By virtue of its
commitments throughout the network, making it hardgpncise proofs and scalable design, our techniques can
for malicious nodes to diverge from the canonical timgy, applied in a variety of domains where high volumes

line without there being evidence somewhere that coygl |ogged events might otherwise preclude the use of
be used in an audit to detect tampering. Auditorium [Sg}mper-evident logs.

uses this property to create a shared “bulletin board” that
can detect tampering even whir- 1 systems are faulty. Acknow|edgements

Secure aggregation has been investigated as a dis- .
" ggregat nvestg ISI'he authors gratefully acknowledge Farinaz Koushan-

tributed protocol in sensor networks for computing sums, X .
P ptring B Daniel Sandler, and Moshe Vardi for many helpful

medians, and other aggregate values when the h d di) hi . Th h
doing the aggregation is not trusted. Techniques incluglymments and discussions on this project. e authors

trading off approximate results in return for suinneaﬂJSO thank the anonymous referees and Micah Sherr, our

- ; ; hepherd, for their assistance. This work was supported,
communication complexity [12], or using MAC code$
to detect one-hop errors in computing aggregates [36*].part, by NSF grants CNS-0524211 and CNS-0509297.

Other aggregation pr_ot(_)cols have been based am‘R%ferences

hash tree structures similar to the ones we developed for . .
Merkle aggregation. These structures combine aggregdl ACCORSL R.,AND HOHL, A. Delegating secure logging
tion and cryptographic hashing, and include distributed " Pervasive computing systems. Sacurity in Pervasive

. . Computing (York, UK, Apr. 2006), pp. 58—72.
sensor-network aggregation protocols for computing Aln1 ANAGNOSTOPOULOSA., GOODRICH, M. T., AND

thenticated sums [13] and generic aggregation [45]. The' Tamassia, R. Persistent authenticated dictionaries and
sensor network aggregation protocols interactively gener their applications. Innternational Conference on

Information Security (1SC) (Seoul, Korea, Dec. 2001), (Malaga, Spain, Oct. 2004), pp. 532-545.

pp. 379-393. [18] DeuTscH, P. Gzip file format specification version 4.3.

[3] BELLARE, M., AND MINER, S. K. A forward-secure RFC 1952, May 1996http://www.ietf.org/rfc/rfc1952.txt.
digital signature scheme. BRYPTO'99 (Santa Barbara, [19] DeEVANBU, P., GERTZ, M., KWONG, A., MARTEL, C.,
CA, Aug. 1999), pp. 431-448. NuckoLLs, G.,AND STUBBLEBINE, S. G. Flexible

[4] BELLARE, M., AND YEE, B. S. Forward integrity for authentication of XML documentslournal of Computer
secure audit logs. Tech. rep., University of California at Security 12, 6 (2004), 841-864.

San Diego, Nov. 1997. [20] DEvANBU, P., GERTZ, M., MARTEL, C.,AND

[5] BENALOH, J.,AND DE MARE, M. One-way STUBBLEBINE, S. G. Authentic data publication over the
accumulators: a decentralized alternative to digital internet.Journal Computer Security 11, 3 (2003),
signatures. IMbrkshop on the Theory and Application of 291-314.

Cryptographic Techniques on Advances in Cryptology [21] GENNARO, R.,AND ROHATGI, P. How to sign digital
(EuroCrypt ’ 93) (Lofthus, Norway, May 1993), streams. ICRYPTO’ 97 (Santa Barbara, CA, Aug.
pp. 274-285. 1997), pp. 180-197.

[6] BETHENCOURT, J., BONEH, D., AND WATERS, B. [22] GERR, P. A., BABINEAU, B., AND GORDON, P. C.
Cryptographic methods for storing ballots on a voting Compliance: The effect on information management and
machine. InNetwork and Distributed System Security the storage industry. The Enterprise Storage Group, May
Symposium (NDSS) (San Diego, CA, Feb. 2007). 2003. http://searchstorage.techtarget.com/tip/0, 289483,

[7] BLIBECH, K., AND GABILLON, A. CHRONOS: An sid5_gci906152,00.html.
authenticated dictionary based on skip lists for [23] GoH, E.-J. Secure indexes. Cryptology ePrint Archive,
timestamping systems. Mbrkshop on Secure Web Report 2003/216, 2003ttp://eprint.iacr.org/2003/216/
Services (Fairfax, VA, Nov. 2005), pp. 84-90. See alsahitp://eujingoh.com/papers/secureindex/.

[8] BLooM, B. H. Spacef/time trade-offs in hash coding witj24] GoobRICH, M., TAMASSIA, R.,AND SCHWERIN, A.
allowable errorsCommunications of the ACM 13, 7 Implementation of an authenticated dictionary with skip
(1970), 422—-426. lists and commutative hashing. IARPA Information

[9] BuLDAS, A., LAuD, P., LIPMAA, H., AND Survivability Conference & Exposition |1 (DISCEX I1)
WILLEMSON, J. Time-stamping with binary linking (Anaheim, CA, June 2001), pp. 68—-82.
schemes. ICRYPTO 98 (Santa Barbara, CA, Aug. [25] GooDRICH, M. T., TAMASSIA, R., TRIANDOPOULOS
1998), pp. 486-501. N., AND COHEN, R. F. Authenticated data structures for

[10] BULDAS, A., LIPMAA, H., AND SCHOENMAKERS, B. graph and geometric searching.Tiopics in Cryptology,
Optimally efficient accountable time-stamping. In The Cryptographers’ Track at the RSA Conference
International Workshop on Practice and Theory in Public (CT-RA) (San Francisco, CA, Apr. 2003), pp. 295-313.
Key Cryptography (PKC) (Melbourne, Victoria, Australia, [26] GovAL, V., PANDEY, O., SAHAI, A., AND WATERS, B.
Jan. 2000), pp. 293-305. Attribute-based encryption for fine-grained access contro

[11] CAMENISCH, J.,AND LYSYANSKAYA, A. Dynamic of encrypted data. IACM Conference on Computer and
accumulators and application to efficient revocation of Communications Security (CCS’06) (Alexandria,
anonymous credentials. ©RYPTO '02 (Santa Barbara, Virginia, Oct. 2006), pp. 89-98.

CA, Aug. 2002), pp. 61-76. [27] HABER, S.,AND STORNETTA, W. S. How to time-stamp

[12] CHAN, H., PERRIG, A., PRZYDATEK, B., AND SONG, a digital document. 'CRYPTO '98 (Santa Barbara, CA,
D. SIA: Secure information aggregation in sensor 1990), pp. 437-455.
networks.Journal Computer Security 15, 1 (2007), [28] HAEBERLEN, A., KOUZNETSOV, P.,AND DRUSCHEL,
69-102. P. PeerReview: Practical accountability for distributed

[13] CHAN, H., PERRIG, A., AND SONG, D. Secure systems. IrBOSP ' 07 (Stevenson, WA, Oct. 2007).
hierarchical in-network aggregation in sensor networks. [29] HoLT, J. E. Logcrypt: Forward security and public
In ACM Conference on Computer and Communications verification for secure audit logs. Australasian
Security (CCS’ 06) (Alexandria, VA, Oct. 2006), Workshops on Grid Computing and E-research (Hobart,
pp. 278-287. Tasmania, Australia, 2006).

[14] CHOR, B., GOLDREICH, O., KUSHILEVITZ, E.,AND [30] Hu, L., AND EVANS, D. Secure aggregation for wireless
SUDAN, M. Private information retrieval. IAnnual networks. InSymposium on Applications and the I nternet
Symposium on Foundations of Computer Science Workshops (SAINT) (Orlando, FL, July 2003), p. 384.
(Milwaukee, WI, Oct. 1995), pp. 41-50. [31] ITkIS, G. Cryptographic tamper evidence. AGM

[15] CHUN, B.-G., MANIATIS, P., SHENKER, S.,AND Conference on Computer and Communications Security
KuslaTowicz, J. Attested append-only memory: (CCS’03) (Washington D.C., Oct. 2003), pp. 355-364.
Making adversaries stick to their word. 8DSP ' 07 [32] KELSEY, J., CALLAS, J.,AND CLEMM, A. Signed
(Stevenson, WA, Oct. 2007), Pp. 189-204. Sys|og messages.

[16] D. S. RRKER, J., POPEK, G. J., RUDISIN, G., http://tools.ietf.org/id/draft-ietf-syslog-sign-23.txt (work in
STOUGHTON, A., WALKER, B. J., WALTON, E., CHow, progress), Sept. 2007.

J. M., EDWARDS, D., KISER, S.,AND KLINE, C. 33] KiLTZ, E., MITYAGIN, A., PANJWANI, S.,AND
Detection of mutual inconsistency in distributed systems. RAGHAVAN , B. Append-only signatures. Imternational
IEEE Transactions on Software Engineering 9, 3 (1983), Colloguium on Automata, Languages and Programming
240-247. (Lisboa, Portugal, July 2005).

[17] DAvis, D., MONROSE F.,AND REITER, M. K. [34] KocHER, P. C. On certificate revocation and validation.
Time-scoped searching of encrypted audit logs. In In International Conference on Financial Cryptography

Information and Communications Security Conference

(FC’98) (Anguilla, British West Indies, Feb. 1998), [51] PavLou, K., AND SNODGRASS R. T. Forensic analysis

pp. 172-177. of database tampering. AxCM S GMOD International

[35] KOTLA, R., ALvisI, L., DAHLIN, M., CLEMENT, A., Conference on Management of Data (Chicago, IL, June
AND WONG, E. Zyzzyva: Speculative byzantine fault 2006), pp. 109-120.
tolerance. IMSOSP ' 07 (Stevenson, WA, Oct. 2007), [52] PETERSON Z. N. J., BURNS, R., ATENIESE, G.,AND
pp. 45-58. BoNo, S. Design and implementation of verifiable audit

[36] L1, J., KROHN, M., MAZIERES D., AND SHASHA, D. trails for a versioning file system. MSENIX Conference
Secure untrusted data repository (SUNDR)Ojgerating on File and Storage Technologies (San Jose, CA, Feb.
Systems Design & Implementation (OSDI) (San 2007).

Francisco, CA, Dec. 2004). [53] PuGH, W. Skip lists: A probabilistic alternative to

[37] LiPMAA, H. On optimal hash tree traversal for interval balanced trees. IMbrkshop on Algorithms and Data
time-stamping. IrProceedings of the 5th International Structures (1989), pp. 437-449.

Conference on Information Security (1SC02) (Seoul, [54] SaHAI, A., AND WATERS, B. Fuzzy identity based
Korea, Nov. 2002), pp. 357-371. encryption. InWorkshop on the Theory and Application

[38] Lonvick, C. The BSD Syslog protocol. RFC 3164, of Cryptographic Techniques on Advances in Cryptology
Aug. 2001.http://www.ietf.org/rfc/rfc3164.txt. (EuroCrypt '05) (May 2005), vol. 3494, pp. 457 — 473.

[39] MA, D. Practical forward secure sequential aggregate [55] SANDLER, D., AND WALLACH, D. S. Casting votes in
signatures. IfProceedings of the 2008 ACM symposium the Auditorium. INUSENIX/ACCURATE Electronic
on Information, computer and communications security Voting Technology Workshop (EVT’ 07) (Boston, MA,

(AS ACCS 08) (Tokyo, Japan, Mar. 2008), pp. 341-352. Aug. 2007).

[40] MA, D.,AND TSUDIK, G. Forward-secure sequential [56] SCHNEIER, B., AND KELSEY, J. Automatic event-stream
aggregate authentication. Rnoceedings of the 2007 notarization using digital signatures. $acurity Protocols
| EEE Symposium on Security and Privacy (Oakland, CA, Workshop (Cambridge, UK, Apr. 1996), pp. 155-169.
May 2007), IEEE Computer Society, pp. 86-91. [57] SCHNEIER, B., AND KELSEY, J. Secure audit logs to

[41] MA, D.,AND TsuUDIK, G. A new approach to secure support computer forensicACM Transactions on
logging. Transactions on Sorage 5, 1 (2009), 1-21. Information and System Security 1, 3 (1999).

[42] MANIATIS, P.,AND BAKER, M. Enabling the archival ~ [58] SION, R. Strong WORM. Irinternational Conference on
storage of signed documents. RAST ' 02: Proceedings Distributed Computing Systems (Beijing, China, May
of the 1st USENIX Conference on File and Sorage 2008), pp. 69-76.

Technologies (Monterey, CA, 2002). [59] SNODGRASS R. T., YAO, S. S. AND COLLBERG, C.

[43] MANIATIS, P.,AND BAKER, M. Secure history Tamper detection in audit logs. @onference on Very
preservation through timeline entanglementUSENIX Large Data Bases (VLDB) (Toronto, Canada, Aug. 2004),
Security Symposium (San Francisco, CA, Aug. 2002). pp. 504-515.

[44] MANIATIS, P., RoussopouLosM., GiuLl, T. J., [60] SongG, D. X., WAGNER, D., AND PERRIG, A. Practical
ROSENTHAL, D. S. H.,AND BAKER, M. The LOCKSS techniques for searches on encrypted datdERE
peer-to-peer digital preservation systeACM Symposium on Security and Privacy (Berkeley, CA, May
Transactions on Computer Systems 23, 1 (2005), 2—50. 2000), pp. 44-55.

[45] MANULIS, M., AND SCHWENK, J. Provably secure [61] WATERS, B. R., BALFANZ, D., DURFEE, G.,AND
framework for information aggregation in sensor SMETTERS, D. K. Building an encrypted and searchable
networks. InComputational Science and Its Applications audit log. InNetwork and Distributed System Security
(ICCSA) (Kuala Lumpur, Malaysia, Aug. 2007), Symposium (NDSS) (San Diego, CA, Feb. 2004).
pp. 603-621. [62] WEATHERSPOONH., WELLS, C.,AND KUBIATOWICZ,

[46] MERKLE, R. C. A digital signature based on a J. Naming and integrity: Self-verifying data in
conventional encryption function. @RYPTO 88 (1988), peer-to-peer systems. Future Directionsin Distributed
pp. 369-378. Computing (2003), vol. 2584 of_ecture Notesin

[47] MITRA, S., Hsu, W. W., AND WINSLETT, M. Computer Science, pp. 142-147.

Trustworthy keyword search for regulatory-compliant [63] YUMEREFENDI, A. R., AND CHASE, J. S. Strong
records retention. Iimternational Conference on Very accountability for network storagdCM Transactions on
Large Databases (VLDB) (Seoul, Korea, Sept. 2006), Storage 3, 3 (2007).

pp. 1001-1012. [64] ZHu, Q.,AND Hsu, W. W. Fossilized index: The

[48] MONTEIRO, S. D. S. AND ERBACHER, R. F. linchpin of trustworthy non-alterable electronic records
Exemplifying attack identification and analysis in a novel In ACM SIGMOD International Conference on
forensically viable Syslog model. Mbrkshop on Management of Data (Baltimore, MD, June 2005),
Yystematic Approaches to Digital Forensic Engineering pp. 395-406.

(Oakland, CA, May 2008), pp. 57-68.

[49] NAOR, M., AND NissIM, K. Certificate revocation and
certificate update. ILWSENIX Security Symposium (San
Antonio, TX, Jan. 1998).

[50] OsTROVSKY, R., SAHAI, A., AND WATERS, B.
Attribute-based encryption with non-monotonic access
structures. IPACM Conference on Computer and
Communications Security (CCS’07) (Alexandria, VA,
Oct. 2007), pp. 195-203.

