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Abstract—The web has become an essential part of our
society and is currently the main medium of information
delivery. Billions of users browse the web on a daily basis, and
there are single websites that have reached over one billion
user accounts. In this environment, the ability to track users
and their online habits can be very lucrative for advertising
companies, yet very intrusive for the privacy of users.

In this paper, we examine how web-based device fingerprint-
ing currently works on the Internet. By analyzing the code
of three popular browser-fingerprinting code providers, we
reveal the techniques that allow websites to track users without
the need of client-side identifiers. Among these techniques, we
show how current commercial fingerprinting approaches use
questionable practices, such as the circumvention of HTTP
proxies to discover a user’s real IP address and the installation
of intrusive browser plugins.

At the same time, we show how fragile the browser ecosystem
is against fingerprinting through the use of novel browser-
identifying techniques. With so many different vendors involved
in browser development, we demonstrate how one can use
diversions in the browsers’ implementation to distinguish
successfully not only the browser-family, but also specific major
and minor versions. Browser extensions that help users spoof
the user-agent of their browsers are also evaluated. We show
that current commercial approaches can bypass the extensions,
and, in addition, take advantage of their shortcomings by using
them as additional fingerprinting features.

I. INTRODUCTION

In 1994, Lou Montulli, while working for Netscape Com-
munications, introduced the idea of cookies in the context
of a web browser [1]. The cookie mechanism allows a web
server to store a small amount of data on the computers of
visiting users, which is then sent back to the web server
upon subsequent requests. Using this mechanism, a website
can build and maintain state over the otherwise stateless
HTTP protocol. Cookies were quickly embraced by browser
vendors and web developers. Today, they are one of the core
technologies on which complex, stateful web applications
are built.

Shortly after the introduction of cookies, abuses of their
stateful nature were observed. Web pages are usually com-
prised of many different resources, such as HTML, images,
JavaScript, and CSS, which can be located both on the web
server hosting the main page as well as other third-party web

servers. With every request toward a third-party website,
that website has the ability to set and read previously-set
cookies on a user’s browser. For instance, suppose that
a user browses to travel.com, whose homepage includes
a remote image from tracking.com. Therefore, as part of
the process of rendering travel.com’s homepage, the user’s
browser will request the image from tracking.com. The
web server of tracking.com sends the image along with an
HTTP Set-Cookie header, setting a cookie on the user’s
machine, under the tracking.com domain. Later, when the
user browses to other websites affiliated with tracking.com,
e.g., buy.com, the tracking website receives its previously-
set cookies, recognizes the user, and creates a profile of
the user’s browsing habits. These third-party cookies, due
to the adverse effects on a user’s privacy and their direct
connection with online behavioral advertising, captured the
attention of both the research community [2], [3], [4] and the
popular media outlets [5] and, ever since, cause the public’s
discomfort [6], [7].

The user community responded to this privacy threat in
multiple ways. A recent cookie-retention study by com-
Score [8] showed that approximately one in three users
delete both first-party and third-party cookies within a month
after their visit to a website. Multiple browser-extensions
are available that reveal third-party tracking [9], as well as
the “hidden” third-party affiliations between sites [10]. In
addition, modern browsers now have native support for the
rejection of all third-party cookies and some even enable
it by default. Lastly, a browser’s “Private Mode” is also
available to assist users to visit a set of sites without leaving
traces of their visit on their machine.

This general unavailability of cookies motivated advertis-
ers and trackers to find new ways of linking users to their
browsing histories. Mayer in 2009 [11] and Eckersley in
2010 [12] both showed that the features of a browser and its
plugins can be fingerprinted and used to track users without
the need of cookies. Today, there is a small number of com-
mercial companies that use such methods to provide device
identification through web-based fingerprinting. Following
the classification of Mowery et al. [13], fingerprinting can
be used either constructively or destructively. Constructively,



a correctly identified device can be used to combat fraud,
e.g., by detecting that a user who is trying to login to a
site is likely an attacker who stole a user’s credentials or
cookies, rather than the legitimate user. Destructively, device
identification through fingerprinting can be used to track
users between sites, without their knowledge and without
a simple way of opting-out. Additionally, device identifica-
tion can be used by attackers in order to deliver exploits,
tailored for specific combinations of browsers, plugins and
operating systems [14]. The line between the constructive
and destructive use is, however, largely artificial, because
the same technology is used in both cases.

Interestingly, companies were offering fingerprinting ser-
vices as early as 2009, and experts were already voicing
concerns over their impact on user privacy [15]. Even when
fingerprinting companies honor the recently-proposed “Do
Not Track” (DNT) header, the user is still fingerprinted for
fraud detection, but the companies promise not to use the
information for advertising purposes [16]. Note that since
the fingerprinting scripts will execute regardless of the DNT
value, the verification of this promise is much harder than
verifying the effect of DNT on stateful tracking, where the
effects are visible at the client-side, in a user’s cookies [17].

In this paper, we perform a four-pronged analysis of
device identification through web-based fingerprinting. First,
we analyze the fingerprinting code of three large, commer-
cial companies. We focus on the differences of their code in
comparison to Panopticlick [12], Eckersley’s “open-source”
implementation of browser fingerprinting. We identify the
heavy use of Adobe Flash as a way of retrieving more sensi-
tive information from a client, including the ability to detect
HTTP proxies, and the existence of intrusive fingerprinting
plugins that users may unknowingly host in their browsers.
Second, we measure the adoption of fingerprinting on the
Internet and show that, in many cases, sites of dubious
nature fingerprint their users, for a variety of purposes.
Third, we investigate special JavaScript-accessible browser
objects, such as navigator and screen, and describe
novel fingerprinting techniques that can accurately identify
a browser even down to its minor version. These techniques
involve the ordering of methods and properties, detection
of vendor-specific methods, HTML/CSS functionality as
well as minor but fingerprintable implementation choices.
Lastly, we examine and test browser extensions that are
available for users who wish to spoof the identity of their
browser and show that, unfortunately all fail to completely
hide the browser’s true identity. This incomplete coverage
not only voids the extensions but, ironically, also allows
fingerprinting companies to detect the fact that user is
attempting to hide, adding extra fingerprintable information.

Our main contributions are:

• We shed light into the current practices of device iden-
tification through web-based fingerprinting and propose

a taxonomy of fingerprintable information.
• We measure the adoption of fingerprinting on the web.
• We introduce novel browser-fingerprinting techniques

that can, in milliseconds, uncover a browser’s family
and version.

• We demonstrate how over 800,000 users, who are
currently utilizing user-agent-spoofing extensions, are
more fingerprintable than users who do not attempt to
hide their browser’s identity, and challenge the advice
given by prior research on the use of such extensions
as a way of increasing one’s privacy [18].

II. COMMERCIAL FINGERPRINTING

While Eckersley showed the principle possibility of fin-
gerprinting a user’s browser in order to track users without
the need of client-side stateful identifiers [12], we wanted
to investigate popular, real-world implementations of finger-
printing and explore their workings. To this end, we ana-
lyzed the fingerprinting libraries of three large, commercial
companies: BlueCava1, Iovation2 and ThreatMetrix3. Two of
these companies were chosen due to them being mentioned
in the web-tracking survey of Mayer and Mitchell [19],
while the third one was chosen due to its high ranking on a
popular search engine. Given the commercial nature of the
companies, in order to analyze the fingerprinting scripts we
first needed to discover websites that make use of them. We
used Ghostery [9], a browser-extension which lists known
third-party tracking libraries on websites, to obtain the list
of domains which the three code providers use to serve their
fingerprinting scripts. Subsequently, we crawled popular
Internet websites, in search for code inclusions, originating
from these fingerprinting-owned domains. Once these web
sites were discovered, we isolated the fingerprinting code,
extracted all individual features, and grouped similar features
of each company together.

In this section, we present the results of our analysis,
in the form of a taxonomy of possible features that can
be acquired through a fingerprinting library. This taxonomy
covers all the features described in Panopticlick [12] as
well as the features used by the three studied fingerprinting
companies. Table I lists all our categories and discovered
features, together with the method used to acquire each
feature. The categories proposed in our taxonomy resulted
by viewing a user’s fingerprintable surface as belonging
to a layered system, where the “application layer” is the
browser and any fingerprintable in-browser information. At
the top of this taxonomy, scripts seek to fingerprint and
identify any browser customizations that the user has directly
or indirectly performed. In lower levels, the scripts target
user-specific information around the browser, the operating
system and even the hardware and network of a user’s

1http://www.bluecava.com
2http://www.iovation.com
3http://www.threatmetrix.com



Fingerprinting Category Panopticlick BlueCava
Iovation

ReputationManager ThreatMetrix
Browser customizations Plugin enumeration(JS) Plugin enumeration(JS) Plugin enumeration(JS)

Mime-type enumeration(JS) ActiveX + 53 CLSIDs(JS) Mime-type enumeration(JS)
ActiveX + 8 CLSIDs(JS) Google Gears Detection(JS) ActiveX + 6 CLSIDs(JS)

Flash Manufacturer(FLASH)
Browser-level user configurations Cookies enabled(HTTP) System/Browser/User Language(JS) Browser Language(HTTP, JS) Browser Language(FLASH)

Timezone(JS) Timezone(JS) Timezone(JS) Timezone(JS, FLASH)
Flash enabled(JS) Flash enabled(JS) Flash enabled(JS) Flash enabled(JS)

Do-Not-Track User Choice(JS) Date & time(JS) Proxy Detection(FLASH)
MSIE Security Policy(JS) Proxy Detection(FLASH)

Browser family & version User-agent(HTTP) User-agent(JS) User-agent(HTTP, JS) User-agent(JS)
ACCEPT-Header(HTTP) Math constants(JS)
Partial S.Cookie test(JS) AJAX Implementation(JS)

Operating System & Applications User-agent(HTTP) User-agent(JS) User-agent(HTTP, JS) User-agent(JS)
Font Detection(FLASH, JAVA) Font Detection(JS, FLASH) Windows Registry(SFP) Font Detection(FLASH)

Windows Registry(SFP) MSIE Product key(SFP) OS+Kernel version(FLASH)
Hardware & Network Screen Resolution(JS) Screen Resolution(JS) Screen Resolution(JS) Screen Resolution(JS, FLASH)

Driver Enumeration(SFP) Device Identifiers(SFP)
IP Address(HTTP) TCP/IP Parameters(SFP)
TCP/IP Parameters(SFP)

Table I
TAXONOMY OF ALL FEATURES USED BY PANOPTICLICK AND THE STUDIED FINGERPRINTING PROVIDERS - SHADED FEATURES ARE, IN COMPARISON

TO PANOPTICLICK, EITHER SUFFICIENTLY EXTENDED, OR ACQUIRED THROUGH A DIFFERENT METHOD, OR ENTIRELY NEW

machine. In the rest of this section, we focus on all the
non-trivial techniques used by the studied fingerprinting
providers that were not previously described in Eckersley’s
Panopticlick [12].

A. Fingerprinting through popular plugins

As one can see in Table I, all companies use Flash, in
addition to JavaScript, to fingerprint a user’s environment.
Adobe Flash is a proprietary browser plug-in that has
enjoyed wide adoption among users, since it provided ways
of delivering rich media content that could not traditionally
be displayed using HTML. Despite the fact that Flash has
been criticized for poor performance, lack of stability, and
that newer technologies, like HTML5, can potentially deliver
what used to be possible only through Flash, it is still
available on the vast majority of desktops.

We were surprised to discover that although Flash reim-
plements certain APIs existing in the browser and accessible
through JavaScript, its APIs do not always provide the
same results compared to the browser-equivalent functions.
For instance, for a Linux user running Firefox on a 64-bit
machine, when querying a browser about the platform of
execution, Firefox reports “Linux x86 64”. Flash, on the
other hand, provides the full kernel version, e.g., Linux
3.2.0-26-generic. This additional information is not only un-
desirable from a privacy perspective, but also from a security
perspective, since a malicious web-server could launch an
attack tailored not only to a browser and architecture but to
a specific kernel. Another API call that behaves differently
is the one that reports the user’s screen resolution. In the
Linux implementations of the Flash plugin (both Adobe’s
and Google’s), when a user utilizes a dual-monitor setup,
Flash reports as the width of a screen the sum of the two
individual screens. This value, when combined with the

browser’s response (which lists the resolution of the monitor
were the browser-window is located), allows a fingerprinting
service to detect the presence of multiple-monitor setups.

Somewhat surprisingly, none of the three studied finger-
printing companies utilized Java. One of them had some
dead code that revealed that in the past it probably did make
use of Java, however, the function was not called anymore
and the applet was no longer present on the hard-coded
location listed in the script. This is an interesting deviation
from Panopticlick, which did use Java as an alternate way
of obtaining system fonts. We consider it likely that the
companies abandoned Java due to its low market penetration
in browsers. This, in turn, is most likely caused by the fact
that many have advised the removal of the Java plugin from
a user’s browser [20], [21] due to the plethora of serious
Java vulnerabilities that were discovered and exploited over
the last few years.

B. Vendor-specific fingerprinting

Another significant difference between the code we
analyzed and Panopticlick is that, the fingerprinting
companies were not trying to operate in the
same way across all browsers. For instance, when
recognizing a browser as Internet Explorer, they
would extensively fingerprint Internet-Explorer-specific
properties, such as navigator.securityPolicy and
navigator.systemLanguage. At the same time,
the code accounted for the browser’s “short-comings,”
such as using a lengthy list of predefined CLSIDs for
Browser-Helper-Objects (BHOs) due to Internet Explorer’s
unwillingness to enumerate its plugins.



Listing 1 Side-channel inference of the presence or absence
of a font

function get_text_dimensions(font){

h = document.getElementsByTagName("BODY")[0];
d = document.createElement("DIV");
s = document.createElement("SPAN");

d.appendChild(s);
d.style.fontFamily = font;
s.style.fontFamily = font;
s.style.fontSize = "72px";
s.innerHTML = "font_detection";
h.appendChild(d);

textWidth = s.offsetWidth;
textHeight = s.offsetHeight;
h.removeChild(d);

return [textWidth, textHeight];
}

C. Detection of fonts

The system’s list of fonts can serve as part of a user’s
unique fingerprint [12]. While a browser does not directly
provide that list, one can acquire it using either a browser
plugin that willingly provides this information or using a
side-channel that indirectly reveals the presence or absence
of any given font.

1) Plugin-based detection: ActionScript, the scripting
language of Flash, provides APIs that include methods for
discovering the list of fonts installed on a running system.
While this traditionally was meant to be used as a way
of ensuring the correct appearance of text by the plugin,
it can also be used to fingerprint the system. Two out of the
three studied companies were utilizing Flash as a way of
discovering which fonts were installed on a user’s computer.
Interestingly, only one of the companies was preserving the
order of the font-list, which points, most likely, to the fact
that the other is unaware that the order of fonts is stable
and machine-specific (and can thus be used as an extra
fingerprinting feature).

2) Side-channel inference: The JavaScript code of one
of the three fingerprinting companies included a fall-back
method for font-detection, in the cases where the Flash
plugin was unavailable. By analyzing that method, we dis-
covered that they were using a technique, similar to the CSS
history stealing technique [22], to identify the presence or
absence of any given font - see Listing 1.

More precisely, the code first creates a <div> element.
Inside this element, the code then creates a <span> el-
ement with a predetermined text string and size, using
a provided font family. Using the offsetWidth and

Font Family String Width x Height

Sans font_detection 519x84

Arial font_detection 452x83

Calibri font_detection 416x83

Figure 1. The same string, rendered with different fonts, and its effects on
the string’s width and height, as reported by the Google Chrome browser

offsetHeight methods of HTML elements, the script
discovers the layout width and height of the element. This
code is first called with a “sans” parameter, the font typically
used by browsers as a fall-back, when another requested font
is unavailable on a user’s system. Once the height and text
for “sans” are discovered, another script goes over a pre-
defined list of fonts, calling the get_text_dimensions
function for each one. For any given font, if the current
width or height values are different from the ones obtained
through the original “sans” measurement, this means that
the font does exist and was used to render the predefined
text. The text and its size are always kept constant, so that
if its width or height change, this change will only be due
to the different font. Figure 1 shows three renderings of the
same text, with the same font-size but different font faces in
Google Chrome. In order to capitalize as much as possible
on small differences between fonts, the font-size is always
large, so that even the smallest of details in each individual
letter will add up to measurable total difference in the text’s
height and width. If the height and width are identical to the
original measurement, this means that the requested font did
not exist on the current system and thus, the browser has
selected the sans fall-back font. All of the above process,
happens in an invisible iframe created and controlled by the
fingerprinting script and thus completely hidden from the
user.

Using this method, a fingerprinting script can rapidly
discover, even for a long list of fonts, those that are present
on the operating system. The downside of this approach is
that less popular fonts may not be detected, and that the
font-order is no longer a fingerprintable feature.

D. Detection of HTTP Proxies

One of the features that are the hardest to spoof for a client
is its IP address. Given the nature of the TCP protocol, a
host cannot pretend to be listening at an IP address from
which it cannot reliably send and receive packets. Thus,
to hide a user’s IP address, another networked machine (a
proxy) is typically employed that relays packets between the
user that wishes to remain hidden and a third-party. In the
context of browsers, the most common type of proxies are
HTTP proxies, through which users configure their browsers
to send all requests. In addition to manual configuration,
browser plugins are also available that allow for a more
controlled use of remote proxies, such as the automatic
routing of different requests to different proxies based on
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Figure 2. Fingerprinting libraries take advantage of Flash’s ability to ignore
browser-defined HTTP proxies to detect the real IP address of a user

pattern matching of each request4, or the cycling of proxies
from a proxy list at user-defined intervals5.

From the point of view of device identification through
fingerprinting, a specific IP address is an important feature.
Assuming the use of fingerprinting for the detection of
fraudulent activities, the distinction between a user who is
situated in a specific country and one that pretends to be
situated in that country, is crucial. Thus, it is in the interest
of the fingerprint provider to detect a user’s real IP address
or, at least, discover that the user is utilizing a proxy server.

When analyzing the ActionScript code embedded in the
SWF files of two of the three fingerprinting companies,
we found evidence that the code was circumventing the
user-set proxies at the level of the browser, i.e., the loaded
Flash application was contacting a remote host directly,
disregarding any browser-set HTTP proxies. We verified this
behavior by employing both an HTTP proxy and a packet-
capturing application, and noticing that certain requests
were captured by the latter but were never received by the
former. In the code of both of the fingerprinting companies,
certain long alphanumerical tokens were exchanged between
JavaScript and Flash and then used in their communication
to the server. While we do not have access to the server-
side code of the fingerprinting providers, we assume that
the identifiers are used to correlate two possibly different IP
addresses. In essence, as shown in Figure 2, if a JavaScript-
originating request contains the same token as a Flash-
originating request from a different source IP address, the
server can be certain that the user is utilizing an HTTP proxy.

Flash’s ability to circumvent HTTP proxies is a somewhat
known issue among privacy-conscious users that has lead to
the disabling of Flash in anonymity-providing applications,
like TorButton [23]. Our analysis shows that it is actively
exploited to identify and bypass web proxies.

4FoxyProxy - http://getfoxyproxy.org/
5ProxySwitcher - http://www.proxyswitcher.com/

E. System-fingerprinting plugins

Previous research on fingerprinting a user’s browser fo-
cused on the use of popular browser plugins, such as Flash
and Java, and utilized as much of their API surface as
possible to obtain user-specific data [11], [12]. However,
while analyzing the plugin-detection code of the studied
fingerprinting providers, we noticed that two out of the
three were searching a user’s browser for the presence of
a special plugin, which, if detected, would be loaded and
then invoked. We were able to identify that the plugins
were essentially native fingerprinting libraries, which are
distributed as CAB files for Internet Explorer and eventually
load as DLLs inside the browser. These plugins can reach
a user’s system, either by a user accepting their installation
through an ActiveX dialogue, or bundled with applications
that users download on their machines. DLLs are triggered
by JavaScript through ActiveX, but they run natively on the
user’s machine, and thus can gather as much information as
the Internet Explorer process.

We downloaded both plugins, wrapped each DLL into an
executable that simply hands-off control to the main routine
in the DLL and submitted both executables to Anubis [24], a
dynamic malware analysis platform that executes submitted
binaries in a controlled environment. We focused on the
Windows registry values that were read by the plugin, since
the registry is a rich environment for fingerprinting. The
submitted fingerprinting DLLs were reading a plethora of
system-specific values, such as the hard disk’s identifier,
TCP/IP parameters, the computer’s name, Internet Explorer’s
product identifier, the installation date of Windows, the
Windows Digital Product Id and the installed system drivers
– entries marked with SFP in Table I.

All of these values combined provide a much stronger
fingerprint than what JavaScript or Flash could ever con-
struct. It is also worthwhile mentioning that one of the two
plugins was misleadingly identifying itself as “Reputation-
Shield” when asking the user whether she wants to accept
its installation. Moreover, none of 44 antivirus engines of
VirusTotal [25] identified the two DLLs as malicious, even
though they clearly belong to the spyware category. Using
identifiers found within one DLL, we were also able to locate
a Patent Application for Iovation’s fingerprinting plugin that
provides further information on the fingerprinting process
and the gathered data [26].

F. Fingerprint Delivery Mechanism

In the fingerprinting experiments of Mayer [11] and
Eckersley [12], there was a 1-to-1 relationship between the
page conducting the fingerprinting and the backend storing
the results. For commercial fingerprinting, however, there is
a N-to-1 relationship, since each company provides finger-
printing services to many websites (through the inclusion of
third-party scripts) and needs to obtain user fingerprints from
each of these sites. Thus, the way that the fingerprint and



the information about it are delivered is inherently different
from the two aforementioned experiments.

Through our code analysis, we found two different sce-
narios of fingerprinting. In the first scenario, the first-
party site was not involved in the fingerprinting process.
The fingerprinting code was delivered by an advertising
syndicator, and the resulting fingerprint was sent back to the
fingerprinting company. This was most likely done to combat
click-fraud, and it is unclear whether the first-party site is
even aware of the fact that its users are being fingerprinted.

In the second scenario, where the first-party website is
the one requesting the fingerprint, we saw that two out of
the three companies were adding the final fingerprint of the
user into the DOM of the hosting page. For instance, www.
imvu.com is using BlueCava for device fingerprinting
by including remote scripts hosted on BlueCava’s servers.
When BlueCava’s scripts combine all features into a single
fingerprint, the fingerprint is DES-encrypted (DES keys
generated on the fly and then encrypted with a public key),
concatenated with the encrypted keys and finally converted
to Base64 encoding. The resulting string is added into the
DOM of www.imvu.com; more precisely, as a new hidden
input element in IMVU’s login form. In this way, when the
user submits her username and password, the fingerprint is
also sent to IMVU’s web servers. Note, however, that IMVU
cannot decrypt the fingerprint and must thus submit it back
to BlueCava, which will then reply with a “trustworthiness”
score and other device information. This architecture allows
BlueCava to hide the implementation details from its clients
and to correlate user profiles across its entire client-base.
Iovation’s fingerprinting scripts operate in a similar manner.

Constrastingly, ThreatMetrix delivers information about
users in a different way. The including site, i.e., a customer
of ThreatMetrix, creates a session identifier that it places
into a <div> element with a predefined identifier. Threat-
Metrix’s scripts, upon loading, read this session identifier
and append it to all requests towards the ThreatMetrix
servers. This means that the including site never gets access
to a user’s fingerprint, but only information about the user
by querying ThreatMetrix for specific session identifiers.

G. Analysis Limitations

In the previous sections we analyzed the workings of the
fingerprinting libraries of three popular commercial compa-
nies. The analysis was a mostly manual, time-consuming
process, where each piece of code was gradually deobfus-
cated until the purpose of all functions was clear. Given the
time required to fully reverse-engineer each library, we had
to limit ourselves to analyze the script of each fingerprinting
company as it was seen through two different sites (that is,
two different clients of each company). However, we cannot
exclude the possibility of additional scripts that are present
on the companies’ web servers that would perform more
operations than the ones we encountered.

III. ADOPTION OF FINGERPRINTING

In Section II, we analyzed the workings of three com-
mercial fingerprinting companies and focused on the differ-
ences of their implementations when compared to Panop-
ticlick [12]. In this section, we study the fingerprinting
ecosystem, from the point of view of websites that leverage
fingerprinting.

A. Adoption on the popular web

To quantify the use of web-based fingerprinting on pop-
ular websites, we crawled up to 20 pages for each of the
Alexa top 10,000 sites, searching for script inclusions and
iframes originating from the domains that the three studied
companies utilize to serve their fingerprinting code. To cate-
gorize the discovered domains, we made use of the publicly-
available domain categorization service of TrendMicro 6, a
popular anti-virus vendor.

Through this process, we discovered 40 sites (0.4% of
the Alexa top 10,000) utilizing fingerprinting code from
the three commercial providers. The most popular site
making use of fingerprinting is skype.com, while the two
most popular categories of sites are: “Pornography” (15%)
and “Personals/Dating” (12.5%). For pornographic sites, a
reasonable explanation is that fingerprinting is used to detect
shared or stolen credentials of paying members, while for
dating sites to ensure that attackers do not create multiple
profiles for social-engineering purposes. Our findings show
that fingerprinting is already part of some of the most
popular sites of the Internet, and thus the hundreds of
thousands of their visitors are fingerprinted on a daily basis.

Note that the aforementioned adoption numbers are lower
bounds since our results do not include pages of the 10,000
sites that were not crawled, either because they were behind
a registration wall, or because they were not in the set of
20 URLs for each crawled website. Moreover, some popular
sites may be using their own fingerprinting algorithms for
performing device identification and not rely on the three
studied fingerprinting companies.

B. Adoption by other sites

To discover less popular sites making use of finger-
printing, we used a list of 3,804 domains of sites that,
when analyzed by Wepawet [27], requested the previously
identified fingerprinting scripts.

Each domain was submitted to TrendMicro’s and
McAfee’s categorization services 7 which provided as output
the domain’s category and “safety” score. We used two
categorizing services in an effort to reduce, as much as
possible, the number of “untested” results, i.e., the number of
websites not analyzed and not categorized. By examining the
results, we extracted as many popular categories as possible

6TrendMicro - http://global.sitesafety.trendmicro.com/
7McAfee -http://mcafee.com/threat-intelligence/domain/
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Figure 3. The top 10 categories of websites utilizing fingerprinting

and created aliases for names that were referring to the
same category, such as “News / Media” versus “General
News” and “Disease Vector” versus “Malicious Site”. If a
domain was characterized as “dangerous” by one, and “not
dangerous” by the other, we accepted the categorization
of the latter, so as to give the benefit of the doubt to
legitimate websites that could have been compromised, when
the former service categorized it.

Given the use of two domain-categorization services, a
small number of domains (7.9%) was assigned conflicting
categories, such as “Dating” versus “Adult/Mature” and
“Business/Economy” versus “Software/Hardware.” For these
domains, we accepted the characterization of McAfee, which
we observed to be more precise than TrendMicro’s for less
popular domains. Excluding 40.8% of domains which were
reported as “untested” by both services, the results of this
categorization are shown in Figure 3.

First, one can observe that eight out of the ten categories,
include sites which operate with user subscriptions, many of
which contain personal and possibly financial information.
These sites are usually interested in identifying fraudulent
activities and the hijacking of user accounts. The Adult/Ma-
ture category seems to make the most use of fingerprinting
as was the case with the Alexa top 10,000 sites.

The top two categories are also the ones that were the least
expected. 163 websites were identified as malicious, such as
using exploits for vulnerable browsers, conducting phishing
attacks or extracting private data from users, whereas 1,063
sites were categorized as “Spam” by the two categorizing
engines. By visiting some sites belonging to these categories,
we noticed that many of them are parked webpages, i.e., they
do not hold any content except advertising the availability
of the domain name, and thus do not currently include
fingerprinting code. We were however able to locate many
“quiz/survey” sites that are, at the time of this writing,
including fingerprinting code from one of the three studied
companies. Visitors of these sites are greeted with a “Con-
gratulations” message, which informs them that they have
won and asks them to proceed to receive their prize. At some

later step, these sites extract a user’s personal details and try
to subscribe the user to expensive mobile services.

While our data-set is inherently skewed towards “mali-
ciousness” due to its source, it is important to point out that
all of these sites were found to include, at some point in time,
fingerprinting code provided by the three studied providers.
This observation, coupled with the fact that for all three
companies, an interested client must set an appointment
with a sales representative in order to acquire fingerprinting
services, point to the possibility of fingerprinting companies
working together with sites of dubious nature, possibly
for the expansion of their fingerprint databases and the
acquisition of more user data.

IV. FINGERPRINTING THE BEHAVIOR OF SPECIAL
OBJECTS

In Section II, we studied how commercial companies per-
form their fingerprinting and created a taxonomy of finger-
printable information accessible through a user’s browser. In
Table I, one can notice that, while fingerprinting companies
go to great lengths to discover information about a browser’s
plugins and the machine hosting the browser, they mostly
rely on the browser to willingly reveal its true identity (as
revealed through the navigator.userAgent property
and the User-Agent HTTP header). A browser’s user-agent
is an important part of a system’s fingerprint [18], and thus
it may seem reasonable to assume that if users modify these
default values, they will increase their privacy by hiding
more effectively from these companies.

In this section, however, we demonstrate how fragile the
browser ecosystem is against fingerprinting. Fundamental
design choices and differences between browser types are
used in an effort to show how difficult it can be to limit
the exposure of a browser to fingerprinting. Even different
versions of the same browser can have differences in the
scripting environment that identify the browser’s real family,
version, and, occasionally, even the operating system. In
the rest of this section we describe several novel browser-
identifying techniques that: a) can complement current fin-
gerprinting, and b) are difficult to eliminate given the current
architecture of web browsers.

A. Experimental Fingerprinting Setup

Our novel fingerprinting techniques focus on the special,
browser-populated JavaScript objects; more precisely, the
navigator and screen objects. Contrary to objects
created and queried by a page’s JavaScript code, these ob-
jects contain vendor- and environment-specific methods and
properties, and are thus the best candidates for uncovering
vendor-specific behaviors.

To identify differences between browser-vendors and to
explore whether these differences are consistent among
installations of the same browser on multiple systems, we
constructed a fingerprinting script that performed a series of



“everyday” operations on these two special objects (such
as adding a new property to an object, or modifying an
existing one) and reported the results to a server. In this
and the following section, we describe the operations of our
fingerprinting script and our results. Our constructed page
included a JavaScript program that performed the following
operations:

1) Enumerated the navigator and screen object,
i.e., request the listing of all properties of the afore-
mentioned objects.

2) Enumerated the navigator object again, to ensure
that the order of enumeration does not change.

3) Created a custom object, populated it, and enumerated
it. A custom, JavaScript-created object, allows us to
compare the behavior of browser-populated objects
(such as navigator) with the behavior of “classic”
JavaScript objects.

4) Attempted to delete a property of the navigator
object, the screen object, and the custom object.

5) Add the possibly-deleted properties back to their ob-
jects.

6) Attempted to modify an existing property of the
navigator and screen objects.

7) If Object.defineProperty is implemented in
the current browser, utilize it to make an existing
property in the navigator, screen, and custom
object non-enumerable.

8) Attempt to delete the navigator and screen
objects.

9) Attempt to assign new custom objects to the
navigator and screen variable names.

At each step, the objects involved were re-enumerated,
and the resulting data was Base64-encoded and sent to our
server for later processing. Thus, at the server side, we
could detect whether a property was deleted or modified, by
comparing the results of the original enumeration with the
current one. The enumeration of each object was conducted
through code that made use of the prop in obj construct, to
avoid forcing a specific order of enumeration of the objects,
allowing the engine to list object properties in the way of
its choosing.

B. Results

By sharing the link to our fingerprinting site with friends
and colleagues, we were able, within a week, to gather
data from 68 different browsers installations, of popular
browsers on all modern operating systems. While our data
is small in comparison to previous studies [11], [12], we
are not using it to draw conclusions that have statistical
relevance but rather, as explained in the following sections,
to find deviations between browsers and to establish the
consistency of these deviations. We were able to identify the
following novel ways of distinguishing between browsers:

Order of enumeration: Through the analysis of the
output from the first three steps of our fingerprinting
algorithm (Sec. IV-A), we discovered that the order of
property-enumeration of special browser objects, like the
navigator and screen objects, is consistently different
between browser families, versions of each browser, and,
in some cases, among deployments of the same version on
different operating systems. While in the rest of this section
we focus to the navigator object, the same principles
apply to the screen object.

Our analysis was conducted in the following manner.
After grouping the navigator objects and their enumer-
ated properties based on browser families, we located the
navigator object with the least number of properties.
This version was consistently belonging to the oldest version
of a browser, since newer versions add new properties
which correspond to new browser features, such as the
navigator.doNotTrack property in the newer versions
of Mozilla Firefox. The order of the properties of this
object, became our baseline to which we compared the
navigator objects of all subsequent versions of the same
browser family. To account for ordering changes due to the
introduction of new properties in the navigator object,
we simply excluded all properties that were not part of
our original baseline object, without however changing the
relative order of the rest of the properties. For instance,
assume an ordered set of features B, where B0 = {a, b,
c, d} and B1 = {a, b, e, c, d, f}. B1 has two new elements
in comparison with B0, namely e and f which, however,
can be removed from the set without disrupting the relative
order of the rest. For every browser version within the same
browser-family, we compared the navigator object to the
baseline, by first recording and removing new features and
then noting whether the order of the remaining features was
different from the order of the baseline.

The results of this procedure are summarized in Table II.
For each browser family, we compare the ordering of the
navigator object among up to five different versions.
The most current version is denoted as Vc. The first ob-
servation is that in almost 20 versions of browsers, no
two were ever sharing the same order of properties in the
navigator object. This feature by itself, is sufficient to
categorize a browser to its correct family, regardless of
any property-spoofing that the browser may be employing.
Second, all browsers except Chrome maintain the ordering
of navigator elements between versions. Even when new
properties were introduced, these do not alter the relative
order of all other properties. For instance, even though the
newest version of Mozilla Firefox (Vc) has 7 extra features
when compared to the oldest version (Vc-4), if we ignore
these features then the ordering is the same with the original
ordering (W).

Google Chrome was the only browser that did not exhibit
this behavior. By analyzing our dataset, we discovered that



Browser Vc-4 Vc-3 Vc-2 Vc-1 Vc
Mozilla Firefox W W+1 W+4 W+5 W+7
Microsoft IE - - X X X+1
Opera Y Y+1 Y+1 Y+3 Y+5
Google Chrome Z Z Z′+1 Z′′+1 Z′′′+1

Table II
DIFFERENCES IN THE ORDER OF NAVIGATOR OBJECTS BETWEEN

VERSIONS OF THE SAME BROWSER

Chrome not only changed the order between subsequent
versions of the browser, but also between deployments of the
same browser on different operating systems. For instance,
Google Chrome v.20.0.1132.57 installed on Mac OSX has
a different order of elements than the same version installed
on a Linux operating system. In Table II, we compare the
order of properties of the navigator object when the
underlying OS is Windows XP. While this changing order
may initially appear to be less-problematic than the stable
order of other browsers, in reality, the different orderings can
be leveraged to detect a specific version of Google Chrome,
and, in addition, the operating system on which the browser
is running.

Overall, we discovered that the property ordering of
special objects, such as the navigator object, is consistent
among runs of the same browser and runs of the same
version of browsers on different operating systems. Con-
trastingly, the order of properties of a custom script-created
object (Step 3 in Section IV-A) was identical among all the
studied browsers even though, according to the ECMAScript
specification, objects are unordered collections of proper-
ties [28] and thus the exact ordering can be implementation-
specific. More precisely, the property ordering of the custom
objects was always the same with the order of property
creation.

In general, the browser-specific, distinct property ordering
of special objects can be directly used to create models of
browsers and, thus, unmask the real identity of a browser.
Our findings are in par with the “order-matters” observation
made by previous research: Mayer discovered that the list of
plugins as reported by browsers was ordered based on the
installation time of each individual plugin [11]. Eckersley
noticed that the list of fonts, as reported by Adobe Flash
and Sun’s Java VM, remained stable across visits of the
same user [12].

Unique features: During the first browser wars in
the mid-90s, browser vendors were constantly adding new
features to their products, with the hope that developers
would start using them. As a result, users would have to use a
specific browser, effectively creating a browser lock-in [29].
The features ranged from new HTML tags to embedded
scripting languages and third-party plugins. Signs of this
“browser battle” are still visible in the contents of the user-

Browser Unique methods & properties

Mozilla Firefox

screen.mozBrightness
screen.mozEnabled
navigator.mozSms

+ 10

Google Chrome navigator.webkitStartActivity
navigator.getStorageUpdates

Opera navigator.browserLanguage
navigator.getUserMedia

Microsoft IE

screen.logicalXDPI
screen.fontSmoothingEnabled

navigator.appMinorVersion
+11

Table III
UNIQUE METHODS AND PROPERTIES OF THE NAVIGATOR AND SCREEN

OBJECTS OF THE FOUR MAJOR BROWSER-FAMILIES

agent string of modern browsers [30].
Today, even though the HTML standard is governed by

the W3C committee and JavaScript by Ecma International,
browser vendors still add new features that do not be-
long to any specific standard. While these features can
be leveraged by web developers to provide users with a
richer experience, they can also be used to differentiate
a browser from another. Using the data gathered by our
fingerprinting script, we isolated features that were available
in only one family of browsers, but not in any other. These
unique features are summarized in Table III. All browser
families had at least two such features that were not shared
by any other browser. In many cases, the names of the
new features were starting with a vendor-specific prefix,
such as screen.mozBrightness for Mozilla Firefox
and navigator.msDoNotTrack for Microsoft Internet
Explorer. This is because browser-vendors are typically
allowed to use prefixes for features not belonging to a
standard or not yet standardized [31]. In the context of
fingerprinting, a script can query for the presence or absence
of these unique features (e.g., typeof screen.mozBrightness
!= “undefined”) to be certain of the identity of any given
browser.

An interesting sidenote is that these unique features
can be used to expose the real version of Mozilla Firefox
browser, even when the user is using the Torbutton
extension. Torbutton replaces the navigator and
screen objects with its own versions, spoofing the
values of certain properties, so as to protect the privacy of
the user [32]. We installed Torbutton on Mozilla Firefox
version 14 and, by enumerating the navigator object, we
observed that, among others, the Torbutton had replaced the
navigator.userAgent property with the equivalent
of Mozilla Firefox version 10, and it was claiming that
our platform was Windows instead of Linux. At the same
time, however, special Firefox-specific properties that
Mozilla introduced in versions 11 to 14 of Firefox (such as
navigator.mozBattery and navigator.mozSms)



were still available in the navigator object. These
discrepancies, combined with other weaknesses found
in less thorough user-agent-spoofing extensions (see
Section V), can uncover not only that the user is trying to
hide, but also that she is using Torbutton to do so.

Mutability of special objects: In the two previous
sections, we discussed the ability to exploit the enumeration-
order and unique features of browsers for fingerprinting. In
this section, we investigate whether each browser treats the
navigator and screen objects like regular JavaScript
objects. More precisely, we investigate whether these objects
are mutable, i.e., whether a script can delete a specific
property from them, replace a property with a new one, or
delete the whole object. By comparing the outputs of steps
four to nine from our fingerprinting algorithm, we made the
following observations.

Among the four browser families, only Google Chrome
allows a script to delete a property from the navigator
object. In all other cases, while the “delete” call returns
successfully and no exceptions are thrown, the properties
remain present in the special object. When our script
attempted to modify the value of a property of navigator,
Google Chrome and Opera allowed it, while Mozilla Firefox
and Internet Explorer ignored the request. In the same way,
these two families were the only ones allowing a script
to reassign navigator and screen to new objects.
Interestingly, no browser allowed the script to simply
delete the navigator or screen object. Finally, Mozilla
Firefox behaved in a unique way when requested to make a
certain property of the navigator object non-enumerable.
Specifically, instead of just hiding the property, Firefox
behaved as if it had actually deleted it, i.e., it was no longer
accessible even when requested by name.

Evolution of functionality: Recently, we have seen
a tremendous innovation in Web technologies. The com-
petition is fierce in the browsers’ scene, and vendors are
trying hard to adopt new technologies and provide a better
platform for web applications. Based on that observation,
in this section, we examine if we can determine a browser’s
version based on the new functionality that it introduces. We
chose Google Chrome as our testing browser and created
a library in JavaScript that tests if specific functionality is
implemented by the browser. The features that we selected to
capture different functionality were inspired by web design
compatibility tests (where web developers verify if their web
application is compatible with a specific browser). In total,
we chose 187 features to test in 202 different versions of
Google Chrome, spanning from version 1.0.154.59 up to
22.0.1229.8, which we downloaded from oldapps.com and
which covered all 22 major versions of Chrome. We found
that not all of the 187 features were useful; only 109 actually
changed during Google Chrome’s evolution. These browser
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Figure 4. A comparison between how many distinguishable feature sets
and minor Google Chrome versions we have per Google Chrome’s major
versions.

versions covered not only releases from the stable channel
of Google Chrome, but also from Beta and Dev channels.
We refer to a major version as the first number of Google
Chrome’s versioning system, and to minor version as the
full number of the version. We used a virtual machine with
Windows XP to setup all browser versions, and used all
versions to visit our functionality-fingerprinting page.

In total, we found 71 sets of features that can be used to
identify a specific version of Google Chrome. Each feature
set could identify versions that range from a single Google
Chrome version up to 14 different versions. The 14 Chrome
versions that were sharing the same feature set were all part
of the 12.0.742.* releases. Among all 71 sets, there were
only four cases where the same feature set was identifying
more than a single major version of the browser. In all of
these cases, the features overlapped with the first Dev release
of the next major version, while subsequent releases from
that point on had different features implemented. In Figure 4,
we show how many minor versions of Chrome we examined
per major version and how many distinct feature sets we
found for each major version. The results show that we can
not only identify the major version, but in most cases, we
have several different feature sets on the same major version.
This makes the identification of the exact browser version
even more fine-grained.

In Figure 5, we show how one can distinguish all
Google Chrome’s major versions by checking for specific
features. Every pair of major versions is separated by a
feature that was introduced into the newer version and
did not exist in the previous one. Thus, if anyone wants
to distinguish between two consecutive versions, a check
of a single feature is sufficient to do so. Notice that our
results indicate that we can perform even more fine-grained
version detection than the major version of Google Chrome
(we had 71 distinct sets of enabled features compared to 22
versions of Chrome), but for simplicity we examined only
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Figure 5. Feature-based fingerprinting to distinguish between Google Chrome major versions

the major version feature changes in detail.

Miscellaneous: In this section, we list additional
browser-specific behaviors that were uncovered through our
experiment but that do not fall in the previous categories.

Our enumeration of object-properties indirectly uses
the method toString() for the examined objects. By
comparing the formatted output of some specific prop-
erties and methods, we noticed that different browsers
treated them in slightly different ways. For instance,
when calling toString() on the natively implemented
navigator.javaEnabled method, browsers simply
state that it is a “native function.” Although all the examined
browser families print “function javaEnabled() { [native
code] },” Firefox uses newline characters after the opening
curly-bracket and before the closing one. Interestingly, Inter-
net Explorer does not list the navigator.javaEnabled
when requested to enumerate the navigator object, but
still provides the “native function” print-out when asked
specifically about the javaEnabled method. In the same
spirit, when our scripts invoked the toString() method
on the navigator.plugins object, Google Chrome
reported “[object DOMPluginArray],” Internet Explorer re-
ported “[object],” while both Mozilla Firefox and Opera
reported “[object PluginArray].”

Lastly, while trying out our fingerprinting page with
various browsers, we discovered that Internet Explorer lacks
native support for Base64 encoding and decoding (atob and
btoa, respectively) which our script used to encode data
before sending them to the server.

C. Summary

Overall, one can see how various implementation choices,
either major ones, such as the traversal algorithms for
JavaScript objects and the development of new features, or
minor ones, such as the presence or absence of a newline
character, can reveal the true nature of a browser and its
JavaScript engine.

V. ANALYSIS OF USER-AGENT-SPOOFING EXTENSIONS

With the advent of browser add-ons, many developers
have created extensions that can increase the security of
users (e.g., extensions showing HTML forms with non-
secure destinations) or their privacy (e.g., blocking known
ads and web-tracking scripts).

Extension #Installations User Rating
Mozilla Firefox

UserAgent Switcher 604,349 4/5
UserAgent RG 23,245 4/5
UAControl 11,044 4/5
UserAgentUpdater 5,648 3/5
Masking Agent 2,262 4/5
User Agent Quick Switch 2,157 5/5
randomUserAgent 1,657 4/5
Override User Agent 1,138 3/5

Google Chrome
User-Agent Switcher for Chrome 123,133 4/5
User-Agent Switcher 21,108 3.5/5
Ultimate User Agent Switcher,
URL sniffer

28,623 4/5

Table IV
LIST OF USER-AGENT-SPOOFING BROWSER EXTENSIONS

In the context of this paper, we were interested in studying
the completeness and robustness of extensions that attempt
to hide the true nature of a browser from an inspecting
website. As shown in Table I, while the studied companies
do attempt to fingerprint a user’s browser customizations,
they currently focus only on browser-plugins and do not
attempt to discover any installed browser-extensions. Given
however the sustained popularity of browser-extensions [33],
we consider it likely that fingerprinting extensions will be
the logical next step. Note that, unlike browser plugins,
extensions are not enumerable through JavaScript and, thus,
can only be detected through their side-effects. For instance,
some sites currently detect the use of Adblock Plus [34]
by searching for the absence of specific iframes and DOM
elements that are normally created by advertising scripts.

Since a browser exposes its identity through the user-
agent field (available both as an HTTP header and as a
property of the JavaScript-accessible navigator object),
we focused on extensions that advertised themselves as
capable of spoofing a browser’s user agent. These extensions
usually serve two purposes. First, they allow users to surf to
websites that impose strict browser requirements onto their
visitors, without fulfilling these requirements. For instance,
some sites are developed and tested using one specific
browser and, due to the importance of the content loading
correctly, refuse to load on other browsers. Using a user-
agent-spoofing extension, a user can visit such a site, by
pretending to use one of the white-listed browsers.



Google
Chrome

Mozilla
Firefox

MSIE Opera

navigator.product Gecko Gecko N/A N/A
navigator.appCodeName Mozilla Mozilla Mozilla Mozilla
navigator.appName Netscape Netscape Microsoft

Internet
Explorer

Opera

navigator.platform Linux
i686

Linux
x86 64

Win32 Linux

navigator.vendor Google
Inc.

(empty
string)

N/A N/A

Table V
STANDARD PROPERTIES OF THE NAVIGATOR OBJECT AND THEIR

VALUES ACROSS DIFFERENT BROWSER FAMILIES

Another reason for using these extensions is to protect
the privacy of a user. Eckeresly, while gathering data for
the Panopticlick project, discovered that there were users
whose browsers were reporting impossible configurations,
for instance, a device was pretending to be an iPhone, but
at the same time had Adobe Flash support. In that case, these
were users who were obviously trying to get a non-unique
browser fingerprint by Panopticlick. Since Eckersley’s study
showed the viability of using common browser features
as parts of a unique fingerprint, it is reasonable to expect
that legitimate users utilize such extensions to reduce the
trackability of their online activities, even if the extensions’
authors never anticipated such a use. Recently, Trusteer
discovered in an “underground” forum a spoofing-guide that
provided step-by-step instructions for cybercriminals who
wished to fool fraud-detection mechanisms that used device-
fingerprinting [35]. Among other advice, the reader was
instructed to download an extension that changes the User-
Agent of their browser to make their sessions appear as if
they were originating by different computers with different
browsers and operating systems.

Table IV shows the Mozilla Firefox and Google Chrome
extensions that we downloaded and tested, together with
their user base (measured in July 2012) and the rating
that their users had provided. The extensions were discov-
ered by visiting each market, searching for “user-agent”
and then downloading all the relevant extensions with a
sufficiently large user base and an above-average rating.
A high rating is important because it indicates the user’s
satisfaction in the extension fulfilling its purpose. Our testing
consisted of listing the navigator and screen objects
through JavaScript and inspecting the HTTP headers sent
with browser requests, while the extensions were actively
spoofing the identity of the browser. As in Section IV,
we chose to focus on these two objects since they are
the ones that are the most vendor-specific as well as the
most probed by the fingerprinting libraries. Through our
analysis, we discovered that, unfortunately, in all cases,
the extensions were inadequately hiding the real identity of
the browser, which could still be straightforwardly exposed

through JavaScript. Apart from being vulnerable to every
fingerprinting technique that we introduced in Section IV,
each extension had one or more of the following issues:

• Incomplete coverage of the navigator object. In
many cases, while an extension was modifying the
navigator.userAgent property, it would leave
intact other revealing properties of the navigator ob-
ject, such as appName, appVersion and vendor
- Table V. Moreover, the extensions usually left the
navigator.platform property intact, which al-
lowed for improbable scenarios, like a Microsoft In-
ternet Explorer browser running on Linux.

• Impossible configurations. None of the studied ex-
tensions attempted to alter the screen object. Thus,
users who were utilizing laptops or normal workstations
and pretended to be mobile devices, were reporting
impossible screen width and height (e.g., a reported
1920x1080 resolution for an iPhone).

• Mismatch between User-agent values. As discussed
earlier, the user-agent of any given browser is accessible
through the HTTP headers of a browser request and
through the userAgent property of the navigator
object. We found that some extensions would change
the HTTP headers of the browser, but not of the
navigator object. Two out of three Chrome exten-
sions were presenting this behavior.

We want to stress that these extensions are not malicious
in nature. They are legitimately-written software that unfor-
tunately did not account for all possible ways of discovering
the true identity of the browsers on which they are installed.
The downside here is that, not only fingerprinting libraries
can potentially detect the actual identity of a browser, thus,
undermining the goals of the extension, but also that they
can discover the discrepancies between the values reported
by the extensions and the values reported by the browser,
and then use these differences as extra features of their
fingerprints. The discrepancies of each specific extension
can be modeled and thus, as with Adblock Plus, used to
uncover the presence of specific extensions, through their
side-effects.

The presence of any user-agent-spoofing extension is a
discriminatory feature, under the assumption that the major-
ity of browsing users are not familiar enough with privacy
threats (with the possible exception of cookies) to install
such spoofing extensions. As a rough metric, consider that
the most popular extension for Mozilla Firefox is Adblock
Plus [34] that, at the time of this writing, is installed by
fifteen million users, 25 times more users than UserAgent
Switcher, the most popular extension in Table IV.

We characterize the extension-problem as an iatrogenic 8

one. The users who install these extensions in an effort

8iatrogenic - Of or relating to illness caused by medical examination or
treatment.



to hide themselves in a crowd of popular browsers, install
software that actually makes them more visible and more
distinguishable from the rest of the users, who are using
their browsers without modifications. As a result, we advice
against the use of user-agent-spoofing extensions as a way
of increasing one’s privacy. Our findings come in direct
antithesis with the advice given by Yen et al. [18], who
suggest that user-agent-spoofing extensions can be used, as
a way of making tracking harder. Even though their study
focuses on common identifiers as reported by client-side
HTTP headers and the client’s IP address, a server capable
of viewing these can respond with JavaScript code that will
uncover the user-agent-spoofing extension, using any of the
aforementioned techniques.

VI. DISCUSSION

Given the intrusive nature of web-based device finger-
printing and the current inability of browser extensions to
actually enhance a user’s privacy, in this section, we first
discuss possible ways of reducing a user’s fingerprintable
surface and then briefly describe alternative uses of finger-
printing which may become more prevalent in the future.

A. Reducing the fingerprintable surface

Flash. As described in Section II, Adobe Flash was
utilized by all three fingerprinting libraries that we studied,
due to its rich API that allow SWF files to access information
not traditionally available through a browser’s API. In all
cases, the SWF file responsible for gathering information
from the host was hidden from the user, by either setting
the width and height of the <object> tag to zero, or
placed into an iframe of zero height and width. In other
words, there was no visible change on the web page that
included the fingerprinting SWF files. This observation can
be used as a first line of defense. All modern browsers
have extensions that disallow Flash and Silverlight to be
loaded until explicitly requested by the user (e.g., through
a click on the object itself). These hidden files cannot
be clicked on and thus, will never execute. While this is
a straightforward solution that would effectively stop the
Flash-part of the fingerprint of all three studied companies,
a circumvention of this countermeasure is possible. By
wrapping their fingerprinting code into an object of the first-
party site and making that object desirable or necessary for
the page’s functionality, the fingerprinting companies can
still execute their code. This, however, requires much more
integration between a first-party website and a third-party
fingerprinting company than the current model of “one-size-
fits-all” JavaScript and Flash.

In the long run, the best solution against fingerprinting
through Flash should come directly from Flash. In the past,
researchers discovered that Flash’s Local Shared Objects,
i.e., Flash’s equivalent of browser cookies, were not deleted
when a user exited her browser’s private mode or even when

she used the “Clear Private Data” option of her browser’s
UI [36]. As a result, in the latest version of Flash, LSOs
are not stored to disk but simply kept in memory when
the browser’s private mode is utilized [37]. Similarly, when
a browser enters private mode, Flash could provide less
system information, respect any browser-set HTTP proxies
and possibly report only a standard subset of a system’s
fonts, to protect a user’s environment from fingerprinting.

JavaScript. There are multiple vendors involved in the
development of JavaScript engines, and every major browser
is equipped with a different engine. To unify the behavior of
JavaScript under different browsers, all vendors would need
to agree not only on a single set of API calls to expose to
the web applications, but also to internal implementation
specifics. For example, hash table implementations may
affect the order of objects in the exposed data structures
of JavaScript, something that can be used to fingerprint
the engine’s type and version. Such a consensus is difficult
to achieve among all browser vendors, and we have seen
diversions in the exposed APIs of JavaScript even in the
names of functions that offer the same functionality, e.g.,
execScript and eval. Also, based on the fact that
the vendors battle for best performance of their JavaScript
engines, they might be reluctant to follow specific design
choices that might affect performance.

At the same time, however, browsers could agree to sac-
rifice performance when “private-mode” is enabled, where
there could be an attempt to expose a unified interface.

B. Alternative uses of fingerprinting

Although, in this paper, we have mostly focused on finger-
printing as a fraud-detection and web-tracking mechanism,
there is another aspect that requires attention. Drive-by
downloads and web attacks in general use fingerprinting
to understand if the browser that they are executing on is
vulnerable to one of the multiple available exploits. This
way, the attackers can decide, at the server-side, which
exploit to reveal to the client, exposing as little as they
can of their attack capabilities. There are three different
architectures to detect drive-by downloads: low-interaction
honeypots, high-interaction honeypots and honeyclients. In
all three cases, the browser is either a specially crafted one,
so that it can instrument the pages visited, or a browser
installation that was never used by a real user. Given the
precise, browser-revealing, fingerprinting techniques that we
described in this paper, it is possible to see in the future these
mechanisms being used by attackers to detect monitoring
environments and circumvent detection.

VII. RELATED WORK

To the best of our knowledge, this paper is the first that
attempts to study the problem of web-based fingerprinting
from the perspectives of all the players involved, i.e., from
the perspective of the fingerprinting providers and their



fingerprinting methods, the sites utilizing fingerprinting, the
users who employ privacy-preserving extensions to combat
fingerprinting, and the browser’s internals and how they
relate to its identity.

Eckersley conducted the first large-scale study showing
that various properties of a user’s browser and plugins
can be combined to form a unique fingerprint [12]. More
precisely, Eckersley found that from about 500,000 users
who visited panopticlick.eff.org and had Flash or
Java enabled, 94.2% could be uniquely identified, i.e., there
was no other user whose environment produced the same fin-
gerprint. His study, and surprisingly accurate identification
results, prompted us to investigate commercial fingerprinting
companies and their approach. Yen et al. [18] performed
a fingerprinting study, similar to Eckersley’s, by analyzing
month-long logs of Bing and Hotmail. Interestingly, the
authors utilize a client’s IP address as part of their tracking
mechanism, which Eckersley explicitly avoids dismissing
it as “not sufficiently stable.” As a way of protecting
oneself, the authors advocated the use of user-agent-spoofing
extensions. As we discussed in Section V, this is actually
counter-productive since it allows for more fingerprinting
rather than less.

Mowery et al. [13] proposed the use of benchmark ex-
ecution time as a way of fingerprinting JavaScript imple-
mentations, under the assumption that specific versions of
JavaScript engines will perform in a consistent way. Each
browser executes a set of predefined JavaScript benchmarks,
and the completion-time of each benchmark forms a part
of the browser’s performance signature. While their method
correctly detects a browser-family (e.g., Chrome) 98.2% of
the time, it requires over three minutes to fully execute.
According to a study conducted by Alenty [38], the average
view-time of a web page is 33 seconds. This means that,
with high likelihood, the benchmarks will not be able to
completely execute and thus, a browser may be misclassi-
fied. Moreover, the reported detection rate of more specific
attributes, such as the browser-version, operating system and
architecture, is significantly less accurate.

Mowery and Shacham later proposed the use of rendering
text and WebGL scenes to a <canvas> element as another
way of fingerprinting browsers [39]. Different browsers will
display text and graphics in a different way, which, however
small, can be used to differentiate and track users between
page loads. While this method is significantly faster than
the execution of browser benchmarks, these technologies are
only available in the latest versions of modern browsers,
thus they cannot be used to track users with older versions.
Contrastingly, the fingerprinting techniques introduced in
Section IV can be used to differentiate browsers and their
versions for any past version.

Olejnik et al. [40] show that web history can also be
used as a way of fingerprinting without the need of addi-
tional client-side state. The authors make this observation

by analyzing a corpus of data from when the CSS-visited
history bug was still present in browsers. Today, however,
all modern browsers have corrected this issue and thus,
extraction of a user’s history is not as straightforward,
especially without user interaction [41]. Olejnik et al. claim
that large script providers, like Google, can use their near-
ubiquitous presence to extract a user’s history. While this
is true [42], most users have first-party relationships with
Google, meaning that they can be tracked accurately, without
the need of resorting to history-based fingerprinting.

VIII. CONCLUSION

In this paper, we first investigated the real-life implemen-
tations of fingerprinting libraries, as deployed by three pop-
ular commercial companies. We focused on their differences
when compared to Panopticlick and discovered increased use
of Flash, backup solutions for when Flash is absent, broad
use of Internet Explorer’s special features, and the existence
of intrusive system-fingerprinting plugins.

Second, we created our own fingerprinting script, us-
ing multiple novel features that mainly focused on the
differences between special objects, like the navigator
and screen, as implemented and handled by different
browsers. We identified that each browser deviated from
all the rest in a consistent and measurable way, allowing
scripts to almost instantaneously discover the true nature
of a browser, regardless of a browser’s attempts to hide
it. To this end, we also analyzed eleven popular user-agent
spoofing extensions and showed that, even without our newly
proposed fingerprinting techniques, all of them fall short of
properly hiding a browser’s identity.

The purpose of our research was to demonstrate that when
considering device identification through fingerprinting,
user-privacy is currently on the losing side. Given the
complexity of fully hiding the true nature of a browser,
we believe that this can be efficiently done only by the
browser vendors. Regardless of their complexity and
sophistication, browser-plugins and extensions will never
be able to control everything that a browser vendor can.
At the same time, it is currently unclear whether browser
vendors would desire to hide the nature of their browsers,
thus the discussion of web-based device fingerprinting, its
implications and possible countermeasures against it, must
start at a policy-making level in the same way that stateful
user-tracking is currently discussed.
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