
e at SciVerse ScienceDirect

Digital Investigation 8 (2012) 161–174
Contents lists availabl
Digital Investigation

journal homepage: www.elsevier .com/locate/di in
Digital forensics XML and the DFXML toolset

Simson Garfinkel*

Naval Postgraduate School, 900 N. Glebe, Arlington, VA 22203, USA
a r t i c l e i n f o

Article history:
Received 6 May 2011
Received in revised form 18 November 2011
Accepted 25 November 2011

Keywords:
Digital forensics xml
DFXML
Forensic tools
Forensic tool validation
Forensic automation
* Corresponding author. Tel.: þ1 617 876 6111.
E-mail address: slgarfin@nps.edu.

1742-2876/$ – see front matter Published by Elsevi
doi:10.1016/j.diin.2011.11.002
a b s t r a c t

Digital Forensics XML (DFXML) is an XML language that enables the exchange of structured
forensic information. DFXML can represent the provenance of data subject to forensic
investigation, document the presence and location of file systems, files, Microsoft
Windows Registry entries, JPEG EXIFs, and other technical information of interest to the
forensic analyst. DFXML can also document the specific tools and processing techniques
that were used to produce the results, making it possible to automatically reprocess
forensic information as tools are improved.
This article presents the motivation, design, and use of DFXML. It also discusses tools that
have been creased that both ingest and emit DFXML files.

Published by Elsevier Ltd.
1. Introduction

Digital Forensics XML (DFXML) is an XML language
designed to represent a wide range of forensic information
and forensic processing results. Bymatching its abstractions
to the needs of forensics tools and analysts, DFXML allows
the sharing of structured informationbetween independent
tools and organizations. Since the initial work in 2007,
DFXML has been used to archive the results of forensic
processing steps, reducing theneed for re-processing digital
evidence, and as an interchange format, allowing labeled
forensic information to be shared between research
collaborators. DFXML is also the basis of a Python module
(dfxml.py) that makes it easy to create sophisticated
forensic processing programs (or “scripts”) with little effort.

Forensic tools can be readily modified to emit and
consume DFXML as an alternative data representation
format. For example, the PhotoRec carver (Grenier, 2011)
and the md5deep hashing application (Kornblum, 2011)
were both modified to produce DFXML files. The DFXML
output contains the files identified, their physical location
within the disk image (in the case of PhotoRec), and their
er Ltd.
cryptographic hashes. Because these programs now both
emit compatible DFXML, their output can be processed by
a common set of tools.

DFXML can also document provenance, including the
computer onwhich the application programwas compiled,
the linked libraries, and the runtime environment. Such
provenance can be useful both in research and in preparing
courtroom testimony.

DFXML’s minimal use of XML features means that the
forensic abstractions, APIs and representations described in
this paper can be readily migrated to other object-based
serializations, including JSON (Zyp and Court, 2010),
Protocol Buffers (Google, 2011) and the SQL schema
implemented in SleuthKit 3.2 (Carrier, 2010). Indeed, it is
possible to readily convert between all four formats.
1.1. The need for DFXML

Today’s digital forensic tools lack composability. Instead
of being designed with the Unix approach of tools that can
be connected together to solve big problems, most
commonly used forensic tools are monolithic systems
designed to ingest a small number of data types (typically
disk images and hash sets) and produce a limited set of
output types (typically individual files and final reports).

mailto:slgarfin@nps.edu
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2011.11.002
http://dx.doi.org/10.1016/j.diin.2011.11.002


S. Garfinkel / Digital Investigation 8 (2012) 161–174162
This is true both of tools with limited functionality (e.g.,
simple file carvers), as well as complex GUI-based tools that
include integrated scripting languages. The lack of com-
posability complicates automation and tool validation
efforts, and in the process has subtly limited the progress of
digital forensics research.

Although there are existing file formats and a few XML
languages used in digital forensics today, they are confined
to specific applications and limited domains. The lack of
standardized abstractions makes it difficult to compare
results produced by different tools and algorithms. This
lack of standardization similarly impacts tool developers,
who must frequently implement functions in their tools
that exist in others.
1.2. Specific uses for DFXML

DFXML improves composability by providing a language
for describing common forensic processes (e.g., crypto-
graphic hashing), forensic work products (e.g., the location
of files on a hard drive), and metadata (e.g., file names and
timestamps).

Various prototype DFXML implementations have been
used by the author since 2007 for a variety of purposes:

� A tool based on SleuthKit called fiwalk (x5.1) ingests disk
images and reports the location and associated file
system metadata of each file in the disk image. This tool
was used by students for Masters’ theses (Migletz, 2008;
Huynh, 2008), and a project that applied machine
learning to computer forensics (Garfinkel et al., 2010).

� A DFXML file was created for each disk image in a corpus
of more than 2000 disk images acquired around the
world (Garfinkel et al., 2009). Each DFXML file contains
information regarding the disk’s purchase, physical
characteristics, imaging process, allocated and deleted
files, and metadata extracted from those files (e.g.,
Microsoft Office document properties, extracted JPEG
EXIF information, etc.).

� The DFXML Python module (x4.1) makes it possible to
write small programs that perform complex forensic
processing on DFXML files (Garfinkel, 2009). In contrast,
the learning curve for tools such as EnCase EnScript
(Guidance Software, 2007) and SleuthKit (Carrier, 2010)
can be quite steep.

� The XML files make it dramatically easier to share data
with other organizations. In some cases it has only been
necessary to share the XML files, rather than the disk
images themselves. This is more efficient, as the files are
much smaller than the disk images, and helps protect
the privacy of the data subjects.

� The XML format makes it easy to identify and redact
personal information. The resulting redacted XML files
can be shared without the need for Institutional Review
Board (IRB) or Ethics Board approval; they can even be
published on the Internet.

� Finally, because the DFXML files record which version of
which tool produced each file, it is easy to have tools
automatically reprocess disk images when the toolset
improves.
1.3. Contributions

This paper makes several specific contributions to the
field of digital forensics. First, it describes the motivation
and design goals for DFXML. Second, the paper presents
specific examples of how DFXML can be used to describe
forensic artifacts. These examples make it easy for devel-
opers of today’s forensic tools to adapt their tools to emit
and ingest DFXML as a complement to their current file
formats. Next, it presents an API that allows for the rapid
prototyping and development of forensic applications.
Finally, it describes how the DFXML abstractions can be
used as a building block for creating new automated
forensic processes.

2. Prior work

Although file formats, abstractions, and XML are all used
in digital forensics today, they are rarely themselves the
subject of study. Mainly, these topics arise when practi-
tioners discover that they cannot share information with
one another, or even between different tools, because data
are stored in different formats.

2.1. Digital evidence containers

Broadly speaking, digital evidence containers are files
designed to hold digital evidence. Most common are disk
image files that hold sector-for-sector copies of hard drives
and other mass storage devices. The simplest disk image is
a raw format (also called dd format after the Unix dd

program).
Modern disk image formats can use lossless compres-

sion and de-duplication to decrease the amount of storage
space required, while still allowing the regeneration of the
original disk image. Although disk image formats such as
Norton Ghost, VMWare VMDK, Apple DMG and Microsoft
WIM have been used for years within the IT community,
forensic practitioners have mostly standardized on the
Expert Witness Format (EWF) used by Guidance Software’s
EnCase program. (The format is also known as the .E01
format after the file extension.) EWF includes limited
support for representing metadata such as the date that
a disk image was acquired and the name of the examiner
who performed the acquisition, as well as a free-format
“notes” field, but does not support the representation of
structured forensic information.

Kloet et al. (2008) presented an open source imple-
mentation of EWF in C; Allen presented an EWF imple-
mentation in Java (Allen, 2011a) and C# (Allen, 2011b).
These open source implementations make it possible to
read any sector of a disk image in EWF format as well as the
limited metadata that accompanies the disk image. Of
course, these implementations must be combined with
software such as SleuthKit (Carrier, 2010) in order to extract
individual files from the disk image.

Turner proposed a “wrapper” or metaformat called
“Digital Evidence Bags” (DEB) to store digital forensic
evidence from disparate sources (Turner, 2005). The DEB
consists of a directory that includes a tag file, one or more
index files, and one ormore bag files. The tag file is a text file



S. Garfinkel / Digital Investigation 8 (2012) 161–174 163
that contains metadata such as the name and organization
of the forensic examiner, hashes for the contained infor-
mation, and data definitions. Turner created a variety of
prototype tools, including a Digital Evidence Bag Viewer
and a Selective Imager.

Cohen, Garfinkel and Schatz introduced AFF4 (Cohen
et al., 2009), a redesign of Garfinkel’s Advanced Forensic
Format (AFF) (Garfinkel, 2006). Both AFF and AFF4 store
disk images and associated metadata. AFF4 uses a flat RDF
schema to store this auxiliary information. Although the
RDF schema can be used to store file and file system met-
adata, this is not frequently done in practice, and tools to
create such RDF files are not generally available.

2.2. Representing registry information

There has been considerable forensic research aimed at
recovering allocated data fromWindows Registry hive files
(Howell, 2009) and from unallocated space inside the hive
(Thomassen, 2008; Tang et al., 2009).

Because of limitations of the ASCII-based registry file
format defined by Microsoft’s RegEdit tool, several devel-
opers created tools for extracting Registry entries from hive
files and representing the resultant information as XML
(Rodriguez, 2003; Shayne, 2001; Jones, 2009).

The National Institute of Standards and Technology’s
WIRED project has developed a program called reg-diff.rb,
which ingests two ASCII files generated by RegEdit and
produces anXMLfiledescribing thedifferences (Dima,2006).

2.3. File system metadata standards

File system metadata is the name given to information
within a file system other than file contents, including file
names, timestamps, access control lists and disk labels. File
system metadata is widely used in computer forensics as
the primary tool for navigating file system information and
reconstructing event timelines.

To date there has been little effort to develop standard
descriptions of file system metadata. The Coroner’s Toolkit
(Farmer and Venema, 2005) introduced a “body file” format
containing 16 entries for each file including file name, size,
MAC times, allocation status, and other metadata that can
be recovered from a file system. Individual fields were
separated by pipe symbols (j) to allow for easy parsing by
programs written in Perl. Body files were designed for
moving data from one tool to another in the Toolkit, but not
for data archiving or exchange between examiners. Carrier
preserved the file format in SleuthKit 2.0 but modified it in
SleuthKit 3.0 by reducing the number of fields to 11,
rendering old files incompatible with the new tools and
vice-versa.

2.4. File metadata and extracted features

The Electronic Discovery Reference Model (EDRM)
(Socha, 2011) is an XML-based data interchange format for
describing metadata of interest to e-discovery practi-
tioners, including theMicrosoft proprietarymetadata fields
embedded within Word and PowerPoint office files, and
the To:, From: and Subject: fields of email messages. EDRM
does not describe the physical location of a file on a hard
drive or the MD5 hash values of individual sectors.

The National Information Exchange Model is an effort by
the US Department of Justice, the US Department of Home-
land Security, and the US Department of Health and Human
Services tocreate standardizeddatamodels for thesharingof
structured information between different federal agencies.
Of interest to forensics practitioners is theTerroristWatchlist
Person Data Exchange Standard, which provides a schema
fordescribing identity information(USDepartmentof Justice
and US Department of Homeland Security, 2011).

2.5. XML languages for computer security

Frazier (2010) of MANDIANT developed Indicators of
Compromise (IOCs), an XML-based language designed to
express signatures of malware such as files with a partic-
ular MD5 hash value, file length, or the existence of
particular registry entries. There is a free editor for
manipulating IOC files. MANDIANT has a tool that can use
these IOCs to scan formalware and the so-called “Advanced
Persistent Threat.”

MITRE’s “Making Security Measurable” project has
developed three XML languages for describing items of
importance to computer security practitioners and
researchers. The project includes the Open Vulnerability
and Assessment Language (OVAL�), the Common Event
Expression (CEE�), and the Malware Attribution Enumer-
ation and Characterization (MAEC�) languages.

Both MANDIANT’s IOC and MITRE’s MAEC are similar to
DFXML in that they can describe file names and file system
properties. Both are able to express items not envisioned by
DFXML; IOC can even contain conditional logic. But both
lack the ability to express specific features of forensic
interest, including hash values that correspond to specific
byte runs within an object, the ability to specify the phys-
ical location on a piece of media, and the ability to specify
a variety of file system attributes such as allocation status.

2.6. XMLs for media forensics

There has been limited work developing XML languages
specifically for digital forensics.

Alink et al. presented XIRAF (an XML Information
Retrieval Approach to digital forensics) at NLPXML 2006
(Alink et al., 2006b) and DFRWS 2006 (Alink et al., 2006a).
The authors stressed the importance of having “a clean
separation between feature extraction and analysis” and
the importance of having “a single, XML-based output
format for forensic analysis tools.” XIRAF stores XML
documents in an XML-aware database; examiners conduct
forensic investigations through the use of XML queries.

Levine and Liberatore (2009) presented DEX (Digital
Evidence Exchange) at DFRWS 2009; DEX had the goals of
making it possible to reproduce the original evidence from
the XML description, and of enabling tool comparison and
validation. DEX made extensive use of XML attributes that
required complex parsing rules. The authors released a DEX
tool written in Java under a BSD-like license.

Grenier designed a XML log file for the PhotoRec
(Grenier, 2011) carver. Grenier did not implement his



S. Garfinkel / Digital Investigation 8 (2012) 161–174164
original design, but instead graciously accepted patches
from the author of the present article and incorporated
DFXML into PhotoRec 6.12.

3. Digital forensic abstractions and digital forensics
XML

Today the most common ways for forensic practitioners
to exchange forensic data are disk images and text files. For
example, an investigator might give an analyst a disk image
of a captured USB drive and an ASCII list of MD5 hash values
and ask if any of the files in the list are on the drive.
Although this approach works in practice, it does not lend
itself to evolutionary growth. For example, there is no
standard way to annotate that list of MD5 hash values with
SHA1 hash values, similarity digests, or classification levels.
Instead, every person that wishes to annotate a list needs to
develop their own ad-hoc format, and every tool that would
interpret such a list needs to be able to handle such
formats. Analysts, most of whom cannot program, spend
a lot of time in Microsoft Excel adding and removing
columns to overcome the diversity of formats that have
evolved in recent years.

Other areas of information technology have successfully
outgrown similar exercises in babble. For example, the
growth of the World Wide Web is often attributed to the
development of theHTML andHTTP standards, whichmade
it possible for different groups to write software that inter-
operated without prior arrangement. Clearly, the Web also
owes its birth to POSIX, TCP/IP, and the Berkeley Sockets API.

Digital forensics can similarly benefit from standardized
abstractions, representations and interfaces. Such abstrac-
tions can leverage existing concepts and further enable
digital forensics processes, allowing tools, practitioners and
organizations to communicate more efficiently about
forensic processes, while simultaneously providing an
evolutionary path to exchanging increasingly sophisticated
representations.

3.1. Example 1: using DFXML to describe file locations

Consider a JPEG file on a FAT32 SD card. Agreed upon
abstractions, conventions and standards allow the SD card
to be moved from a digital camera to a PC running
Windows or a Macintosh running MacOS. These computers
can use the same name to access the same sequence of
bytes that make up the JPEG file, and when desktop
computers display the file on their computer screens, the
pictures look virtually indistinguishable.

Forensic tools do not enjoy the same level of interop-
erability when it comes to describing deleted JPEGs or
carving artifacts that might be found on the same SD card.
The only way to determine if a deleted file recovered by
SleuthKit and EnCase are the same is to compare the files
byte-by-byte or to compare the sector numbers fromwhich
the deleted files were recovered. Other approaches, such as
comparing hash values of the two files, may not be satis-
factory, as there are now multiple documented cases of
different files that have the same MD5 hash value (Diaz,
2005; Selinger, 2009; Microsoft, 2008). Another disadvan-
tage of using hash value comparision is that file similarities
may be inadvertantly obscured. This can happen because
the length of a carved file cannot be unambigiously deter-
mined. If two carvers identify the same file with the same
starting point but the lengths are off by one byte, a hash
value comparision will report that the files are different,
while a byte-run comparision will report that one file is
a subset of the other.

File systems have an advantage over forensic tools:
Whereas standards and convention clearly define the
mapping between an allocated file and a set of disk blocks,
“undelete” is not a well-defined operation. Different tools
undelete differently, because the information on the hard
drive required to perform the undelete operation may be
incomplete, ambiguous, or contradictory. CarvFS attempts
to solve this problem through the use of file names inter-
preted by the file system as pointers to specific disk blocks
(Meijer, 2011). But CarvFS is limited to representing the
location of data on the drive – attempts to encode other
information in the file names would result in prohibitively
long names, and such encoding would ultimately result in
names with structured attributes similar to what has been
developed for DFXML.

An alternative approach employed by DFXML is to
create a high-level language for describing where on a disk
a file’s content resides within a forensic disk image. For
example, a JPEG file split into three pieces can be described
as a set of three byte runs, each with a logical offset within
the file, a physical offset within the disk image, and
a length, as shown in Fig. 1.

The byte_runs approach is readily extended to describe
logical byte runs that are zero-filled (and thus do not appear
on the physical media) by replacing the img_off-

set¼attribute with a fill¼“0” attribute. Likewise, NTFS
compression is represented with the attributes
transform¼“NTFS_DECOMPRESS”raw_len¼“155”.

DFXML expresses all sizes and extents in bytes, as runs
do not necessarily start on sector boundaries (for example,
small NTFS files are resident within the MFT) and because
the sector numbers cannot be interpretedwithout knowing
the sector size – extrinsic information that may be missing
or incorrect.

It is straightforward to modify existing programs to
generate the <byte_runs> tag. Once these modifications
are made, it is trivial to compare the output of different
versions of a program for regression testing, or to compare
the results of processing the same data with different tools
for conformance testing and certification.

The complete <fileobject> element for the JPEG in
question (taken from Garfinkel et al. (2009)) appears in
Fig. 2.

3.2. Example 2: using DFXML for hash lists

While today it is common to distribute a set of file
hashes as a tab-delimited file containing file names and
MD5 hash values, a DFXML file of hashes can be expanded
to include SHA1 and SHA256 hashes, descriptions of each
file, classification levels, partial hashes of key sectors, and
even the email address of an individual who should be
contacted if the file is encountered. The use of XML means
that adding such fields does not impact older programs that



Fig. 1. Each byte_run XML tag specifies a mapping of logical bytes in a file to a physical location within a disk image. They can be combined in the byte_runs tag to
specify fragments of a fragmented file.

S. Garfinkel / Digital Investigation 8 (2012) 161–174 165
do not expect such data. As such, DFXML makes it possible
to gradually evolve interchange formats, giving researchers
and practitioners the ability to put increasingly sophisti-
cated analysis results or new annotations in their inter-
change and archive files.
3.3. Goals for DFXML

Previous efforts aimed at developing new formats for
computer forensics have largely failed. For example,
DFRWS launched a project in 2007 to create standardized
abstractions for digital evidence containers; this project
was abandonedwithin a year due to the lack of support and
funding (Common Digital Evidence Storage Format
Working Group, 2007). Based on the DFRWS experience,
it seems reasonable that any effort to create an XML
language for digital forensics should be envisioned as
a low-cost project that nevertheless can produce significant
savings or provide new capabilities. The following goals are
compatible with such financial realities:

1. Complement existing forensic formats. Rather than
replacing existing formats, the new language should
augment them. This is accomplished bymaking it easy to
convert between legacy and new formats, and by
developing techniques so that the new formats can be
used to annotate legacy data.

2. Be easy to generate. It must be easy to modify existing
tools to generate the new representations. An open
sourceC andCþþ libraryaids in themodificationprocess.
Fig. 2. The completed <fileobject> XML element for IMG_0044.JPG. Notice that t
accurate to one day. All times are given without a UTC offset, since FAT32 file s
legibility.)
3. Be easy to ingest. Likewise, it must be easy to modify
existing tools to read and process DFXML. An open
source DFXML Python module based on the Python SAX
XML parser makes it possible to efficiently read and
process very large DFXML files (see Section 4).

4. Provide for human readability. A forensic analyst with no
training should be able to look at a conforming DFXML
file and make sense of it without the need for a special
viewer. To this end, many tools produce DFXML that is
pretty-printed.

5. Be free, open, and extensible. Both the representation
and reference implementation must available for all
to use, without a license fee. Developers should be
able to add new tags without the need for central
coordination (accomplishable through the use of XML
namespaces).

6. Provide for scalability. The representation must be
usable at both ends of forensic scale. Small amounts of
information must have short descriptions, while it
must be possible to efficiently process XML docu-
ments tens of gigabytes in size (which might result
from processing multi-terabyte drives). As such, it
must be possible to process DFXML using event-based
XML parsers (e.g., Python Software Foundation (2010);
Cameron et al. (2008); Zhang and van Engelen
(2006)), rather than requiring the use of tree-based
parsers such as those based on the Document Object
Model.

7. Adhere to existing practices and standards. Where
possible, DFXML should follow existing standards rather
than inventing new ones. Where multiple, conflicting
he create and modify times are accurate to 2 s, while the access time is only
ystems store time in local time. (Linebreaks and pretty-printing added for



Fig. 3. Three hashes for the same string, showing how hashes can be represented as hex or base64 numbers. (Base64 representations are allowed for brevity but
of course should never be entered from within a user interface.) All of these hashes are for the same sequence of 12 bytes, “hello, world”.

S. Garfinkel / Digital Investigation 8 (2012) 161–174166
standards exist, DFXML should implement the standards
that are the most efficient and appropriate for forensic
processing.
3.4. Overall design

DFXML is intended to represent the following kinds of
forensic data:

� Metadata describing the source disk image, file, or other
input. Typically this is the name of the image file, but
may include other information.

� Detailed information about the forensic tool that did the
processing (e.g., the program name and version number,
where the program was compiled, linked libraries).

� The state of the computer on which the processing was
performed (e.g., the name of the computer; the time
that the program was run; the dynamic libraries that
were used).

� The evidence or information that was extracted, how it
was extracted, and where it was physically located.

� Cryptographic hash values of specific byte sequences.
� Operating-system-specific information useful for

forensic analysis.

Each type of data are represented by a family of XML
elements:

<creator> The program that created the XML file.
<volume> Amass storage system volume, which is defined
as a collection of byte blocks that are all the same size (e.g.,
a hard drive, a partition within a hard drive, or a RAID
volume.).
<fileobject> A file, which is a sequence of bytes with
associated metadata.
<byte_run> A specific location of bytes on a mass storage
device. These can be grouped in a <byte_runs> array.
Fig. 4. The byte_runs, run and hashdigest tags can be described to denote piecewise
while the second sequence is for the space and the letters “world.”
<hashdigest> Represents a cryptographic hash.
<msregistry> One or more Microsoft Windows Registry
entries.

DFXML also adopts by reference these additional fami-
lies of XML elements:

<database> An SQL database, using the XML format
produced by MySQL’s mysqldump command.
<plist> AppleMacintosh property list information, using
the XML format produced by Apple’s plutil.
<kml> Geospatial information in KML format.

Although it is tempting to combine the <database>

and <plist> tags into a single platform-independent
schema, there is little need to do so; any processing would
necessarily be done with programs that are themselves
specific to a particular program that generated the data.

3.5. Combining elements to express complex concepts

DFXML elements from different domains can be
combined to improve the expressiveness of the language.
For example, the <hashdigest> element can be used to
describe hashes, as shown in Fig. 3. But the<byte_runs>,
<byte_run> and <hashdigest> elements can also be
combined to describe piecewise hashing of anyfile or string,
as shown in Fig. 4. Likewise, Dublin CoreMetadata Initiative
(2010) annotations can be used to describe entire disk
images, individual files, or even byte runs within a file.

This flexibility allows the sameXML representation to be
used for a variety of purposes. For example, fiwalk generates
a DFXML structure containing a set of <fileobject>

elements that denote the location in a disk image of specific
files (Garfinkel, 2009). In such a DFXML file, the
<fileobject> elements have absolute pathnamesbased in
the root of the file system in which they are found. As
mentioned above, the popular PhotoRec carving tool now
hashing of any object. Here the first MD5 hash is for the characters “hello,”



S. Garfinkel / Digital Investigation 8 (2012) 161–174 167
also produces DFXML files. However the DFXML produced
by PhotoRec contains not the names of the files in the disk
image, but instead the names of the files output by the
carver; here, the file names are relative to the directory in
which PhotoRec’s DFXML file is written. Likewise, the
DFXML files produced by md5deep embed absolute path-
names by default, but will contain relative pathnames if
md5deep is invoked with the “-r” flag.

Having both file system extraction tools and file carvers
produce the same XMLmakes it possible to create a forensic
processing pipeline that preserves semantic content while
allowing later stages of the pipeline to be insensitive to the
manner in which data was extracted by the earlier stages.
Having a single format supported by multiple carvers
makes it possible to cross-validate carvers; to build a single
“meta” file carver that logically combines the results of
multiple carvers; and to perform regression tests.
3.6. Times, dates and durations

The representation of times, dates and durations is an
enduring problem in information technology due to the
interplay of cultural norms, the range of values that must be
represented, daylight savings time, and even variances in
the rotation of the earth. An added complication in digital
forensics is that some legacy time representations are in
local time and cannot be converted to an absolute time
without the use of extrinsic information. For example,
times in the Microsoft FAT32 file system are stored in local
time; arbitrarily assigning these times to a specific UTC
offset frequently introduces errors in the analysis process.

3.6.1. Choice of representation: ISO 8601
There are two competing approaches for representing

time in modern computer systems. One is to record the
number of seconds from an epoch and to convert this value
to a printable local time as needed. Unix uses this approach
with an epoch of January 1, 1970 GMT; Windows uses the
same approach, although with an epoch of 1601, the first
year of the Gregorian calendar. Absolute time of less than
a second can be represented using floating-point time (as is
done in thePythonprogramming language), or using integer
time units less than a second (Windows uses nanoseconds).

The second approach is to represent time as a printable
string that must be parsed. This is the approach used by the
ISO 8601 standard (ISO, 2000).

The epoch-based approach minimizes storage require-
ments (timestamps from 1902 through 2038 can be stored
with a single 32-bit signed integer) and simplifies many
calculations. However the epoch-based approach has
multiple disadvantages which make it inappropriate as
a general interchange format for digital forensics:

1. The epoch is typically based in GMT and must be con-
verted to a local time zone. As such, this approach cannot
directly represent a “local” time for which the UTC offset
is unknown.

2. Epoch-based timestamps are not capable of representing
leap seconds, since future leap seconds are not known in
advance. The POSIX standard actually requires that leap
seconds be ignored, justifying this decision: “Not only do
most systems not keep track of leap seconds, but most
systems are probably not synchronized to any standard
time reference. Therefore, it is inappropriate to require
that a time represented as seconds since the Epoch
precisely represent the number of seconds between the
referenced time and the Epoch” (IEEE, 2004). Currently,
leap seconds, when they occur, are represented as an
extra second during the last minute of June 30th or
December 31st; 2008-DEC-31T23:59:60 was most
recent leap second. Hack et al. (2010) discusses the
problem of leap seconds as they apply to epoch-based
time representations in detail.

3. Epoch-based timestampsassumethat thedaylight savings
time (DST) rules are properly implemented. But DST rules
that are complex and subject to change. Worse, Epoch-
based systems have no way to explicitly represent a time
created on a computer whose operating system does not
properly follow DST rules, or whose clock is set to the
wrong time zone, without external information.

4. There are four different APIs for programmatically rep-
resentingUnix timestamps: integer time_t values, used in
legacy C programs; the timeval structure, which provides
microsecond resolution; the timespec structure, which
provides nanosecond resolution; and floating point
timestamps, popularized by the Python programming
language. As a result, writing portable forensic software
that can properly process time with sub-second resolu-
tion with epoch-based timestamps can be challenging.

ISO 8601 has the advantage of unambiguous represen-
tation and the ability to represent any date, time, or date
and time combination. The primary disadvantage is
a higher storage overhead (20 bytes instead of 4 to repre-
sent timestamps with 1-s resolution prior to 2038) and
higher computational overhead to ingest and emit
(although some of this overhead can be negated by keeping
timestamps as strings within programs).

Based on this analysis, DFXML uses ISO 8601, and specif-
ically the WC3 ISO 8601 XML Schema (Biron and Malhotra,
2004), to represent all time values, with these addenda:

� RFC 3339 specifies a “profile” or restrictive subset of ISO
8601. Where possible, this profile should be used by
DFXML implementations.

� Time precision or resolution is specified in seconds
using the XML attribute prec¼. For example, FAT32
create and modify times are accurate to 2 s but access
times are only accurate to 1 day. When not present,
precision is assumed to be 1 s.

� Time values with sub-second precision are represented
as floating point seconds. For example, 1 ns after
midnight, January 1, 2010 is specified as 2010-01-

01T00:00:00.000000001.
� Strict adherence to the ISO 8601 standard requires

durations (“periods”) to be expressedwith strings suchas
P3600S rather than simply as 3600. However, ISO 8601
allows the same duration to be expressed as P1H or
PT60M. This ambiguity has the effect of increasing the
complexityofparsing, violatingGoal3.As such,durations
inDFXML are always expressed asfloating point seconds.



S. Garfinkel / Digital Investigation 8 (2012) 161–174168
3.6.2. Performance
Although the ISO 8601 representation requires more

computational effort than epoch-based timestamps to emit
and ingest, the extra overhead is not significant.

An ISO 8601 parser written in C based on the standard C
library strptime function achieves nearly 260,000 conver-
sions per second on a 2.26 Ghz Intel processor. The same
hardware can perform 26 million string-to-integer conver-
sions per second, making ISO 8601 parsing two orders of
magnitude slower. Nevertheless, timestamp parsing is not
likely to be themost computationally burdensome aspect of
processing a large DFXML file. Amdhal’s Law suggests that
optimization efforts are better spent elsewhere.

It is instructive to note that it is more efficient to parse
ISO 8601 timestamps in C, rather than using higher-level
parsing functions provided by languages such as Python.
For example, Python’s native datetime parser can perform
only 6100 conversions from ISO 8601 to time_t each second
on the same hardware. Thus, rather than using Python’s
datetime parser, it is better to use Python’s strptime func-
tion, whichmerely calls the corresponding function in the C
library.
3.7. Windows registry

It is useful to have a means for representing specific
collections of Microsoft Windows Registry entries to
describe the installation and behavior of applications, the
results of file carving, and even the behavior of attackers.

Although multiple approaches have been created for
representing registry entries in XML, no approach is in
widespread use. DFXML therefore uses a representation
loosely based on Shayne (2001), but with the tags in
lowercase for consistency with the other DFXML tags.

Each key in the Windows Registry contains a Windows
64-bit timestamp denoting the last time it was modified
(Morgan, 2009). DFXML represents this last write time
through the use of an mtime element with the <key> tag
(Fig. 5).

The <byte_run> element can be used to annotate any
<key> or <value> to indicate the physical location that
Fig. 5. An example of RegXML, the XML representation used by DFXML to represen
the registry’s root.
the value was found. This is useful when reconstructing
orphan registry tags found in unallocated regions of the
Windows registry hive or in memory (Fig. 6).

Although it is possible to extract the entire Windows
registry as a single XML document, it is rarely useful to do
so. Instead, XML is useful for representing specific registry
settings that have been extracted and for representing
templates or rules.

3.8. Provenance

In addition to storing information about the forensic
object being analyzed, it is frequently useful to include
information about the specific tools used to create the XML
file. In DFXML, this provenance information is indicated
with a <creator> element that includes data about how
the tools used to generate the XMLwere compiled and how
they were run (Fig. 7).

3.9. Metadata annotations with DCMI

The data dictionary developed by Dublin Core Metadata
Initiative (2010) can be readily used to annotate both entire
DFXML files (for example, to provide an abstract for a disk
image), or to annotate specific elements within a DFXML
file (for example, to provide summaries for each file
extracted from a disk image). Fig. 8 shows the use of DCMI
to annotate a disk image with a publisher, abstract, acqui-
sition date, and sector size.

4. An object-oriented API for forensic processing

This section presents two Python modules that make it
easy to write small programs that can perform complex
forensic processing.

4.1. The dfxml.py and fiwalk.py python modules

dfxml.py is a Python module that reads DFXML files
and creates Python objects that directly map to DFXML’s
<volume>, <fileobject> and <byte_run> structures.
t registry entries. The root¼’’1’’ attribute indicates that this key starts at



Fig. 6. This example of RegXML shows how unallocated key/value pairs found within a registry hive can be represented. In this case, an orphaned Media Center
registry key was found 23423450 bytes into the registry hive, an orphaned value from a Most Recently Used (MRU) list inside Microsoft Word was found at
location 33421020, and a value claiming to be an AES key found at offset 8987332.

S. Garfinkel / Digital Investigation 8 (2012) 161–174 169
Each object is then presented to a callback function for
further processing.

Python provides two radically different models and
corresponding interfaces for processing XML streams. The
Fig. 7. The creator element contains information abou
preferred approach is to use Python’s SAX (Simple API for
XML) parser. This second approach is generally faster and
uses a smaller amount of memory, but is difficult for many
programmers to master because it requires the creation of
t the program that was used to create the DFXML.



Fig. 8. Dublin Core Metadata Initiative tags can be used to annotate DFXML objects, as shown here. The schema can also be extended – for example, by including
a new tag to denote the security classification of the disk image.

Table 1
Methods supported by the fileobject class.

Method Description

filename() Name of the file
filesize() Size of the file in bytes
ext() Returns the file extension as a lowercase string
ctime() Metadata change time
atime() File access time
crtime() File creation time
mtime() File modify time
alocated() True if file is allocated
file_present() True if the file is “present” in disk image
has_contents() True if the file has one or more bytes on disk
byte_runs() Returns an array of byte_run objects.
contents() Byte array of file’s contents
tempfile() Returns a named temporary file with file’s

contents. Optionally calculates MD5 and SHA1
of the file as it is written to the disk.

toxml() Returns an XML block associated with the
fileobject

S. Garfinkel / Digital Investigation 8 (2012) 161–174170
callback functions invoked for each tag or section of parsed
character data that the parser encounters. The dfxml.py

module provides these callbacks and processes the tags,
providing the programmer with a simplified, higher-level
API.

The design of the Python module means that constant
memory is required for forensic tools whose primary mode
of operation is to select files, process them, and then
proceed to the next file. But the overhead of dfxml.py’s
fileobjects is so small (typically between 100 and
1000 bytes per <fileobject>), that all the fileobjects for
a file systemwith even millions of files can be processed in
memory on a 32-bit system. This is useful when performing
timeline analysis and correlations.

It is frequently convenient to have programs process
disk images directly, without the need to first produce
a DFXML file. The Python module fiwalk.py will run the
fiwalk program and pipe the results into the dfxml.py

module. Currently the XML file is not cached on the hard
drive, although such caching could be added.

Sometimes it is advantageous to transform XML and
produce an output file. dfxml.py has two approaches. An
easy but inefficient way to do this using the framework is to
forgo the SAX-based interface and instead use a second API
within dfxml.py that relies on Python’s xml.dom.mi-

nidom class. This class, based on the DOM (Hors et al.,
2004), allows read-write access to the XML.

Internally the fileobject object returned by the SAX-
based functions belongs to a subclass called fil-

eobject_sax while the fileobject returned by the
DOM-based functions belongs to the fileobject_dom

subclass. Both subclasses have the same fileobject super-
class; the class structure hides this implementation detail
and allows either (or both) approaches to be used for
processing forensic images. It is also possible to use the SAX
API to ingest, process and emit modified DFXML, as the
dfxml.py module includes support for XML generation.
More work is needed in this area for an easy-to-use solu-
tion, however.
4.2. The fileobject object

Fileobjects support a straightforward API (see Table 1) in
which most of the quantities of forensic interest can be
retrieved with a function call.
4.3. Using fileobjects

It is relatively simple to obtain and work with the fil-
eobjects associated with a disk image. For example, the
program shown in Fig. 9 will print the partition number,
filename and filesize of all the files contained within a disk
image small.dmg.

Python’s built-in functions for list processing make
it relatively easy to operate on collections of fileobjects.
For example, if fobjs is the list of fileobjects that match
a certain criteria, Python’s built-in filter() function
can be used to select all of the fileobjects that have
a length between 16 and 32 bytes, inclusively:



Fig. 9. Accessing fileobjects using SAX with the callback interface.

S. Garfinkel / Digital Investigation 8 (2012) 161–174 171
myfiles¼filter(lambda x: 16<¼ x.filesize()<¼32,

fobjs).
Fig. 10 shows a more sophisticated program that reads

all of the files in a disk image and produces a sorted
timeline.
4.4. Accessing file contents

Fileobjects can also be used to access the content of the
files that they point to. The primary way to access a file’s
contents are through the contents() method, which
returns a string of the file’s contents, and the tempfile()

method, which copies the contents of the file out of the
image and places it in a temporary file in the host file
system, optionally calculating the MD5 and/or SHA1 in the
process. By default both of these methods access the disk
image provided when the objects were created, but both
can also be used to access data from another image speci-
fied as an optional argument. This can be useful to see
whether individual files have changed between images
(the file_present() method implements this function-
ality by checking to see if the hash value of the file has
changed).
4.5. Helper classes

The dfxml.py module also contains a few helper classes
that aid in processing DFXML files.

The byte_run class represents byte runs. This class can
perform basic set-of-sector operations such as determining
the intersection of two byte_runs, determining if a sector
from the drive is within a byte run, and producing XML
associated with a run.
Fig. 10. A small Python program using fiwalk.py and
A dftime class represents the ISO 8601 times found in
DFXML files. It can also operate with epoch-based times
that may be found in some XML files or other data struc-
tures. This class can also interconvert between ISO 8601
and the two other time standards available to Python
programs.

5. DFXML tools

This section presents several tools that emit and
consume DFXML.
5.1. fiwalk

fiwalk is a tool that ingests disk images and emits
DFXML objects corresponding to all allocated, deleted, and
orphan files in any file systems found on the disk.

fiwalk is designed to automate the initial forensic anal-
ysis of a disk image and in so doing eliminate many of the
points of confusion typically exhibited by thosewho are not
intimately familiar with file system forensics. Specifically:

� fiwalk can be applied to live file systems, raw devices, or
disk images.

� As fiwalk is based on SleuthKit, the program can operate
on disk images in any format that SleuthKit supports.

� If the target contains a single file system, fiwalk auto-
matically processes all of the files and inodes in the file
system. If the target is partitioned, fiwalk automatically
processes all of the partitions. SleuthKit beginners are
frequently confused as to whether or not they should
provide a -o 63 option with the file system-level
commands. fiwalk removes this point of confusion.
dfxml.py that prints a timeline of a disk image.



S. Garfinkel / Digital Investigation 8 (2012) 161–174172
When creating XML files from disk image files in AFF or
EnCase format, fiwalk will extract metadata such as the
serial number of the imaged disk or the experimenter’s
notes, and include this information in the resulting XML
file. fiwalk features a plug-in architecture that can auto-
matically run metadata extractors when files of specific
types are encountered. For example, the JPEG metadata
extractor can automatically extract EXIF information when
JPEGs are encountered. XML namespaces are used to
prevent conflict between tags. The results of the metadata
extractors are automatically incorporated into the output
streams.

Three plug-in interfaces have been designed for fiwalk:

dgi Similar to the Apache web server CGI interface, the
extractor runs as a stand-alone process with the file spec-
ified on the command line. Extracted metadata are
provided back to fiwalk on the STDOUT as a set of name:-
value pairs. fiwalk automatically collects these pairs,
escapes them as necessary, and turns them into the
appropriate XML.
shlib fiwalk loads a shared library into its address space
using the same API that was developed for the bulk_ex-
tractor forensics tool.
jvm fiwalk communicates with a metadata extractor
written in Java using Java’s Invocation API.

The publicly released version of fiwalk supports only the
dgi interface. Several plug-ins are distributed with the
program:

docx_extractor.py extracts document properties from the
Microsoft Office Open XML file.
ficlam.sh uses the open source Clam AV anti-virus system
to scan files for malware.
jpeg_extract uses libexif to extract EXIF information from
JPEG files.
odf_extractor.py extracts document properties from files
in the Open Office format.
word_extract.java extracts document properties from
legacy Microsoft Office Compound Document files (DOC,
XLS and PPT) using the wv Lachowicz and McNamara
(2006) system.

An example of extracted metadata appears in Fig. 11.
Fig. 11. An excerpt of the metadata extracted from a Microsoft Word file that acc
Microsoft Office Compound Document metadata extractor.
5.2. idifference.py

Examiners are frequently interested in understanding
the differences between two DFXML files. An obvious case
is when a hard drive is imaged, used, and then imaged
again – for example, before and after an application is
installed, to determine the application footprint.

idifference.py is a Python program that compares two
DFXML files and reports the differences on the fileobjects
that they contain. The changes currently detected and re-
ported include:

� Files deleted
� Files created
� Files moved or renamed (determined because a file was

created and another deleted that have the same cryp-
tographic hash)

� Files that were modified without a change to the
modification timestamp (indicative of a hardware
problem, software error, or attempted malicious
activity)

� Files that have had their modification timestamps
changed without a corresponding change to file
contents.

Currently idifference.py produces its output as a human-
readable file. In the future it can also produce a DFXML file
so that the difference processing can in turn be ingested by
other tools.

5.3. imicrosoft_redact.py

Computer forensics researchers need to distribute disk
images of computer systems to allow for the duplication of
results and the validation of forensic tools (Garfinkel et al.,
2009). Such distribution can be problematic, as a disk
image of a computer running Microsoft Windows can be
readily turned into a virtual machine and booted, poten-
tially violating Microsoft’s copyright on the files contained
therein. However, such uses may be permissible under US
copyright law under the fair use exemption, provided that
the use is for “teaching, scholarship [or] research,” and
provided that a competent court concludes the use is fair.
Under Section 107 of the Copyright Act, courts consider
four factors in making their determination:
ompanies a Grand Theft Auto Mission Pack, generated using fiwalk and the



S. Garfinkel / Digital Investigation 8 (2012) 161–174 173
1. The purpose and character of the use, including whether
such use is of commercial nature or is for nonprofit
educational purposes

2. The nature of the copyrighted work
3. The amount and substantiality of the portion used in

relation to the copyrighted work as a whole
4. The effect of the use upon the potential market for, or

value of, the copyrighted work (U.S. Copyright Office,
2009).

To this end, the DFXML distribution includes a tool that
can modify executables contained within a disk image so
that the image cannot be turned into a workable virtual
machine. The tool, imicrosoft_redact.py, further notes what
files have been modified, and records the cryptographic
hash of the files before and after modification. This allows
individuals with copies of these files (for example, if they
subscribe to the Microsoft Developer Network) to restore
the corrupted files.

This approach allows disk images of Microsoft Windows
installations to be distributed under the fair use doctrine
for the purpose of digital forensics research because:

1. The purpose of the distribution is for research and
nonprofit educational use.

2. The information that is distributed is a non-working
derivative work of Microsoft Windows.

3. The value of Microsoft Windows is not impacted by the
distribution of the derivative work.

6. Conclusion

This article describes Digital Forensics XML (DFXML), an
XML language for digital forensics research and inter-
change. DFXML is designed to be an interchange format
between forensic tools. The abstractions represented in
DFXML have been specifically chosen to represent digital
forensic processing steps, allowing for ease of generating
and ingesting DFXML objects.
6.1. Future work

The expressive power of DFXML can be used for many
purposes other than documenting the results of a forensic
investigation. For example:

Application and malware profiles DFXML can be used to
describe the collection of files that make up an application,
the Windows Registry or Macintosh plist information
associated with an application, document signatures, and
network traffic signatures. Using DFXML it should be
possible to distribute a machine-readable application
profile that will allow a tool to automatically determine if
an application is present on a hard drive, when it was last
used, or if an application was used and later uninstalled.
This use is very similar to a primary use case for MITRE’s
MAEC project.
Targeting It would be useful to expand DFXML to include
identity information associated with the targets of inves-
tigations. For example, there needs to be a canonical
representation for GPS coordinates, email addresses, credit
card numbers, phone numbers, and so on. Such represen-
tations will make it dramatically easier for practitioners to
exchange target lists, watch lists, stop lists, and the like.
User profiles DFXML can describe the tasks that a user
engages in, which applications the user runs, when they
run, and for what purpose. Using DFXML it should be
possible to create profiles indicative of specific users.
Alternatively it should be possible to programmatically
extract information pertaining to a user and provide this to
an automated reporting tool.
Internet footprint DFXML can document both the infor-
mation that a user contributes to the global Internet and
the information required to access it (Garfinkel and Cox,
2009). It should be possible to create a tool using DFXML
that finds Internet residue on a hard drive and uses that
information to prepare an evidence-based briefing.

The approach presented here for using Python to auto-
mate forensic processing can be easily extended to existing
all-in-one forensic systems such as EnCase, FTK and PyFlag.
It would certainly be advantageous to the forensic
community if a single simple but powerful programming
environment could runwithin all these applications. One of
the advantages of the object-oriented system described
here is that it can easily be applied to parallel computing
environments.

6.2. Availability

The fiwalk program, dfxml.py and fiwalk.pymodules, and
all of the applications discussed in this article can be
downloaded from http://www.afflib.org as part of the
fiwalk distribution. The software is in the public domain
and can be used by anyone for any purpose.

Acknowledgments

George Dinolt, Kevin Fairbanks, Christophe Grenier,
Joshua Gross, Jesse Kornblum, Neal Krawetz, Alex Nelson,
Adam Russell, Elisabeth Rosenberg, John Wulff, Tony Zuc-
caro and the anonymous reviewers all provided useful
feedback and criticism regarding the design of DFXML.
Portions of this work were funded by NSF Award DUE-
0919593.

The views and opinions expressed in this document
represent those of the author and do not necessarily reflect
those of the US Government or the Department of Defense.

References

Alink W, Bhoedjang R, Boncz P, de Vries A. Xiraf “xml-based indexing and
querying for digital forensics. Digital Investigation 2006a;3S:S50–8,
http://www.dfrws.org/2006/proceedings/7-Alink.pdf.

AlinkW, Jijkoun V, Ahn D, de RijkeM, Boncz P, de Vries A. Representing and
querying multi-dimensional markup for question answering. In:
Proceedings of the 5th workshop on NLP and XML: multi-dimensional
markup in natural language processing. NLPXML ’06. Stroudsburg, PA,
USA: Association for Computational Linguistics. p. 3–9, http://portal.
acm.org/citation.cfm?id¼1621034.1621036; 2006b.

Allen B, http://sourceforge.net/projects/libewf/files/jlibewf; 2011a.
Allen B. Implementation of libewfcs. Tech. Rep. NPS-CS-11-007. Monterey,

CA: Naval Postgraduate School; 2011b.

http://www.afflib.org
http://www.dfrws.org/2006/proceedings/7-Alink.pdf
http://portal.acm.org/citation.cfm?id=1621034.1621036
http://portal.acm.org/citation.cfm?id=1621034.1621036
http://portal.acm.org/citation.cfm?id=1621034.1621036
http://sourceforge.net/projects/libewf/files/jlibewf


S. Garfinkel / Digital Investigation 8 (2012) 161–174174
Biron PV, Malhotra A. XML schema part 2: datetypes, http://www.w3.org/
TR/xmlschema-2/#isoformats; Oct. 28 2004.

Cameron RD, Herdy KS, Lin D. High performance xml parsing using parallel
bit stream technology. In: Proceedings of the 2008 conference of the
center for advanced studies on collaborative research: meeting of
minds. CASCON ’08. New York, NY, USA: ACM. p.17:222–17:235, http://
doi.acm.org/10.1145/1463788.1463811; 2008.

Carrier B. Sleuthkit 3.2.0, http://www.sleuthkit.org/sleuthkit/; Oct. 28
2010.

Cohen MI, Garfinkel S, Schatz B. Extending the advanced forensic format
to accommodate multiple data sources, logical evidence, arbitrary
information and forensic workflow. In: Proceedings of DFRWS 2009.
Montreal, Canada: Elsevier; 2009.

Common Digital Evidence Storage Format Working Group. DFRWS CDESF
working group, http://www.dfrws.org/CDESF/index.shtml; 2007.

Diaz E. Exploiting MD5 collisions (in c#), http://www.codeproject.com/
KB/security/HackingMd5.aspx; Sep. 20 2005.

Dima A. WiReD – windows registry dataset – BETA release CD ISO.
National Institute of Standards and Technology, http://www.nsrl.nist.
gov/Downloads.htm; 2006.

Dublin Core Metadata Initiative. Dublin core metadata element set,
version 1.1, http://www.dublincore.org/documents/dces/; Oct. 11
2010.

Farmer D, Venema W. Forensic discovery. New York, NY: Addison-Wesley
Professional; 2005.

FrazierM. Combat the apt by sharing indicators of compromise. M-unition,
https://blog.mandiant.com/archives/766; Jan. 26 2010.

Garfinkel S. AFF: a new format for storing hard drive images. Commu-
nications of the ACM; Feb. 2006.

Garfinkel S, Cox D. Finding and archiving the internet footprint. In: The
first digital lives research conference. London, England: The British
Library; Feb. 9–11 2009.

Garfinkel S, Parker-Wood A, Huynh D, Migletz J. A solution to the multi-
user carved data ascription problem. IEEE Transactions on Informa-
tion Forensics and Security Dec. 2010;5:868–82.

Garfinkel SL. Automating disk forensic processing with SleuthKit, XML
and Python. In: Proceedings of the fourth international IEEE work-
shop on systematic approaches to digital forensic engineering. Oak-
land, CA: IEEE, IEEE; 2009.

Garfinkel SL, Farrell P, Roussev V, Dinolt G. Bringing science to digital
forensics with standardized forensic corpora. In: Proceedings of the
9th annual digital forensic research workshop (DFRWS). Quebec, CA:
Elsevier; Aug. 2009.

Google. Protocol buffers, http://code.google.com/apis/protocolbuffers/;
2011.

Grenier C. Photorec, http://www.cgsecurity.org/wiki/PhotoRec; 2011.
Guidance Software. EnScript programs version 6.3 user manual. Pasa-

dena, CA: Guidance Software, Inc.; 2007.
Hack M, Meng X, Froehlich S, Zhang L. Leap second support in computers.

In: Precision clock synchronization for measurement control and
communication (ISPCS), 2010 international IEEE symposium on; Oct.
21 2010. p. 91–6.

Hors AL, Hégaret PL, Wood L, Nicol G, Robie J, ChampionM, et al. Document
object model (dom) level 3 core specification, http://www.w3.org/TR/
2004/REC-DOM-Level-3-Core-20040407/; Apr. 2004.

Howell C. Regripper, http://regripper.wordpress.com/; 2009.
Huynh D. Exploring and validating data mining algorithms for use in data

ascription. Master’s thesis, Naval Postgraduate School, Monterey, CA,
http://theses.nps.navy.mil/08Jun_huynh.pdf; 2008.
IEEE. The open group base specifications issue 6, IEEE Std 1003.1, 2004
edition, http://pubs.opengroup.org/onlinepubs/009604599/xrat/xbd_
chap04.html; 2004.

ISO. ISO 8601:2000. Data elements and interchange formats – informa-
tion interchange – representation of dates and times. Geneva, Swit-
zerland: International Standards organization, http://www.iso.ch/
cate/d26780.html; 2000.

Jones RWM. hivexml – convert windows registry binary ‘hive’ into xml.
Red Hat Inc., http://libguestfs.org/; 2009.

Kloet B, Metz J, Mora R-J, Loveall D, Schreiber D. libewf: project info,
http://www.uitwisselplatform.nl/projects/libewf/; 2008.

Kornblum J. md5deep and hashdeep – latest version 3.9.2, http://
md5deep.sourceforget.net; Jun. 26 2011.

Lachowicz D, McNamara C. wvware, http://wvware.sourceforge.net; 2006.
Levine BN, Liberatore M. Digital Investigation 2009;6:S48–56, http://

www.dfrws.org/2009/proceedings/p48-levine.pdf.
Meijer R. The carve path zero-storage library and filesystem, http://ocfa.

sourceforge.net/libcarvpath/; 2011.
Microsoft. Microsoft security advisory (961509) research proves feasi-

bility of collision attacks against MD5, http://www.microsoft.com/
technet/security/advisory/961509.mspx; Dec. 30 2008.

Migletz J. Automated metadata extraction. Master’s thesis, Naval Post-
graduate School, Monterey, CA, http://theses.nps.navy.mil/08Jun_
Migletz.pdf; 2008.

Morgan TD. The Windows NT registry file format version 0.4, http://
sentinelchicken.com/data/TheWindowsNTRegistryFileFormat.pdf;
Jun. 9 2009.

Python Software Foundation. xml.sax: support for sax2 parsers. Python v2.
7.1 documentation, http://docs.python.org/library/xml.sax.html; 2010.

Rodriguez S. Import/export registry sections as XML. The code project,
http://www.codeproject.com/KB/system/registryasxml.aspx; Jan. 21
2003.

Selinger P. MD5 collision demo, http://www.mscs.dal.ca/wselinger/
md5collision/; Jan. 17 2009.

Shayne E. Regxml, http://www.eshayne.com/RegXML/; Aug. 2001.
Socha G. The electronic discovery reference model XML, http://edrm.net/

projects/xml; 2011.
Tang Z, Ding H, Xu M, Xu J. Carving the windows registry files based on

the internal structure. In: Proceedings of the 2009 first IEEE inter-
national conference on information science and engineering. ICISE
’09. Washington, DC, USA: IEEE Computer Society. p. 4788–91, http://
dx.doi.org/10.1109/ICISE.2009.379; 2009.

Thomassen J. Forensic analysis of unallocated space in windows registry
hive files. Master’s thesis, University of Liverpool; Apr. 11 2008.

Turner P. Unification of digital evidence from disparate sources (digital
evidence bags). In: Proceedings of the 2005 digital forensics research
workshop. London, England: Elsevier; Aug. 2005.

U.S. Copyright Office. Fair use, http://www.copyright.gov/fls/fl102.html;
2009.

US Department of Justice, US Department of Homeland Security. Terrorist
watchlist person data exchange standard overview, http://www.
niem.gov/TWPDES.php; 2011.

Zhang W, van Engelen RA. Tdx: a high-performance table-driven xml
parser. In: Proceedings of the 44th annual Southeast regional
conference. ACM-SE 44. New York, NY, USA: ACM. p. 726–31, http://
doi.acm.org/10.1145/1185448.1185606; 2006.

Zyp K, Court G. A json media type for describing the structure and
meaning of json documents, http://tools.ietf.org/html/draft-zyp-json-
schema-03; Nov. 22 2010.

http://www.w3.org/TR/xmlschema-2/#isoformats
http://www.w3.org/TR/xmlschema-2/#isoformats
http://doi.acm.org/10.1145/1463788.1463811
http://doi.acm.org/10.1145/1463788.1463811
http://www.sleuthkit.org/sleuthkit/
http://www.dfrws.org/CDESF/index.shtml
http://www.codeproject.com/KB/security/HackingMd5.aspx
http://www.codeproject.com/KB/security/HackingMd5.aspx
http://www.nsrl.nist.gov/Downloads.htm
http://www.nsrl.nist.gov/Downloads.htm
http://www.dublincore.org/documents/dces/
https://blog.mandiant.com/archives/766
http://code.google.com/apis/protocolbuffers/
http://www.cgsecurity.org/wiki/PhotoRec
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/
http://regripper.wordpress.com/
http://theses.nps.navy.mil/08Jun_huynh.pdf
http://pubs.opengroup.org/onlinepubs/009604599/xrat/xbd_chap04.html
http://pubs.opengroup.org/onlinepubs/009604599/xrat/xbd_chap04.html
http://www.iso.ch/cate/d26780.html
http://www.iso.ch/cate/d26780.html
http://libguestfs.org/
http://www.uitwisselplatform.nl/projects/libewf/
http://md5deep.sourceforget.net
http://md5deep.sourceforget.net
http://wvware.sourceforge.net
http://www.dfrws.org/2009/proceedings/p48-levine.pdf
http://www.dfrws.org/2009/proceedings/p48-levine.pdf
http://ocfa.sourceforge.net/libcarvpath/
http://ocfa.sourceforge.net/libcarvpath/
http://www.microsoft.com/technet/security/advisory/961509.mspx
http://www.microsoft.com/technet/security/advisory/961509.mspx
http://theses.nps.navy.mil/08Jun_Migletz.pdf
http://theses.nps.navy.mil/08Jun_Migletz.pdf
http://sentinelchicken.com/data/TheWindowsNTRegistryFileFormat.pdf
http://sentinelchicken.com/data/TheWindowsNTRegistryFileFormat.pdf
http://docs.python.org/library/xml.sax.html
http://www.codeproject.com/KB/system/registryasxml.aspx
http://www.mscs.dal.ca/~selinger/md5collision/
http://www.mscs.dal.ca/~selinger/md5collision/
http://www.mscs.dal.ca/~selinger/md5collision/
http://www.eshayne.com/RegXML/
http://edrm.net/projects/xml
http://edrm.net/projects/xml
http://dx.doi.org/10.1109/ICISE.2009.379
http://dx.doi.org/10.1109/ICISE.2009.379
http://www.copyright.gov/fls/fl102.html
http://www.niem.gov/TWPDES.php
http://www.niem.gov/TWPDES.php
http://doi.acm.org/10.1145/1185448.1185606
http://doi.acm.org/10.1145/1185448.1185606
http://tools.ietf.org/html/draft-zyp-json-schema-03
http://tools.ietf.org/html/draft-zyp-json-schema-03

	Digital forensics XML and the DFXML toolset
	1. Introduction
	1.1. The need for DFXML
	1.2. Specific uses for DFXML
	1.3. Contributions

	2. Prior work
	2.1. Digital evidence containers
	2.2. Representing registry information
	2.3. File system metadata standards
	2.4. File metadata and extracted features
	2.5. XML languages for computer security
	2.6. XMLs for media forensics

	3. Digital forensic abstractions and digital forensics XML
	3.1. Example 1: using DFXML to describe file locations
	3.2. Example 2: using DFXML for hash lists
	3.3. Goals for DFXML
	3.4. Overall design
	3.5. Combining elements to express complex concepts
	3.6. Times, dates and durations
	3.6.1. Choice of representation: ISO 8601
	3.6.2. Performance

	3.7. Windows registry
	3.8. Provenance
	3.9. Metadata annotations with DCMI

	4. An object-oriented API for forensic processing
	4.1. The dfxml.py and fiwalk.py python modules
	4.2. The fileobject object
	4.3. Using fileobjects
	4.4. Accessing file contents
	4.5. Helper classes

	5. DFXML tools
	5.1. fiwalk
	5.2. idifference.py
	5.3. imicrosoft_redact.py

	6. Conclusion
	6.1. Future work
	6.2. Availability

	Acknowledgments
	References


