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Abstract

Local interpretability methods are widely used because of their ability to generate explanations tailored to
individual data points even for complex black-box models. Although these methods are not designed to pro-
vide a global view of a model’s behavior, many common interpretability tools offer makeshift global feature
attributions obtained by taking the mean absolute value of each feature’s (local) attribution scores across
all training data points and then ranking the features by their average scores. We argue that averaging fea-
ture attribution scores may not always be appropriate and explore the ramifications of doing so. We present
an artifact-based interview study intended to investigate whether ML developers would benefit from being
able to compare and contrast different global feature attributions obtained by ranking features by other
summary statistics of their attribution scores. We find that participants are able to use these global feature
attributions to achieve different tasks and objectives. Viewing multiple global feature attributions increased
participants’ uncertainty in their understanding of the underlying model as they became more aware of the
intricacies of the model’s behavior. However, participants expressed concerns about the time it would take
to compare and contrast different global feature attributions, echoing observations from prior work about
the need to balance the benefits of thinking fast and thinking slow when designing interpretability tools.

1 Introduction

Machine learning (ML) is used in a wide range of domains, including medicine, finance, and education. Appli-
cations of ML impact people’s day-to-day lives and livelihoods, yet the behavior of popular models like neural
networks is often too complex to fully understand or communicate. In order for stakeholders of systems that rely
on ML—including ML developers, domain experts, and those impacted by such systems—to reason about their
behavior, the models involved must be interpretable. Interpretability can support knowledge discovery, enable
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stakeholders to surface problematic model behavior, enhance stakeholders’ abilities to communicate what their
models have learned, and provide stakeholders with a way to calibrate their trust in models [11, 28].

There are two common approaches to achieving model interpretability. The first is to train simple and
transparent glass-box models that are intended to be interpretable by design. Common examples include decision
trees [22], point systems [30, 12], and generalized additive models [9, 6]. By examining the internals of a
glass-box model, it is possible to obtain an accurate global view of that model’s behavior.

In contrast, local interpretability methods provide (generally post-hoc) explanations of a model’s predictions
for individual data points. Local explanations can take several different forms. Some explain predictions in terms
of the most influential training data points [e.g., 14]. Others provide counterfactual explanations, describing how
data points could be modified to obtain different predictions [e.g., 26, 27]. Perhaps most often, local explanations
take the form of feature attribution scores, which capture some notion of how “important” each feature is to
each prediction, as shown in the left panel of Figure 1. For example, SHAP (Shapley Additive Explanations)
divides “credit” for a model’s prediction across all of its features using the concept of Shapley values from
cooperative game theory [18]. In contrast, LIME (Local Interpretable Model-Agnostic Explanations) generates
feature attribution scores by learning a local linear approximation of a model around each data point [23]. Because
these explanations are tailored to individual data points, local interpretability methods may be appropriate when
stakeholders need, want, or are owed individualized explanations of a model’s predictions, such as in personalized
medical contexts (e.g., to explain a patient’s predicted diagnosis or prognosis) or financial contexts (e.g., to
explain an applicant’s predicted likelihood of paying back a loan). Although such explanations do not perfectly
reflect what the underlying model is doing [25, 29], they have the advantage that they can be generated even for
complex black-box models, such as neural networks, random forests, or ensemble methods.

Despite their popularity, local interpretability methods are not designed to provide a global view of a model’s
behavior. However, many common interpretability tools, including the SHAP Python package1 and InterpretML,2

offer makeshift global feature attributions obtained by taking the mean absolute value of each feature’s attribution
scores across all training data points and then ranking the features by their average scores, as shown in the
rightmost panel of Figure 1. Such global feature attributions can give a sense of which features a model uses most
“on average” across its training dataset. This kind of concise overview of a model is valued by ML developers—
indeed, in a preliminary study that we ran in order to understand the current practices of experienced users of
interpretability tools (described in Section 2), we found that ML developers commonly rely on these global
feature attributions to get an overall sense of what their models have learned, to communicate this information to
other stakeholders, and to perform other tasks in their workflows.

However, simply averaging feature attribution scores may not always be appropriate. Reducing a distribution
to a single summary statistic loses information, and it is well known that the (arithmetic) mean is susceptible
to outliers. Relying on a single summary statistic to make inferences about individuals can lead to ecological
fallacies [24]. Furthermore, it may also obscure potentially harmful behavior exhibited by a model for the data
points associated with a particular group of people—for example, in a medical context, older patients or patients
with certain preexisting conditions. Indeed, with society’s increased emphasis on mitigating unfairness caused by
systems that rely on ML, there has been a push to move away from overreliance on averages and to instead take
a more holistic view of model behavior [e.g., 19, 3]. Since interpretability is often framed as a way to promote
fairness, overreliance on averages may be especially problematic in this context.

In Section 3, using models trained on the Adult [15] and NHANES [7] datasets as case studies, we explore the
ramifications of averaging feature attribution scores. For each model, we compare the global feature attributions
obtained using the status quo approach—that is, by taking the mean absolute value of each feature’s attribution
scores across all training data points and then ranking the features by their average scores—with a suite of global
feature attributions obtained by supplementing the mean absolute value with other summary statistics. We find that

1https://github.com/slundberg/shap
2https://interpret.ml
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Local Explanation:
Sample Explanation Plot

Feature Explanation:
Feature Dependence Plot

Global Explanation:
Global Feature Importance Ranking Plot 

Figure 1: Explanations provided by the SHAP Python package. Left: A local explanation for a single data point.
Each bar represents a single feature’s attribution score for that data point. Middle: A single feature’s attribution
scores for all training data points, with each data point represented by a dot. Right: Global feature attributions
obtained by taking the mean absolute value of each feature’s absolute attribution scores across all training data
points and then ranking the features by their average scores.

the status quo approach can yield overly simplistic global views, as well as overlooking important aspects of model
behavior that are present only for a subset of the training data points. We show that using other summary statistics
in place of the mean absolute value can help derive different, complementary insights into a model’s predictions
and may be better suited for different tasks. We therefore propose giving ML developers the opportunity to com-
pare and contrast different global feature attributions obtained by ranking features by other summary statistics of
their attribution scores, potentially enabling them to obtain a more nuanced global view of their models’ behavior.

To explore whether ML developers would benefit from being able to compare and contrast different global
feature attributions, we ran an artifact-based interview study with seven participants who had experience with
interpretability tools. Participants were first shown the usual global feature attributions provided by SHAP and
asked some questions about the underlying model. They were then shown a suite of global feature attributions
obtained by ranking features by four different summary statistics of their attribution scores—what we refer to as
a global feature attribution suite—and asked to reconsider their answers. We note that we do not view the global
feature attribution suite itself as a contribution, but rather as an artifact for exploring ML developers’ perceptions,
needs, and challenges around global feature attributions. Our study addresses the following research questions:

1. How do ML developers make sense of and use global feature attributions obtained by ranking features by
different summary statistics of their attribution scores?

2. Does the ability to compare and contrast different global feature attributions allow ML developers to better
understand the nuanced behavior of models?

3. What challenges do ML developers face when comparing and contrasting global feature attributions?

We find that ML developers are able to use different global feature attributions to achieve tasks and objectives
including communicating what their models have learned and identifying next steps for debugging their models.
Viewing the global feature attribution suite increased participants’ uncertainty in their understanding of the
underlying model (compared with viewing the usual global feature attributions alone) as they became more aware
of the intricacies of the model’s behavior. However, they expressed a tension between the benefits obtained by
using tools like SHAP to quickly get a sense of what a model has learned and the time it would take to compare
and contrast different global feature attributions. This tension might limit ML developers’ willingness to use a
global feature attribution suite in their own workflows, echoing observations from prior work about the need to
balance the benefits of thinking fast and thinking slow when designing interpretability tools [13].

This paper contributes to a recent line of research exploring human-centered approaches to interpretability.
Much of this research focuses on how stakeholders use and understand interpretability tools [17, 4, 5, 10, 16, 1,
11, 13, 31, 21, 2, 28]. Within this research, Kaur et al. [13] found that even experienced ML developers tend to
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misuse and place too much trust in interpretability tools. They therefore suggested designing interpretability tools
that explicitly highlight the nuanced behavior of models, as well as methods that counterbalance the bias toward
simple—and potentially misleading—explanations. We see our work as a first exploration of how one might
facilitate deeper understanding by enhancing overly simplistic global views of a model.

2 Preliminary Study

To better ground our research, we ran a small preliminary study during the summer of 2020 to help us understand
the current practices of experienced users of interpretability tools. We conducted semi-structured interviews
with ten ML developers (e.g., data scientists, research scientists, PhD students) across a variety of domains (e.g.,
medicine, finance, retail). Participants were recruited through a combination of posts to relevant email lists and
message boards at our institution, direct emails to individuals who had written blog posts or made contributions
to either the SHAP Python package or InterpretML, and snowball sampling. Each participant had experience
using at least one common interpretability tool, and nine had experience specifically with SHAP. Table 1 contains
additional information about the participants.

During the interviews, we first asked participants about their background and experience with both ML in
general and interpretability tools in particular. Next, we asked them to describe the tasks and objectives they
use interpretability tools to achieve, both alone and with collaborators. Participants were asked to walk through
examples of specific times they had used interpretability tools to accomplish those tasks and objectives, and were
led through a series of open-ended questions intended to uncover the strategies they had used, including what
had worked well and what had not. Finally, participants were asked if they had any wishes for a potential new
interpretability tool or for new functionality for an existing interpretability tool. All interviews were conducted
virtually on a video conferencing platform due to the COVID-19 pandemic. Audio from the interviews was
recorded and transcribed by a third-party service, after which the audio transcripts were reviewed for accuracy and
anonymized. The first author then coded the transcripts using a bottom-up approach and four authors conducted a
thematic analysis. The study was approved by our institution’s IRB. Participation was voluntary and participants
received up to $75 in compensation for their participation.3

Participants described using interpretability tools for tasks and objectives including model debugging, improv-
ing model performance, communication and collaboration (including building collaborators’ trust in models), and
knowledge discovery. These tasks and objectives are very much in line with those identified by Hong et al. [11].
In total, participants mentioned more than forty different strategies for accomplishing these tasks and objectives,
such as looking for patterns, outliers, and anomalies in scatter plots of feature attribution scores for all training
data points (as in the middle panel of Figure 1); comparing observed patterns with prior knowledge; and turning
to domain experts when some aspect of an explanation was unclear.

Strikingly, although our preliminary study was not specifically designed to explore the use of global feature
attributions, all ten participants said that they use global feature attributions (obtained using the status quo
approach of taking the mean absolute value of each feature’s attribution scores across all training data points
and then ranking the features by their average scores) somewhere in their workflow. Participants mentioned
using global feature attributions to get an overall sense of what their models have learned (e.g., for debugging
or for determining the overall credibility of their models), to check that the “most important” features match
their expectations, to determine which features to prioritize for in-depth analysis, and to communicate what their
models have learned to other stakeholders.

However, participants also brought up several pain points around their use of global feature attributions. They
were aware that using the mean absolute value could be problematic. As P2 said, “ranking of feature importance
is, you know, a very– somewhat arbitrary way to do things. You know, there’s so many different importance
measures. But, at least looking at something can tell us if our model has– is relying on reasonable features.”

3Due to institutional requirements, compensation varied based on the relationship between the participant and our institution.
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Table 1: Descriptions of the participants in our studies.

ID Job Description Years
in ML

Types of Data
Worked With

Interpretability Tools
or Methods Used

Study 2
Dataset

P1 ML PhD Student 2 Medical SHAP, self-made visualizations NHANES
P2 ML PhD Student 1 Medical InterpretML, SHAP, LIME,

GAMs, self-made visualizations
NHANES

P3 ML Practitioner 2 Remote Sensing,
Retail, Banking

SHAP, self-made visualizations N/A

P4 Environmental Sci.
PhD Student

3 Environmental,
Geospatial

SHAP, GAMs,
self-made visualizations

N/A

P5 Data Scientist 2 Retail SHAP Adult
P6 MD and ML PhD

Student
4 Medical SHAP, GAMs,

self-made visualizations
NHANES

P7 Research Scientist 6 Technology,
Medical

SHAP, LIME, GAMs,
self-made visualizations

Adult

P8 Data Scientist 4 Retail AzureML, SHAP, LIME Adult
P9 Data Scientist,

Program Manager
7 Retail, Financial,

User Behavior
SHAP N/A

P10 ML Practitioner 3 Medical,
Financial

InterpretML, AzureML, LIME,
self-made visualizations

Adult

Some participants mentioned that using the mean absolute value fails to account for relatively rare features that
have a large influence when they are present. Participants also brought up the difficulty of communicating about
the global behavior of models at a level that is more in-depth than the bar plots that common interpretability tools
provide (see the right panel of Figure 1, for example).

Although it wasn’t our original focus when we first set out to conduct this preliminary study, observing
participants’ overwhelming use of global feature attributions obtained using the status quo approach in their
workflows—despite being aware of some of the pitfalls—motivated us to question whether ML developers would
benefit from a more nuanced global view of their models’ behavior. That is the question we address in this
paper. Other needs that emerged from the study include ways to explore and address feature correlation and
confounding; less time-consuming ways to analyze individual features; ways to aggregate related features to
understand their combined influence; ways to determine the reliability of explanations; ways to validate insights
found using explanations; more customizable visualizations; and increased documentation for interpretability
tools, including documentation aimed at expert users. We leave these directions for future work.

3 Benefits and Drawbacks of Different Summary Statistics

In this section, we review the way in which global feature attributions are most commonly obtained from feature
attribution scores, describe some alternative approaches to doing this, and discuss the benefits and drawbacks of
each. Although most of this discussion is applicable to any local interpretability method that generates feature
attribution scores, we focus both here and in the rest of this paper on SHAP [18] for concreteness. SHAP’s feature
attribution scores, which are motivated by Shapley values from cooperative game theory, can be viewed as a way
of dividing the “credit” for a model’s prediction across all of its features. The sum of the features’ attribution
scores is equal to the expected value of the prediction for the data point in question. SHAP is widely used in
practice—as of November 2021, the SHAP Python package had close to 15k stars on GitHub, and nine of the ten
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participants in our preliminary study had experience with SHAP.
We illustrate the benefits and drawbacks of different approaches to obtaining global feature attributions from

feature attribution scores through case studies using models trained on two widely used open-source datasets:
the Adult dataset [15] and the NHANES dataset [7]. The Adult dataset is based on 1994 US Census data and
each data point corresponds to a person. The features include age, employment type, education, marital status,
occupation, race, and sex, among others. The model that we trained on this dataset predicts whether or not a
person makes at least $50k per year (the equivalent of about $92.5k in 2021 when adjusted for inflation). The
NHANES dataset is a survival dataset from a longitudinal health and wellness study. Again, each data point
corresponds to a person. The features include age, race, sex, poverty index, BMI, lab blood test results, and
blood pressure measurements. The model that we trained on this dataset is a Cox proportional hazards model that
predicts the differential risk of a person dying versus the typical background risk (log hazard).

Although SHAP was designed to offer only local explanations, the SHAP Python package additionally
constructs makeshift global feature attributions as follows: First, for each feature, take the mean absolute value of
that feature’s attribution scores across all training data points. Next, rank the features by their average scores. The
resulting global feature attributions for the models trained on the Adult and NHANES datasets, respectively, can
be seen in the top row of Figure 2. For example, according to these global feature attributions, age is the most
important feature for both models. This is intuitive since people who are older tend to earn more money and age
is highly correlated with how likely someone is to die in the near future. But this does not tell the whole story.
For each of these models, does age play an equal role in the model’s predictions for all training data points, or
is it more important for some data points than for others? Are there groups of data points for which the model
relies on completely different features? Are there outlier data points for which the model relies on features that it
should not? If the goal is to debug the model, what should the next step be?

To answer these questions, an ML developer could turn to a visualization of a particular feature’s attribution
score across all training data points, such as the type of scatter plot shown in the middle panel of Figure 1 or the
beeswarm plots available in the SHAP Python package, both of which provide a more detailed view of a feature’s
influence. However, for models with hundreds or even thousands of features, it is too burdensome to explore and
compare all such plots—indeed, this is why developers turn to summary statistics in the first place. And even
with a small number of features, comparing plots across multiple features is not easy.

Instead, we consider supplementing the mean absolute value with other summary statistics. Using different
summary statistics yields different rankings of the features and, as we show below, substantively different
takeaways. Although in principle any summary statistic could be used, we propose a few alternatives that capture
different aspects of the distribution of a model’s feature attribution scores across all training data points.

We first consider the range of a feature’s attribution scores—that is, the difference between the maximum
attribution score for that feature across all training data points and the minimum attribution score for that feature
across all training data points (not taking absolute values). Features with a large range of attribution scores are
highly influential on at least some data points. Outlier data points can be found by examining scatter plots for
features with a large range. This is useful both for understanding a model’s behavior on unusual data points
and for identifying bugs. As we can see from the second row of Figure 2, when predicting whether someone
makes over $50k a year using the Adult dataset, capital loss is only the eighth-highest ranked feature when
using the mean absolute value, but the second-highest ranked feature in terms of range. This is due to extreme
outliers—specifically, atypically high capital loss values—in the training dataset. The prominence of capital loss
in this alternative ranking might help draw a developer’s attention to this issue so they can investigate whether
it stems from a bug that needs fixing or whether it reflects a true phenomenon in the underlying population.

In some cases, the range may be too susceptible to outliers. Even a single data point with an extreme feature
attribution score can boost a feature’s range. This can be problematic if the goal is not to identify individual outlier
data points, but to identify larger groups of data points for which a feature is highly influential. As a result, for this
task, it may be more appropriate to use a censored version of the range. We define the typical range of a feature’s
attribution scores to be the difference between the feature’s ninety-fifth-percentile feature attribution score and
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Figure 2: Global feature attributions obtained by ranking features by different summary statistics of their
attribution scores. Each row corresponds to a summary statistic: the mean absolute value, the range, the typical
range, and the frequency in the top three. The column on the left contains global feature attributions for the
model trained on the Adult dataset; the column on the right contains global feature attributions for the model
trained on the NHANES dataset.
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its fifth percentile feature attribution score across all training data points.4 Ranking features by their typical range
can reveal features that are influential not just for a handful of data points, but for a more substantial subset of data
points. It can therefore be used to identify groups of data points for which the model behaves similarly. Examining
the second row of Figure 2, we can see that both red blood cell count and white blood cell count have a large
range for the NHANES model. However, examining the third row, we can see that only white blood cell count
ranks highly in terms of the typical range. This suggests that white blood cell count is an important feature for a
larger subset of the training data points than red blood cell count, for which the large range may be due to outliers.

The final summary statistic that we consider enables us to get a sense of which features are influential for
a large proportion of the training data points without worrying about the specific values of their attribution scores.
We define the frequency in the top three to be the fraction of the training data points for which the feature in
question ranks among the top three in terms of its absolute feature attribution scores. We can think of this as
letting every data point vote for its top three most important features and then tallying up the votes across the
training dataset.5 Compared with the mean absolute value, the frequency in the top three provides a way to
control for high variance in the feature attribution scores. When predicting whether someone will make over $50k
a year using the Adult Dataset, the capital gain feature ranks third in terms of the mean absolute value, and one
might therefore assume it is important for all data points. However, examining the final row of Figure 2, we can
see that capital gain is one of the top three most important features for only 20% of the training data points. In
contrast, hours worked per week is in the top three for 34% of the training data points, while its mean absolute
feature attribution score is significantly lower (0.43, compared with 0.73 for capital gain).

Different summary statistics will yield different global feature attributions that can be used to derive different—
and often complementary—insights. We therefore propose that a more accurate global view of a model’s behavior
might be achieved by allowing ML developers to compare and contrast different global feature attributions. In
the next section, we describe a study that we designed to explore this idea.

4 Main Study

To explore whether ML developers would benefit from being able to compare and contrast different global feature
attributions, we ran a study in which participants were asked to answer questions about a model before and
after seeing global feature attributions obtained by ranking features by four different summary statistics of their
attribution scores, as described in Section 3. We refer to this as a global feature attribution suite, and use it as
an artifact for exploring ML developers’ perceptions, needs, and challenges around global feature attributions.

4.1 Methods

For this study, which we conducted during the summer of 2020, we recruited seven participants, all of whom
had participated in our preliminary study (see Section 2) and had agreed to be contacted for follow-up research;
the remaining three participants declined to participate. The study was approved by our institution’s IRB. Each
interview lasted approximately one hour and participants received a $50 gift card for their participation.

The study consisted of semi-structured interviews in which participants were shown two different static
(HTML file) Jupyter notebooks. Both notebooks contained a model, a textual description of the dataset used to
train the model, a beeswarm plot visualizing the distribution of attribution scores for each feature, and a feature
dependence scatter plot for each feature (as in the middle panel of Figure 1). In the first notebook, we included a
bar plot showing global feature attributions obtained using the status quo approach—that is, by taking the mean
absolute value of each feature’s attribution scores across all training data points and then ranking the features

4The choice of the ninety-fifth percentile and the fifth percentile is, of course, somewhat arbitrary, and other percentiles could be used;
we thought that this choice would balance the ability to identify groups of data points with robustness to extreme outliers.

5Again, the choice of three votes per data point is arbitrary and other values could be used.
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Table 2: The descriptions of the summary statistics that were shown to participants.

Statistic How It’s Calculated Potential Uses

Mean
Absolute
Value

Mean over all samples in the training
data set of the absolute value of each
sample’s model attribution score.

Gives a sense of what the model is learning over-
all. Currently the default global feature importance
ranking in SHAP.

Range Difference between the maximum
model attribution score and the min-
imum model attribution score of the
given feature over the training data set.

Identifies features that are heavily influential on at
least a small number of samples in the data. Can also
help find extreme outliers in the data.

Typical
Range
(Excluding
Outliers)

Difference between the 95th percentile
model attribution score and the 5th per-
centile model attribution score of the
given feature over the training data set.

Identifies features that are heavily influential for at
least a substantial subset of samples within the data.
More robust to outliers than the Range. Can also help
find subsets within the data.

Frequency
in the Top
Three

Fraction of samples in the training data
set for which the given feature was
ranked in the top three in terms of abso-
lute attribution scores.

Gives a sense of which features most commonly have
heavy influence on individual samples’ predictions.
Can also help to get an understanding without needing
to understand the model attribution score.

by their average scores, as in the top row of Figure 2—as well as a description of how these global feature
attributions were obtained and a brief list of potential uses. In the second notebook, we additionally included
bar plots showing global feature attributions obtained using other summary statistics (specifically, the range, the
typical range, and the frequency in the top three) in addition to the mean absolute value, as shown in Figure 2.
We described how these global feature attributions were obtained and listed potential uses for each, using the
wording in Table 2. All participants were shown the first notebook before the second notebook. We chose to
show the notebooks sequentially, as opposed to using a counterbalanced design, so that we could first observe
how participants made use of the usual global feature attributions provided by SHAP, and then see whether and
how their perspectives changed when they were shown the global feature attribution suite.

To avoid over-indexing on a single dataset or model, we generated versions of these notebooks for both of
the models described in Section 3—that is, the model trained on the Adult dataset and the model trained on the
NHANES dataset. We assigned the model trained on the NHANES dataset to the three participants who most
regularly work with medical data and would therefore likely be more comfortable with both the task and the
features; we assigned the model trained on the Adult dataset to the remaining four participants. These assignments
are listed in the rightmost column of Table 1.

All interviews were conducted virtually on a video conferencing platform due to the COVID-19 pandemic.
During each interview, the participant and the interviewer viewed the notebooks together, one at a time, via
screen sharing. The participant had control of the screen to click, scroll, and explore. Participants were first
asked to think aloud while they familiarized themselves with each notebook. They were then asked how they
would go about accomplishing three of the tasks and objectives for which participants in our preliminary study
had reported using interpretability tools. Specifically, we asked participants to describe 1) what they thought
the model had learned overall, 2) how they would explain what the model had learned to someone who wasn’t
an ML developer, and 3) what their next steps would be if they were to go about debugging the model. After
completing this sequence with the first notebook, and then completing it again with the additional information
provided in the second notebook, participants were asked to share their likes and dislikes for each of the
different global feature attributions, as well as their critical feedback, the value they gained from using the global
feature attribution suite, and whether they would use a global feature attribution suite in their own workflows.
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The complete notebooks and the interview protocol can be found at https://github.com/aokeson/
Aggregated-Explainability-Ranking-Alternatives.

Both audio and video from the interviews was recorded. Audio was transcribed by a third-party service,
after which the audio transcripts were reviewed for accuracy and anonymized. The first author then annotated
each transcript with information about the visualizations that the participant viewed at different points in time
based on the corresponding video recording. The annotated transcripts were coded by the first author in three
distinct passes: 1) coding differences in how participants answered our questions when viewing the first notebook
compared with the second notebook, 2) coding potential uses mentioned by participants for the different global
feature attributions, and finally 3) coding feedback (both positive and negative) on the global feature attribution
suite. All authors then participated in a thematic analysis using the three types of codes.

4.2 Results

As we describe in this section, participants found the global feature attribution suite useful for communicating
what the model had learned and identifying next steps for debugging the model. They also found that it increased
their uncertainty in their understanding the model (compared with viewing the usual global feature attributions
alone) and helped them become more aware of the nuances of the model’s behavior. However, they expressed
concerns that the time it would take to compare and contrast different global feature attributions might affect the
extent to which they would use a global feature attribution suite in their own workflows.

With our small sample size, we did not see clear differences between participants who were shown the model
trained on the NHANES dataset and participants who were shown the model trained on the Adult datasets, so we
do not attempt to make distinctions between the two.

4.2.1 Strategies for Using Different Global Feature Attributions

Participants used the global feature attributions in a variety of different ways, exploring them individually as well
as comparing and contrasting different global feature attributions.

Three participants (P5, P6, P7) checked for agreement between the different global feature attributions in
order to pull out specific features that were influential across more than one of them. This gave them more
confidence that these features were genuinely influential. For example, P5, who saw the model trained on
the Adult dataset, had named age as being important to the model’s predictions when they viewed the usual
global feature attributions provided by SHAP in the first notebook. After seeing that age was also highly ranked
according to the global feature attributions provided in the second notebook, they were more confident in their
assessment of what the model had learned and in how to communicate what the model had learned to other
stakeholders, stating “I would feel rather confident that the clearest learning from the model is [...] around age.”
P6 and P7 both independently described this process as trying to “flatten” the different global feature attributions
back to a single list of the most influential features by extracting features that were highly ranked according to
all of the global feature attributions. “Maybe you want to start by listing the features that are sort of robustly
important across an array of these different metrics.” –P6

One of the most common strategies for using the global feature attribution suite was to identify where the
different global feature attributions disagreed and to explore the cause of this disagreement. Five of the seven
participants (P1, P2, P6, P7, and P8) discussed using this strategy either to uncover new insights into the model’s
predictions or as a first step for debugging the model. P7 described going through each feature to check if it
was consistently important, unimportant, or both across the different global feature attributions: “Consistently
important variables, great. Consistently not important variables, great. But variables where some trick like that
could move you around a lot maybe is indicating something. Exactly what, I don’t know. But that’s why I would
have to go explore.” As P6 described, “It seems potentially very useful to come up with several different orderings
of the features and then try to figure out why those orderings disagree in cases where they disagree. That seems
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like a very potentially fruitful way to find either interesting behavior or problems with your model.” P8, who saw
the model trained on the Adult dataset, also used this strategy. When looking at the first notebook, P8 included
capital gain in a list of influential features, because it was among the top three features according to the global
feature attributions obtained using the status quo approach. However, while exploring the second notebook, P8
found that the different global feature attributions differed in their rankings of capital gain and capital loss, and
decided to explore this further. They were able to use this observation to jump start the debugging process by
identifying outliers in the training dataset: “I think that probably the [range] or [typical range] here helps to
explain why capital gains appears on the [ranking by mean absolute value] but rather not in the [ranking by
frequency in top three], probably because [capital gains] has very high variance and there are some outliers
in the data, which drags this mean absolute value here. So, the outliers are the main cause that drag this capital
gain to be the top three in [ranking by mean], rather than the [ranking by frequency in the top three].”

There was no general consensus among participants about which of the global feature attributions was most
appropriate for each of the three tasks and objectives. In general, participants followed the brief guidance that we
had provided in the notebooks about potential uses. For example, P2, who saw the model trained on the NHANES
dataset, used the global feature attributions obtained by ranking features by their range to identify outliers in the
training dataset, saying “This range of the blood cell value, so I would want to verify that that’s a realistic effect,
that we’re not just picking up individuals that have bad values for the white blood cell count.” In some cases,
participants also came up with their own uses for the different global feature attributions, either deliberately or by
chance. P2, for example, identified a potential bug in the NHANES dataset after examining the global feature
attributions obtained by ranking features by their frequency in the top three and then deciding to dig more deeply
into the diastolic blood pressure feature. “For instance, there is a group of patients here with diastolic blood
pressure less than 20. That hardly seems realistic. So this is a group of patients for whom either the value is
missing or it was input wrong.” –P2

4.2.2 Increased Uncertainty about the Model’s Behavior

Our hope was that providing ML developers with different global feature attributions to compare and contrast
would lessen their confidence in the overly simplistic global feature attributions usually provided by SHAP and
instead enable them to obtain a more nuanced global view of their models’ behavior. When interacting with the
first notebook, most participants focused their descriptions of what the model had learned on a few features that
were highly ranked according to the usual global feature attributions provided by SHAP. As a result, participants
tended to focus their exploration of the model on a few (typically three to five) features. However, when exploring
the second notebook, participants began to doubt the simple answers they had given previously. For example, P7
questioned their initial interpretation of what the model had learned, saying “Now I’m a little hesitant, because
I’m not sure. I guess there’s now four plots, and they are kind of equivalent. [...] So now I’m a little confused. I’m
not sure which one to trust and to use to answer this question.” Participants also commented that their confidence
had changed: “I think it’s just sort of broadened my confidence intervals on how important each feature is.” –P6.
As desired, participants felt that the global feature attribution suite provided a more nuanced global view of the
model’s behavior than the global feature attributions obtained using the status-quo approach: “I mean, it takes
you from [...] a scalar importance to a distribution of importance. It really helps you get that new understanding
of how the importance of a feature can change over the different samples and the mean will not tell you that.”
–P2 Lastly, participants noted that some of the information available in the second notebook could be inferred
from other visualizations, such as SHAP’s beeswarm plots, but that the new plots made it easier to digest and
interpret the information: “I mean, that’s similar information for what’s in this summary plot, but it’s condensed
in a way that it’s much easier to read.” –P2 Indeed, although the distribution of attribution scores for each feature
was available in other plots, this information was not salient enough to mitigate participants’ overconfidence.
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4.2.3 Required time investment and constraints

The most common challenge raised by participants was that it might be too time consuming to compare and
contrast different global feature attributions. P7 articulated a tension between the pressures of real-world time
constraints and the benefits of rigorously examining multiple global feature attributions: “And if you are really
strapped for time, which in the industry you frequently are, then it might be easy to just not explore these other
things. [...] It makes me think that, going forward, I should be a little more vigilant about this stuff, but, honestly,
it really depends on time.” Participants were concerned about whether a global feature attribution suite would
help them accomplish their tasks and objectives more quickly or instead be yet another time sink. Participants
may have been overly pessimistic about the time it would take to compare and contrast different global feature
attributions because they were seeing them for the first time. However, before implementing a global feature
attribution suite in common interpretability tools, more research is needed to understand how to present different
global feature attributions in the most efficient way possible.

5 Discussion

We presented an artifact-based interview study intended to investigate whether ML developers would benefit
from being able to compare and contrast different global feature attributions. This study extends a recent line
of research exploring human-centered approaches to interpretability and, in particular, how stakeholders use and
understand interpretability tools [17, 4, 5, 10, 16, 1, 11, 13, 31, 21, 2, 28]; however, our focus is on an aspect of
interpretability tools that has been overlooked to date—namely, the summary statistics used to generate global
feature attributions. Participants were first shown the usual global feature attributions provided by SHAP and
asked some questions about the underlying model. They were then shown a suite of global feature attributions
obtained by ranking features by four different summary statistics of their attribution scores—what we refer to
as a global feature attribution suite—and asked to reconsider their answers. Our hope was that providing ML
developers with different global feature attributions to compare and contrast would lessen their confidence in
the overly simplistic global feature attributions usually provided by SHAP and instead enable them to obtain a
more nuanced global view of their models’ behavior.

We found that participants were able to use the global feature attribution suite to communicate what the
model had learned and to identify next steps for debugging the model. As desired, we also found that viewing the
global feature attribution suite increased their uncertainty in their understanding of the underlying model as they
became more aware of the intricacies of the model’s behavior. However, they also expressed a tension between
the benefits obtained by using tools like SHAP to quickly get a sense of what a model has learned and the time it
would take to compare and contrast different global feature attributions, noting that this might affect the extent
to which they would use a global feature attribution suite in their own workflows. Of course, participants were
seeing the global feature attributions for the first time and they only used the global feature attribution suite for
less than an hour. It is possible that with adequate training and practice, this tension would be reduced or even
overcome. Longitudinal studies may be beneficial for investigating further. More generally, though, this finding
echoes observations from prior work about the need to balance the benefits of thinking fast and thinking slow
when designing interpretability tools [13].

Like any study, ours has limitations. In addition to the short timescale over which it was conducted, we only
recruited seven participants. We wanted to be able to conduct an in-depth interview with each participant about
their experiences using the global feature attribution suite, but this necessarily limits the type of conclusions that
we are able to draw. Furthermore, we focused only on experienced users of interpretability tools, which further
limits the extent to which we can generalize to the broader ML developer community. We also limited our scope
to models trained on two datasets, so more research is needed to investigate whether our findings would change
if different datasets were used—for example, datasets with orders of magnitude more features.

We see our work as a first step toward designing interpretability tools that explicitly highlight the nuanced
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behavior of models, as advocated for by Kaur et al. [13]. Future work should explore ways for ML developers to
use a global feature attribution suite to quickly get a sense of what a model has learned without placing undue
confidence in the corresponding global feature attributions. This will require carefully balancing the cognitive
burden involved in understanding the global feature attributions with the amount of information that they can
convey. It will also require investigation into which summary statistics to use and which other information to
incorporate. One could imagine, for example, additionally including other notions of global feature importance,
such as those obtained by applying the concept of Shapley values directly to global quantities like the variance
explained [20] and the loss [8] rather than summarizing (local) feature attribution scores. Doing this well will
also require research into how to present different global feature attributions in the most efficient way possible.
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