
A Unified Architecture for Natural Language Processing:
Deep Neural Networks with Multitask Learning

Ronan Collobert collober@nec-labs.com
Jason Weston jasonw@nec-labs.com

NEC Labs America, 4 Independence Way, Princeton, NJ 08540 USA

Abstract

We describe a single convolutional neural net-
work architecture that, given a sentence, out-
puts a host of language processing predic-
tions: part-of-speech tags, chunks, named en-
tity tags, semantic roles, semantically similar
words and the likelihood that the sentence
makes sense (grammatically and semanti-
cally) using a language model. The entire
network is trained jointly on all these tasks
using weight-sharing, an instance of multitask
learning. All the tasks use labeled data ex-
cept the language model which is learnt from
unlabeled text and represents a novel form of
semi-supervised learning for the shared tasks.
We show how both multitask learning and
semi-supervised learning improve the general-
ization of the shared tasks, resulting in state-
of-the-art performance.

1. Introduction

The field of Natural Language Processing (NLP) aims
to convert human language into a formal representa-
tion that is easy for computers to manipulate. Current
end applications include information extraction, ma-
chine translation, summarization, search and human-
computer interfaces.

While complete semantic understanding is still a far-
distant goal, researchers have taken a divide and con-
quer approach and identified several sub-tasks useful
for application development and analysis. These range
from the syntactic, such as part-of-speech tagging,
chunking and parsing, to the semantic, such as word-
sense disambiguation, semantic-role labeling, named
entity extraction and anaphora resolution.

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

Currently, most research analyzes those tasks sepa-
rately. Many systems possess few characteristics that
would help develop a unified architecture which would
presumably be necessary for deeper semantic tasks. In
particular, many systems possess three failings in this
regard: (i) they are shallow in the sense that the clas-
sifier is often linear, (ii) for good performance with
a linear classifier they must incorporate many hand-
engineered features specific for the task; and (iii) they
cascade features learnt separately from other tasks,
thus propagating errors.

In this work we attempt to define a unified architecture
for Natural Language Processing that learns features
that are relevant to the tasks at hand given very lim-
ited prior knowledge. This is achieved by training a
deep neural network, building upon work by (Bengio &
Ducharme, 2001) and (Collobert & Weston, 2007). We
define a rather general convolutional network architec-
ture and describe its application to many well known
NLP tasks including part-of-speech tagging, chunking,
named-entity recognition, learning a language model
and the task of semantic role-labeling.

All of these tasks are integrated into a single system
which is trained jointly. All the tasks except the lan-
guage model are supervised tasks with labeled training
data. The language model is trained in an unsuper-
vised fashion on the entire Wikipedia website. Train-
ing this task jointly with the other tasks comprises a
novel form of semi-supervised learning.

We focus on, in our opinion, the most difficult of
these tasks: the semantic role-labeling problem. We
show that both (i) multitask learning and (ii) semi-
supervised learning significantly improve performance
on this task in the absence of hand-engineered features.

We also show how the combined tasks, and in par-
ticular the unsupervised task, learn powerful features
with clear semantic information given no human su-
pervision other than the (labeled) data from the tasks
(see Table 1).



A Unified Architecture for Natural Language Processing

The article is structured as follows. In Section 2 we
describe each of the NLP tasks we consider, and in Sec-
tion 3 we define the general architecture that we use
to solve all the tasks. Section 4 describes how this ar-
chitecture is employed for multitask learning on all the
labeled tasks we consider, and Section 5 describes the
unlabeled task of building a language model in some
detail. Section 6 gives experimental results of our sys-
tem, and Section 7 concludes with a discussion of our
results and possible directions for future research.

2. NLP Tasks

We consider six standard NLP tasks in this paper.

Part-Of-Speech Tagging (POS) aims at labeling
each word with a unique tag that indicates its syn-
tactic role, e.g. plural noun, adverb, . . .

Chunking, also called shallow parsing, aims at label-
ing segments of a sentence with syntactic constituents
such as noun or verb phrase (NP or VP). Each word
is assigned only one unique tag, often encoded as a
begin-chunk (e.g. B-NP) or inside-chunk tag (e.g. I-
NP).

Named Entity Recognition (NER) labels atomic
elements in the sentence into categories such as “PER-
SON”, “COMPANY”, or “LOCATION”.

Semantic Role Labeling (SRL) aims at giving a se-
mantic role to a syntactic constituent of a sentence.
In the PropBank (Palmer et al., 2005) formalism one
assigns roles ARG0-5 to words that are arguments
of a predicate in the sentence, e.g. the following
sentence might be tagged “[John]ARG0 [ate]REL [the
apple]ARG1 ”, where “ate” is the predicate. The pre-
cise arguments depend on a verb’s frame and if there
are multiple verbs in a sentence some words might have
multiple tags. In addition to the ARG0-5 tags, there
there are 13 modifier tags such as ARGM-LOC (loca-
tional) and ARGM-TMP (temporal) that operate in a
similar way for all verbs.

Language Models A language model traditionally
estimates the probability of the next word being w in
a sequence. We consider a different setting: predict
whether the given sequence exists in nature, or not,
following the methodology of (Okanohara & Tsujii,
2007). This is achieved by labeling real texts as posi-
tive examples, and generating “fake” negative text.

Semantically Related Words (“Synonyms”) This
is the task of predicting whether two words are seman-
tically related (synonyms, holonyms, hypernyms...)
which is measured using the WordNet database
(http://wordnet.princeton.edu) as ground truth.

Our main interest is SRL, as it is, in our opinion, the
most complex of these tasks. We use all these tasks to:
(i) show the generality of our proposed architecture;
and (ii) improve SRL through multitask learning.

3. General Deep Architecture for NLP

All the NLP tasks above can be seen as tasks assign-
ing labels to words. The traditional NLP approach is:
extract from the sentence a rich set of hand-designed
features which are then fed to a classical shallow clas-
sification algorithm, e.g. a Support Vector Machine
(SVM), often with a linear kernel. The choice of fea-
tures is a completely empirical process, mainly based
on trial and error, and the feature selection is task
dependent, implying additional research for each new
NLP task. Complex tasks like SRL then require a
large number of possibly complex features (e.g., ex-
tracted from a parse tree) which makes such systems
slow and intractable for large-scale applications.

Instead we advocate a deep neural network (NN) ar-
chitecture, trained in an end-to-end fashion. The in-
put sentence is processed by several layers of feature
extraction. The features in deep layers of the network
are automatically trained by backpropagation to be rel-
evant to the task. We describe in this section a general
deep architecture suitable for all our NLP tasks, and
easily generalizable to other NLP tasks.

Our architecture is summarized in Figure 1. The first
layer extracts features for each word. The second layer
extracts features from the sentence treating it as a se-
quence with local and global structure (i.e., it is not
treated like a bag of words). The following layers are
classical NN layers.

3.1. Transforming Indices into Vectors

As our architecture deals with raw words and not en-
gineered features, the first layer has to map words into
real-valued vectors for processing by subsequent layers
of the NN. For simplicity (and efficiency) we consider
words as indices in a finite dictionary of words D ⊂ N.

Lookup-Table Layer Each word i ∈ D is embed-
ded into a d-dimensional space using a lookup table
LTW (·):

LTW (i) = Wi ,

where W ∈ Rd×|D| is a matrix of parameters to be
learnt, Wi ∈ Rd is the ith column of W and d is the
word vector size (wsz ) to be chosen by the user. In
the first layer of our architecture an input sentence
{s1, s2, . . . sn} of n words in D is thus transformed
into a series of vectors {Ws1 , Ws2 , . . . Wsn

} by apply-



A Unified Architecture for Natural Language Processing

ing the lookup-table to each of its words.

It is important to note that the parameters W of the
layer are automatically trained during the learning
process using backpropagation.

Variations on Word Representations In practice,
one may want to introduce some basic pre-processing,
such as word-stemming or dealing with upper and
lower case. In our experiments, we limited ourselves to
converting all words to lower case, and represent the
capitalization as a separate feature (yes or no).

When a word is decomposed into K elements (fea-
tures), it can be represented as a tuple i =
{i1, i2, . . . iK} ∈ D1 × · · · × DK , where Dk is the dic-
tionary for the kth-element. We associate to each ele-
ment a lookup-table LTW k(·), with parameters W k ∈
Rdk×|Dk| where dk ∈ N is a user-specified vector size.
A word i is then embedded in a d =

∑
k dk dimensional

space by concatenating all lookup-table outputs:

LTW 1,...,W K (i)T = (LTW 1(i1)T, . . . , LTW K (iK)T)

Classifying with Respect to a Predicate In a
complex task like SRL, the class label of each word in a
sentence depends on a given predicate. It is thus neces-
sary to encode in the NN architecture which predicate
we are considering in the sentence.

We propose to add a feature for each word that encodes
its relative distance to the chosen predicate. For the ith

word in the sentence, if the predicate is at position posp

we use an additional lookup table LT distp(i− posp).

3.2. Variable Sentence Length

The lookup table layer maps the original sentence into
a sequence x(·) of n identically sized vectors:

(x1,x2, . . . , xn), ∀t xt ∈ Rd . (1)

Obviously the size n of the sequence varies depending
on the sentence. Unfortunately normal NNs are not
able to handle sequences of variable length.

The simplest solution is to use a window approach:
consider a window of fixed size ksz around each word
we want to label. While this approach works with
great success on simple tasks like POS, it fails on more
complex tasks like SRL. In the latter case it is common
for the role of a word to depend on words far away
in the sentence, and hence outside of the considered
window.

When modeling long-distance dependencies is impor-
tant, Time-Delay Neural Networks (TDNNs) (Waibel
et al., 1989) are a better choice. Here, time refers

Input Sentence
the cat sat on the matfeature 1 (text)
s1(1) s1(2) s1(3) s1(4) s1(5) s1(6)feature 2

...
feature K sK(1) sK(2) sK(3) sK(4) sK(5) sK(6)

Max Over Time ...

Optional Classical NN Layer(s)

Softmax

Lookup Tables

LTw

... ... ...... ... ... ...
1

LTwK

#hidden units * (n-2)

Convolution Layer
...

#hidden units

#classes

(d1+d2+...dK)*n

n words, K features

Figure 1. A general deep NN architecture for NLP. Given
an input sentence, the NN outputs class probabilities for
one chosen word. A classical window approach is a special
case where the input has a fixed size ksz, and the TDNN
kernel size is ksz; in that case the TDNN layer outputs
only one vector and the Max layer performs an identity.

to the idea that a sequence has a notion of order. A
TDNN “reads” the sequence in an online fashion: at
time t ≥ 1, one sees xt, the tth word in the sentence.

A classical TDNN layer performs a convolution on a
given sequence x(·), outputting another sequence o(·)
whose value at time t is:

o(t) =
n−t∑

j=1−t

Lj · xt+j , (2)

where Lj ∈ Rnhu×d (−n ≤ j ≤ n) are the parameters
of the layer (with nhu hidden units) trained by back-
propagation. One usually constrains this convolution
by defining a kernel width, ksz, which enforces

∀ |j| > (ksz − 1)/2, Lj = 0 . (3)

A classical window approach only considers words in
a window of size ksz around the word to be labeled.
Instead, if we use (2) and (3), a TDNN considers at the
same time all windows of ksz words in the sentence.

TDNN layers can also be stacked so that one can ex-
tract local features in lower layers, and more global
features in subsequent ones. This is an approach typ-
ically used in convolutional networks for vision tasks,
such as the LeNet architecture (LeCun et al., 1998).

We then add to our architecture a layer which captures
the most relevant features over the sentence by feeding



A Unified Architecture for Natural Language Processing

the TDNN layer(s) into a “Max” Layer, which takes
the maximum over time (over the sentence) in (2) for
each of the nhu output features.

As the layer’s output is of fixed dimension (indepen-
dent of sentence size) subsequent layers can be classical
NN layers. Provided we have a way to indicate to our
architecture the word to be labeled, it is then able to
use features extracted from all windows of ksz words
in the sentence to compute the label of one word of
interest.

We indicate the word to be labeled to the NN with an
additional lookup-table, as suggested in Section 3.1.
Considering the word at position posw we encode the
relative distance between the ith word in the sentence
and this word using a lookup-table LT distw(i− posw).

3.3. Deep Architecture

A TDNN (or window) layer performs a linear oper-
ation over the input words. While linear approaches
work fairly well for POS or NER, more complex tasks
like SRL require nonlinear models. One can add to the
NN one or more classical NN layers. The output of the
lth layer containing nhul

hidden units is computed with
ol = tanh(Ll · ol−1), where the matrix of parameters
Ll ∈ Rnhul

×nhul−1 is trained by backpropagation.

The size of the last (parametric) layer’s output olast

is the number of classes considered in the NLP task.
This layer is followed by a softmax layer (Bridle, 1990)
which makes sure the outputs are positive and sum to
1, allowing us to interpret the outputs of the NN as
probabilities for each class. The ith output is given by
eolast

i /
∑

j eolast
j . The whole network is trained with

the cross-entropy criterion (Bridle, 1990).

3.4. Related Architectures

In (Collobert & Weston, 2007) we described a NN
suited for SRL. This work also used a lookup-table to
generate word features (see also (Bengio & Ducharme,
2001)). The issue of labeling with respect to a predi-
cate was handled with a special hidden layer: its out-
put, given input sequence (1), predicate position posp,
and the word of interest posw was defined as:

o(t) = C(t− posw, t− posp) · xt.

The function C(·) is shared through time t: one could
say that this is a variant of a TDNN layer with a ker-
nel width ksz = 1 but where the parameters are con-
ditioned with other variables (distances with respect
to the verb and word of interest).

The fact that C(·) does not combine several words in
the same neighborhood as in our TDNN approach lim-

its the dependencies between words it can model. Also
C(·) is itself a NN inside a NN. Not only does one have
to carefully design this additional architecture, but it
also makes the approach more complicated to train
and implement. Integrating all the desired features
in x() (including the predicate position) via lookup-
tables makes our approach simpler, more general and
easier to tune.

4. Multitasking with Deep NN

Multitask learning (MTL) is the procedure of learning
several tasks at the same time with the aim of mutual
benefit. This an old idea in machine learning; a good
overview, especially focusing on NNs, can be found in
(Caruana, 1997).

4.1. Deep Joint Training

If one considers related tasks, it makes sense that fea-
tures useful for one task might be useful for other ones.
In NLP for example, POS predictions are often used as
features for SRL and NER. Improving generalization
on the POS task might therefore improve both SRL
and NER.

A NN automatically learns features for the desired
tasks in the deep layers of its architecture. In the case
of our general architecture for NLP presented in Sec-
tion 3, the deepest layer (consisting of lookup-tables)
implicitly learns relevant features for each word in the
dictionary. It is thus reasonable to expect that when
training NNs on related tasks, sharing deep layers in
these NNs would improve features produced by these
deep layers, and thus improve generalization perfor-
mance. The last layers of the network can then be
task specific.

In this paper we show this procedure performs very
well for NLP tasks when sharing the lookup-tables of
each considered task, as depicted in Figure 2. Training
is achieved in a stochastic manner by looping over the
tasks:

1. Select the next task.
2. Select a random training example for this task.
3. Update the NN for this task by taking a gradient

step with respect to this example.
4. Go to 1.

It is worth noticing that labeled data for training each
task can come from completely different datasets.

4.2. Previous Work in MTL for NLP

The NLP field contains many related tasks. This
makes it a natural field for applying MTL, and sev-



A Unified Architecture for Natural Language Processing

Lookup Tables

Convolution

Task 1

Max

Classical NN Layer(s)

Softmax

LTw2 LTw3

Lookup Tables

Convolution

Task 2

Max

Classical NN Layer(s)

Softmax

LTw1 LTw2‘

Figure 2. Example of deep multitasking with NN. Task 1
and Task 2 are two tasks trained with the architecture
presented in Figure 1. One lookup-table (in black) is shared
(the other lookup-tables and layers are task specific). The
principle is the same with more than two tasks.

eral techniques have already been explored.

Cascading Features The most obvious way to
achieve MTL is to train one task, and then use this
task as a feature for another task. This is a very com-
mon approach in NLP. For example, in the case of
SRL, several methods (e.g., (Pradhan et al., 2004))
train a POS classifier and use the output as features
for training a parser, which is then used for building
features for SRL itself. Unfortunately, tasks (features)
are learnt separately in such a cascade, thus propagat-
ing errors from one classifier to the next.

Shallow Joint Training If one possesses a dataset la-
beled for several tasks, it is then possible to train these
tasks jointly in a shallow manner: one unique model
can predict all task labels at the same time. Using this
scheme, the authors of (Sutton et al., 2007) proposed a
conditional random field approach where they showed
improvements from joint training on POS tagging and
noun-phrase chunking tasks. However the requirement
of jointly annotated data is a limitation, as this is often
not the case. Similarly, in (Miller et al., 2000) NER,
parsing and relation extraction were jointly trained in
a statistical parsing model achieving improved perfor-
mance on all tasks. This work has the same joint label-
ing requirement problem, which the authors avoided
by using a predictor to fill in the missing annotations.

In (Sutton & McCallum, 2005a) the authors showed
that one could learn the tasks independently, hence
using different training sets, by only leveraging predic-
tions jointly in a test time decoding step, and still ob-
tain improved results. The problem is, however, that
this will not make use of the shared tasks at training
time. The NN approach used here seems more flexible
in these regards.

Finally, the authors of (Musillo & Merlo, 2006) made
an attempt at improving the semantic role labeling
task by joint inference with syntactic parsing, but their
results are not state-of-the-art. The authors of (Sutton
& McCallum, 2005b) also describe a negative result at
the same joint task.

5. Leveraging Unlabeled Data

Labeling a dataset can be an expensive task, especially
in NLP where labeling often requires skilled linguists.
On the other hand, unlabeled data is abundant and
freely available on the web. Leveraging unlabeled data
in NLP tasks seems to be a very attractive, and chal-
lenging, goal.

In our MTL framework presented in Figure 2, there is
nothing stopping us from jointly training supervised
tasks on labeled data and unsupervised tasks on un-
labeled data. We now present an unsupervised task
suitable for NLP.

Language Model We consider a language model
based on a simple fixed window of text of size ksz us-
ing our NN architecture, given in Figure 2. We trained
our language model to discriminate a two-class classi-
fication task: if the word in the middle of the input
window is related to its context or not. We construct
a dataset for this task by considering all possible ksz
windows of text from the entire of English Wikipedia
(http://en.wikipedia.org). Positive examples are
windows from Wikipedia, negative examples are the
same windows but where the middle word has been
replaced by a random word.

We train this problem with a ranking-type cost:
X

s∈S

X

w∈D

max (0, 1− f(s) + f(sw)) , (4)

where S is the set of sentence windows of text, D is the
dictionary of words, and f(·) represents our NN archi-
tecture without the softmax layer and sw is a sentence
window where the middle word has been replaced by
the word w. We sample this cost online w.r.t. (s, w).

We will see in our experiments that the features (em-
bedding) learnt by the lookup-table layer of this NN
clusters semantically similar words. These discovered
features will prove very useful for our shared tasks.

Previous Work on Language Models (Bengio &
Ducharme, 2001) and (Schwenk & Gauvain, 2002) al-
ready presented very similar language models. How-
ever, their goal was to give a probability of a word
given previous ones in a sentence. Here, we only want
to have a good representation of words: we take advan-
tage of the complete context of a word (before and af-



A Unified Architecture for Natural Language Processing

ter) to predict its relevance. Perhaps this is the reason
the authors were never able to obtain a good embed-
ding of their words. Also, using probabilities imposes
using a cross-entropy type criterion and can require
many tricks to speed-up the training, due to normal-
ization issues. Our criterion (4) is much simpler in
that respect.

The authors of (Okanohara & Tsujii, 2007), like us,
also take a two-class approach (true/fake sentences).
They use a shallow (kernel) classifier.

Previous Work in Semi-Supervised Learning
For an overview of semi-supervised learning, see
(Chapelle et al., 2006). There have been several uses
of semi-supervised learning in NLP before, for exam-
ple in NER (Rosenfeld & Feldman, 2007), machine
translation (Ueffing et al., 2007), parsing (McClosky
et al., 2006) and text classification (Joachims, 1999).
The first work is a highly problem-specific approach
whereas the last three all use a self-training type ap-
proach (Transductive SVMs in the case of text classifi-
cation, which is a kind of self-training method). These
methods augment the training set with labeled exam-
ples from the unlabeled set which are predicted by the
model itself. This can give large improvements in a
model, but care must be taken as the predictions are
of course prone to noise.

The authors of (Ando & Zhang, 2005) propose a setup
more similar to ours: they learn from unlabeled data
as an auxiliary task in a MTL framework. The main
difference is that they use shallow classifiers; however
they report positive results on POS and NER tasks.

Semantically Related Words Task We found it
interesting to compare the embedding obtained with
a language model on unlabeled data with an em-
bedding obtained with labeled data. WordNet is
a database which contains semantic relations (syn-
onyms, holonyms, hypernyms, ...) between around
150, 000 words. We used it to train a NN similar to
the language model one. We considered the problem
as a two-class classification task: positive examples are
pairs with a relation in Wordnet, and negative exam-
ples are random pairs.

6. Experiments

We used Sections 02-21 of the PropBank dataset ver-
sion 1 (about 1 million words) for training and Sec-
tion 23 for testing as standard in all SRL experiments.
POS and chunking tasks use the same data split via
the Penn TreeBank. NER labeled data was obtained
by running the Stanford Named Entity Recognizer (a

Table 1. Language model performance for learning an em-
bedding in wsz = 50 dimensions (dictionary size: 30, 000).
For each column the queried word is followed by its index in
the dictionary (higher means more rare) and its 10 nearest
neighbors (arbitrary using the Euclidean metric).

france jesus xbox reddish scratched
454 1973 6909 11724 29869

spain christ playstation yellowish smashed
italy god dreamcast greenish ripped
russia resurrection psNUMBER brownish brushed
poland prayer snes bluish hurled
england yahweh wii creamy grabbed
denmark josephus nes whitish tossed
germany moses nintendo blackish squeezed
portugal sin gamecube silvery blasted
sweden heaven psp greyish tangled
austria salvation amiga paler slashed

CRF based classifier) over the same data.

Language models were trained on Wikipedia. In all
cases, any numeric number was converted as “NUM-
BER”. Accentuated characters were transformed to
their non-accentuated versions. All paragraphs con-
taining other non-ASCII characters were discarded.
For Wikipedia, we obtain a database of 631M words.
We used WordNet to train the “synonyms” (semanti-
cally related words) task.

All tasks use the same dictionary of the 30, 000 most
common words from Wikipedia, converted to lower
case. Other words were considered as unknown and
mapped to a special word.

Architectures All tasks were trained using the NN
shown in Figure 1. POS, NER, and chunking tasks
were trained with the window version with ksz = 5.
We chose linear models for POS and NER. For chunk-
ing we chose a hidden layer of 200 units. The language
model task had a window size ksz = 11, and a hidden
layer of 100 units. All these tasks used two lookup-
tables: one of dimension wsz for the word in lower
case, and one of dimension 2 specifying if the first let-
ter of the word is a capital letter or not.

For SRL, the network had a convolution layer with
ksz = 3 and 100 hidden units, followed by another
hidden layer of 100 hidden units. It had three lookup-
tables in the first layer: one for the word (in lower
case), and two that encode relative distances (to the
word of interest and the verb). The last two lookup-
tables embed in 5 dimensional spaces. Verb positions
are obtained with our POS classifier.

The language model network had only one lookup-
table (the word in lower case) and 100 hidden units.
It used a window of size ksz = 11.

We show results for different encoding sizes of the word
in lower case: wsz = 15, 50 and 100.



A Unified Architecture for Natural Language Processing

Table 2. A Deep Architecture for SRL improves by learning auxiliary tasks that share the first layer that represents words
as wsz-dimensional vectors. We give word error rates for wsz=15, 50 and 100 and various shared tasks.

wsz=15 wsz=50 wsz=100
SRL 16.54 17.33 18.40
SRL + POS 15.99 16.57 16.53
SRL + Chunking 16.42 16.39 16.48
SRL + NER 16.67 17.29 17.21
SRL + Synonyms 15.46 15.17 15.17
SRL + Language model 14.42 14.30 14.46
SRL + POS + Chunking 16.46 15.95 16.41
SRL + POS + NER 16.45 16.89 16.29
SRL + POS + Chunking + NER 16.33 16.36 16.27
SRL + POS + Chunking + NER + Synonyms 15.71 14.76 15.48
SRL + POS + Chunking + NER + Language model 14.63 14.44 14.50

wsz=15

Epoch

T
e

st
 E

rr
o

r

1 11 21 3114

15

16

17

18

19

20

21

22

SRL
SRL+POS
SRL+CHUNK
SRL+POS+CHUNK
SRL+POS+CHUNK+NER
SRL+SYNONYMS
SRL+POS+CHUNK+NER+SYNONYMS
SRL+LANG.MODEL
SRL+POS+CHUNK+NER+LANG.MODEL

Wsz=50

Epoch

T
e

st
 E

rr
o

r

1 3.5 6 8.5 11 13.5 16 18.514

15

16

17

18

19

20

21

22

SRL
SRL+POS
SRL+CHUNK
SRL+POS+CHUNK
SRL+POS+CHUNK+NER
SRL+SYNONYMS
SRL+POS+CHUNK+NER+SYNONYMS
SRL+LANG.MODEL
SRL+POS+CHUNK+NER+LANG.MODEL

Wsz=100

Epoch

T
e

st
 E

rr
o

r

1 3.5 6 8.5 11 13.514

15

16

17

18

19

20

21

22

SRL
SRL+POS
SRL+CHUNK
SRL+POS+CHUNK
SRL+POS+CHUNK+NER
SRL+SYNONYMS
SRL+POS+CHUNK+NER+SYNONYMS
SRL+LANG.MODEL
SRL+POS+CHUNK+NER+LANG.MODEL

Figure 3. Test error versus number of training epochs over PropBank, for the SRL task alone and SRL jointly trained
with various other NLP tasks, using deep NNs.

Results: Language Model Because the language
model was trained on a huge database we first trained
it alone. It takes about a week to train on one com-
puter. The embedding obtained in the word lookup-
table was extremely good, even for uncommon words,
as shown in Table 1. The embedding obtained by
training on labeled data from WordNet “synonyms”
is also good (results not shown) however the coverage
is not as good as using unlabeled data, e.g. “Dream-
cast” is not in the database.

The resulting word lookup-table from the language
model was used as an initializer of the lookup-table
used in MTL experiments with a language model.

Results: SRL Our main interest was improving SRL
performance, the most complex of our tasks. In Ta-
ble 2, we show results comparing the SRL task alone
with the SRL task jointly trained with different com-
binations of the other tasks. For all our experiments,
training was achieved in a few epochs (about a day)
over the PropBank dataset as shown in Figure 3. Test-
ing takes 0.015s to label a complete sentence (given one
verb).

All MTL experiments performed better than SRL
alone. With larger wsz (and thus large capacity) the
relative improvement becomes larger from using MTL
compared to the task alone, which shows MTL is a
good way of regularizing: in fact with MTL results
are fairly stable with capacity changes.

The semi-supervised training of SRL using the lan-
guage model performs better than other combinations.
Our best model performed as low as 14.30% in per-
word error rate, which is to be compared to previ-
ously published results of 16.36% with an NN archi-
tecture (Collobert & Weston, 2007) and 16.54% for a
state-of-the-art method based on parse trees (Pradhan
et al., 2004)1. Further, our system is the only one not
to use POS tags or parse tree features.

Results: POS and Chunking Training takes about
30 min for these tasks alone. Testing time for label-
ing a complete sentence is about 0.003s. We obtained
modest improvements to POS and chunking results us-

1Our loss function optimized per-word error rate. We
note that many SRL results e.g. the CONLL 2005 evalua-
tion use F1 as a standard measure.



A Unified Architecture for Natural Language Processing

ing MTL. Without MTL (for wsz = 50) we obtain
2.95% test error for POS and 4.5% (91.1 F-measure)
for chunking. With MTL we obtain 2.91% for POS
and 3.8% (92.71 F-measure) for chunking. POS error
rates in the 3% range are state-of-the-art. For chunk-
ing, although we use a different train/test setup to the
CoNLL-2000 shared task (http://www.cnts.ua.ac.
be/conll2000/chunking) our system seems compet-
itive with existing systems (better than 9 of the 11
submitted systems). However, our system is the only
one that does not use POS tags as input features.

Note, we did not evaluate NER error rates because
we used non-gold standard annotations in our setup.
Future work will more thoroughly evaluate these tasks.

7. Conclusion

We proposed a general deep NN architecture for NLP.
Our architecture is extremely fast enabling us to take
advantage of huge databases (e.g. 631 million words
from Wikipedia). We showed our deep NN could be
applied to various tasks such as SRL, NER, POS,
chunking and language modeling. We demonstrated
that learning tasks simultaneously can improve gener-
alization performance. In particular, when training
the SRL task jointly with our language model our
architecture achieved state-of-the-art performance in
SRL without any explicit syntactic features. This is
an important result, given that the NLP community
considers syntax as a mandatory feature for semantic
extraction (Gildea & Palmer, 2001).

References

Ando, R., & Zhang, T. (2005). A Framework for Learn-
ing Predictive Structures from Multiple Tasks and Un-
labeled Data. JMLR, 6, 1817–1853.

Bengio, Y., & Ducharme, R. (2001). A neural probabilistic
language model. NIPS 13.

Bridle, J. (1990). Probabilistic interpretation of feedfor-
ward classification network outputs, with relationships
to statistical pattern recognition. In F. F. Soulié and
J. Hérault (Eds.), Neurocomputing: Algorithms, archi-
tectures and applications, 227–236. NATO ASI Series.

Caruana, R. (1997). Multitask Learning. Machine Learn-
ing, 28, 41–75.

Chapelle, O., Schlkopf, B., & Zien, A. (2006). Semi-
supervised learning. Adaptive computation and machine
learning. Cambridge, Mass., USA: MIT Press.

Collobert, R., & Weston, J. (2007). Fast semantic extrac-
tion using a novel neural network architecture. Proceed-
ings of the 45th Annual Meeting of the ACL (pp. 560–
567).

Gildea, D., & Palmer, M. (2001). The necessity of parsing
for predicate argument recognition. Proceedings of the
40th Annual Meeting of the ACL, 239–246.

Joachims, T. (1999). Transductive inference for text clas-
sification using support vector machines. ICML.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-Based Learning Applied to Document Recog-
nition. Proceedings of the IEEE, 86.

McClosky, D., Charniak, E., & Johnson, M. (2006). Ef-
fective self-training for parsing. Proceedings of HLT-
NAACL 2006.

Miller, S., Fox, H., Ramshaw, L., & Weischedel, R. (2000).
A novel use of statistical parsing to extract informa-
tion from text. 6th Applied Natural Language Processing
Conference.

Musillo, G., & Merlo, P. (2006). Robust Parsing of the
Proposition Bank. ROMAND 2006: Robust Methods in
Analysis of Natural language Data.

Okanohara, D., & Tsujii, J. (2007). A discriminative lan-
guage model with pseudo-negative samples. Proceedings
of the 45th Annual Meeting of the ACL, 73–80.

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The
proposition bank: An annotated corpus of semantic
roles. Comput. Linguist., 31, 71–106.

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., & Juraf-
sky, D. (2004). Shallow semantic parsing using support
vector machines. Proceedings of HLT/NAACL-2004.

Rosenfeld, B., & Feldman, R. (2007). Using Corpus Statis-
tics on Entities to Improve Semi-supervised Relation Ex-
traction from the Web. Proceedings of the 45th Annual
Meeting of the ACL, 600–607.

Schwenk, H., & Gauvain, J. (2002). Connectionist lan-
guage modeling for large vocabulary continuous speech
recognition. IEEE International Conference on Acous-
tics, Speech, and Signal Processing (pp. 765–768).

Sutton, C., & McCallum, A. (2005a). Composition of con-
ditional random fields for transfer learning. Proceedings
of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, 748–
754.

Sutton, C., & McCallum, A. (2005b). Joint parsing and
semantic role labeling. Proceedings of CoNLL-2005 (pp.
225–228).

Sutton, C., McCallum, A., & Rohanimanesh, K. (2007).
Dynamic Conditional Random Fields: Factorized Prob-
abilistic Models for Labeling and Segmenting Sequence
Data. JMLR, 8, 693–723.

Ueffing, N., Haffari, G., & Sarkar, A. (2007). Transductive
learning for statistical machine translation. Proceedings
of the 45th Annual Meeting of the ACL, 25–32.

Waibel, A., abd G. Hinton, T. H., Shikano, K., & Lang,
K. (1989). Phoneme recognition using time-delay neural
networks. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 37, 328–339.


