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Chapter 1

Introduction

Lava is an experimental tool for hardware design and verification. Using Lava,
one can describe circuits using a simple functional hardware description lan-
guage. The descriptions are short and sweet, and do not suffer from the ver-
bosity of more standard hardware description languages (HDLs) like VHDL and
Verilog. On the other hand, we cannot express the same things as in these large,
expressive (and complicated) languages. For example, we cannot express low
level details about timing. What we can express very nicely, though, is the ways
in which circuits are built from sub-circuits. Lava facilitates the description of
connection patterns so that they are easily reusable. For some kinds of circuits,
for example in signal processing, this is exactly what we want to do. Lava also
provides many different ways of analysing our circuit descriptions. We can sim-
ulate circuits, just as with more standard HDLs, but we can also use symbolic
methods to generate input to analysis tools such as automatic theorem provers
and model checkers. Indeed, the same methods are used to generate structural
VHDL from Lava circuit descriptions. Our aim in this tutorial is to gently
introduce this new style of circuit design and analysis, by means of examples.

Lava is used at Chalmers as a platform for experiments in the formal verification
of hardware [3, 2]. (Note, however, that both of these references are about an
older version of Lava, in which circuit descriptions are a bit more complicated.)
Satnam Singh, on the other hand, uses Lava in real industrial design projects
at Xilinx Inc., one of the main suppliers of Field Programmable Gate Arrays
(FPGAS). In particular, Lava has been used with great success in the develop-
ment of FPGA cores such as filters and Bezier curve drawing circuits, and of
customer applications such as digital signal processing for high speed networks
and for high performance graphics applications.

Lava really consists of a simple hardware description language embedded in
the powerful functional programming language Haskell. So it can be seen as a
domain specific language embedded in a general purpose programming language.
We describe circuits by writing Haskell programs — and the Lava system itself



consists of a set of Haskell modules that give the user various facilities. The
embedded language is quite similar to the Lustre synchronous dataflow language
[7]. The idea of using a functional programming language to describe hardware
was first proposed in the early eighties [14, 15, 8], and there has been quite a lot
of work in the area since then [16, 17, 11, 13, 12, 6]. Our intention in building
the Lava system (together with Singh) is to provide a tool that demonstrates
the feasibility of doing circuit design and analysis using a functional language.

The main idea in Lava is that a single circuit description can be analysed in a
variety of different ways, by giving different interpretations to its components
(and sometimes even to its connection patterns). The simplest of these inter-
pretations gives us ordinary simulation. But we can do much more. We can
allow symbolic rather than concrete data to flow in the circuit, and in this way
collect information about the circuit in various different ways. For example, we
can run the circuit on symbolic data and produce expressions on the outputs
that indicate how each output is related to the inputs. This can be useful when
developing a first implementation. However, the expressions can get too large
for humans to interpret. Then, we hook up external analysis tools, such as au-
tomatic theorem provers, to help us to analyse our circuits. When we hook up
to external theorem provers, we are actually using Haskell as a proof scripting
language. This turns out to be very convenient. Similarly, when we hook up
to other external tools, such as VHDL-based CAD tools, we use Haskell as a
scripting language. One way to view the Lava system is as a tool for linking
together and controlling other tools in a unified way! Thus Haskell is used not
only to construct circuit descriptions but also to control the tools that process
those descriptions. The user sees only one language, rather than having to work
with many, as is more usual in the CAD world.

This tutorial introduces the style of circuit description used in Lava, by means
of very simple examples. It emphasises the way in which Lava combinators can
be used to capture common interconnection patterns. It shows the three most
important interpretations or circuit analysis methods — simulation, generation
of VHDL code, and generation of logical formulas for input to theorem provers.
After working through the tutorial, you should understand how to describe and
analyse simple combinational and sequential circuits using Lava. We hope that
the quick reference sections at the back of the tutorial will also help you to get
started.



Chapter 2

Getting Started

In this chapter, we show how to describe some simple circuits in the Lava system,
and run the interpreter on them.

2.1 Your First Circuit

To make a first circuit description, start up the text editor of your choice,
and create a text file called First.hs, for example. Lava file names have the
extension .hs.

We are going to define a so-called half adder (see figure 2.1). A half adder is a
component that is for example used in the implementation of a binary adder. It
takes as an input two bits, and adds them up. The result is a sum and a carry
bit. A half adder is usually realized using one and and one xor gate.

Here is how we define a half adder halfAdd in Lava.
import Lava

halfAdd (a, b) = (sum, carry)

where
sum = xor2 (a, b)
carry = and2 (a, b)

We import a module called Lava, which defines a number of operations that we
can use to build circuits. Notably, it contains the definitions of the gates xor2
and and2. Appendix A contains a list of such predefined operations.

Note that the order of definitions after a where does not matter! Since these
circuit components act in parallel, we could just as well have put them the other
way around.



AND ——— carry

a XOR —— sum

Figure 2.1: A half adder.

2.2 The Lava Interpreter

During the development of a collection of circuits, we mainly use the Lava
interpreter. This is actually the Haskell interpreter Hugs [9]. The command is
lava.

%  lava
-- Lava2000 ----————————"—""—""—
Prelude>

We can use the interpreter to load different modules with circuit definitions,
and to type in commands that we want to execute.

If we type in the half adder definition in the file First.hs, we can load it in the
interpreter,using the command :1:

Prelude> :1 First.hs
Reading file "First.hs":

First.hs
Main>

One of the things we can do with a circuit is to simulate it. Simulation is done
in Lava with the operation simulate. It takes two arguments; one is the circuit
to simulate (in this case halfAdd), and the other is the input to the circuit (in
this case a pair of bits).

Main> simulate halfAdd (low, low)
(low, low)

Main> simulate halfAdd (high,high)
(low, high)

If we make any changes to the file with our circuit definitions, we can type the
reload command :r in the interpreter:

Main> :r

Main>



b carryl
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Figure 2.2: A full adder.

The changes are now updated. If you ever want to exit from the interpreter,
you can use the :q command.

Main> :gq
[Leaving Hugs]
b

2.3 Your Second Circuit

You guessed it! Your second circuit is going to be a full adder (see figure 2.2),
a component fullAdd that consists of two half adders. To define it, add the
following definition to the file First.hs.

fullAdd (carryIn, (a, b)) = (sum, carryOut)
where
(suml, carryl)
(sum, carry2)
carryOut

halfAdd (a, b)
halfAdd (carryIn, suml)
xor2 (carry2, carryl)

Note that, just like the half adder, this circuit has one input. This one input
consists of a pair of a bit and a pair of bits. We could also have represented
the input as a triple of bits, but we shall later see why we made this particular
choice.

We transcribe the diagram of the circuit (Figure 2.2) by giving names to all the
internal signals (here suml, carryl and carry2) and then simply writing down
all the sub-parts of the circuit. To ease this process, we have decided to read
the inputs to a sub-component from bottom to top. The order of the resulting
equations doesn’t matter. The equations can make use either of previously
defined components (such as halfAdd) or of the Boolean gates.

We can simulate this circuit by using the simulate operation that we used in
the previous section. Though as inputs get bigger, typing in different test inputs
in the interpreter is a lot of work. To avoid this, we can describe a number of
test cases in the file First.hs:

testl = simulate halfAdd (low,low)



test2 = simulate fullAdd (low, (high,low))
test3 = simulate fullAdd (high, (low,high))

And we can perform tests in the interpreter.

Main> test3
(low, high)
Main> test2
(high, low)

Note that if we try to simulate a circuit with inputs of the wrong type, we get
a type error:

Main> simulate fullddd (low,high,low)
ERROR - Type error in application

*x** Expression : simulate fullAdd (low,high,low)
*x*x Term : fullAdd
*x*xx Type : (Signal Bool, (Signal Bool,Signal Bool))

-> (Signal Bool,Signal Bool)
**xx Does not match : (Signal Bool,Signal Bool,Signal Bool)
-> (Signal Bool,Signal Bool)

Signal Bool is the type of a single bit wire in Lava.

To simulate your circuit for more than one input at a time, you can use the
operation simulateSeq. It takes a circuit and a list of sample inputs as a
parameter. Lists are denoted between square brackets.

Main> simulateSeq halfAdd [(low,low), (low,high), (high,low)]
[(low,low), (high,low), (high,low)]

There is a special list, called domain, which contains all the values of a certain
input shape.

Main> simulateSeq halfAdd domain
[(low,low), (high,low), (high,low), (low,high)]

Here, domain produced each possible two bit input. To check what those values
were, we can simply ask for the value of domain at the appropriate type:

Main> domain::[(Signal Bool, Signal Bool)]
[(low,low), (low,high), (high,low), (high,high)]

Main> domain::[(Stgnal Bool, (Signal Bool, Stgnal Bool))]
[(low, (low,low)), (low, (low,high)), (Low, (high,low)), (low, (high,high)),
(high, (low,low)), (high, (Low,high)), (high, (high,low)), (high, (high,high))]

It is also possible to ask for the type of a given function:



Main> :t halfAdd
halfAdd :: (Signal Bool,Signal Bool) -> (Signal Bool,Signal Bool)

Not all input shapes (for example inputs containing numbers!) have a finite
domain list associated with them.

2.4 Generating VHDL

Given a Lava circuit description, we can generate VHDL from it, by using the
operation writeVhdl. It takes two arguments, the name of the VHDL definition
as a string, and the circuit.

Main> writelVhdl "fullAdd" fullAdd
Writing to file "fullAdd.vhd" ... Done.

The VHDL file that is generated will assume that there are definitions of the
gates. The Lava distribution provides these definitions in the file Lava2000/
Vhdl/lava.vhd. We must load this file into the VHDL working library and
compile it.

Normally, the VHDL generator gives names to the inputs and outputs automat-
ically. If we want to give names to the input ourselves, we can do this by using
the operation writeVhdlInput. Here is how we use it:

Main> writeVhdlInput "fullAdd" fullddd
(var "carryIn", (var "a", var "b"))
Writing to file "fullAdd.vhd" ... Done.

And lastly, if we also want to give names for the outputs, we can use the oper-
ations writeVhdlInputQOutput. Here is how we use it:

Main> writelVhdlInputOutput "fullAdd" fullddd
(var "carryIn'", (var "a", var "b"))
(var "sum", var "carryOut')
Writing to file "fullAdd.vhd" ... Done.

See figure 2.3 for the result of this last operation. Note that the description has
been flattened all the way down to a gate-level netlist. No hierarchy remains.
Lava really is just some modules that help with writing netlist generators. What
happens under the hood is that we run the circuit description with symbolic
inputs, producing an internal representation of the netlist. Then, we walk over
this to print VHDL. Later, we will instead print the netlist in CNF (for input
to a SAT-solver) or in SMV input format (for input to a model checker).

Looking at this VHDL code, you can see that it is odd, in that it passes the
clock to every combinational gate! If you don’t feel like doing this, you could
use the module VhdlNew and the accompanying gate definitions available in the
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-- Generated by Lava 2000
use work.all;

entity
fullAdd
is
port
-- clock
( clk : in bit

-- inputs

; carryIn : in bit
; a @ in bit

; b : in bit

—-- outputs
; sum : out bit
; carryOut : out bit
);
end entity fullAdd;

architecture
structural

of
fullAdd

is
signal wl : bit;
signal w2 : bit;
signal w3 : bit;
signal w4 : bit;
signal wb : bit;
signal w6 : bit;
signal w7 : bit;
signal w8 : bit;

begin

c_w2 : entity id port map (clk, carryln, w2);
c_wé : entity id port map (clk, a, wéd);

c_wb : entity id port map (clk, b, wb);

c_w3 : entity xor2 port map (clk, w4, wb, w3);

c_wl : entity xor2 port map (clk, w2, w3, wl);

c_w7 : entity and2 port map (clk, w2, w3, w7);

c_w8 : entity and2 port map (clk, w4, wb, w8);

c_ub : entity xor2 port map (clk, w7, w8, w6);

-- naming outputs

c_sum : entity id port map (clk, wl, sum);

c_carryOut : entity id port map (clk, w6, carryOut);
end structural;

Figure 2.3: The VHDL code for the full adder in fullAdd.vhd.
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file gates.vhd in directory Lava2000/Vhdl. Now, each of the VHDL generation
functions has a clocked and unclocked version (writeVHd1C1k, writeVhd1NoClk
etc.). You should import the module Vhd1New if you want to use these functions.
(It has been assumed that your project directory is called work.) The full adder
is a purely combinational circuit, so it makes sense to produce a circuit without
a clock. (We will return to clocks, D flip-flops etc. in a later chapter.) The
following example

testl = writeVhdlInputOutputNoClk "fullAddNew" fullAdd
(var "cin", (var "a", var "b")) (var "sum", var '"cout")

produces the VHDL code in Figure 2.4

2.5 Exercises

2.1 Define the circuits swap and copy. Swap gets a pair of inputs, and outputs
them in the swapped order. Copy gets one input and outputs it twice, as
a pair. Here is how they should behave:

Main> simulateSeq swap [(low, high), (low, low), (high, low)]
[(high, low), (low, low), (low, high)]

Main> simulateSeq copy [low, high]

[(low, low), (high, high)]

2.2 Define a two-bit sorter. It takes as input a pair of bits, and outputs the
same bits, but the lowest one on the left hand side, and the highest one
on the right hand side.

2.3 Define a circuit with no inputs, and one output, which is always high.
Hint: input consisting of no wires is written as ().

2.4 Define and simulate a multiplezer in Lava. A multiplexer circuit has as
an input a pair of a signal and a pair (x, y). The output is equal to x if
the signal is low, and to y if the signal is high.

2.5 Use three full adders to make a three bit binary adder. Simulate your
design and generate VHDL code.

2.6 Suppose you are designing a digital watch. It might come in handy to
have a circuit that takes a four-bit binary number and displays it as a
digital digit, using a seven segment display. Your circuit might have the
following interface (see figure 2.5):

digitalDisplay (one, two, four, eight) =

(a, b, c, d, e, £, g)
where ...

12



library ieee;
use ieee.std_logic_1164.all;

entity
fullAddNew
is
port
(

cin : in std_logic
; a : in std_logic
; b i in std_logic

; sum : out std_logic
; cout : out std_logic
);

end fullAddNew;

architecture
structural

of
fullAddNew

is
signal wl : std_logic;
signal w2 : std_logic;
signal w3 : std_logic;
signal w4 : std_logic;
signal wb : std_logic;
signal w6 : std_logic;
signal w7 : std_logic;
signal w8 : std_logic;

begin

c_w2 : entity work.wire port map (cin, w2);
c_wé : entity work.wire port map (a, w4);

c_wb : entity work.wire port map (b, w5);

c_w3 : entity work.xorG port map (w4, wb, w3);
c_wl : entity work.xorG port map (w2, w3, wl);
c_w7 : entity work.andG port map (w2, w3, w7);
c_w8 : entity work.andG port map (w4, wb, w8);
c_wb : entity work.xorG port map (w7, w8, w6);
c_sum : entity work.wire port map (wl, sum);
c_cout : entity work.wire port map (w6, cout);

end structural;

Figure 2.4: The VHDL code produced by test1 for the full adder.

13



d

Figure 2.5: Digital display.

Hint: start by making a table with 10 entries (0 .. 9) where you can see
what parts of the display should light up for what number.
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Chapter 3

Bigger Circuits

In this chapter we describe how to make more complicated circuits using recur-
sion and connection patterns. We will also see how we use numbers in Lava.

3.1 Recursion over Lists

A bit adder takes a pair of inputs. The first part is a carry bit, the second part
is a binary number, represented as a list of bits, least significant bit first. The
bit adder will add the bit to the binary number, resulting in a binary number
and a carry out.

We define a bit adder bitAdder in Lava by recursion over the list of bits. There
are two cases. Either the list is empty, denoted as [], and there is nothing to
add. Or the list has at least one element a, and we can split the list up in two
parts, a, the least significant bit, and as, the remaining bits, written a:as. In
this case, we will use a half adder to add a and the carry, and recursively add
the resulting carry to the rest of the binary number.

bitAdder (carryIn, [1) = ([], carryIn)

bitAdder (carrylIn, a:as) (sum:sums, carryOut)
where
(sum, carry) = halfAdd (carryIn, a)

(sums, carryOut) = bitAdder (carry, as)

A more complicated circuit is the circuit adder that takes a carry and a pair of
binary numbers, and adds them up. This is called a binary adder. The recursive
structure is almost the same, but we are doing simultaneous recursion over both
binary numbers.

adder (carryIn, ([1, [1)) = ([1, carryIn)

15



adder (carryIn, (a:as, b:bs)) = (sum:sums, carryOut)
where

(sum, carry) fullAdd (carryIn, (a, b))

adder (carry, (as, bs))

(sums, carryOut)

[Note: This adder is actually predefined in the module Arithmetic.

3.1.1 Generating VHDL for a binary adder

To generate a VHDL netlist for the adder that we have just defined, we need
to specify the size of the circuit, that we need to fix the lengths of its input
lists. This is because we have written a generic circuit description using pattern
matching over lists, but a netlist must have a fixed size. For example, to fix the
lengths of the two binary numbers to be added to 4, we write

test2 = writeVhdlInputOutputNoClk "adder" adder
(var "cin", (varList 4 "a", varList 4 "b"))
(varList 4 "sum", var "cout")

Typing test2 at the Lava prompt then produces the VHDL file shown in Figure
3.1. It is also possible to parameterise the definition with the adder size:

test3 n = writeVhdlInputOutputNoClk "adder" adder
(var "cin", (varList n "a", varList n "b"))

(varList n "sum", var "cout")

making it very easy to produce large netlists.

3.2 Connection Patterns

Looking at the two circuit definitions in the previous section, bitAdder and
adder, we can see that they have a lot in common. Even though the gates that
they use are different, their structure is very similar.

In Lava, we can capture these common structures in connection patterns. Con-
nection patterns are higher-order functions that build circuits from other (smaller)
circuits.

A very common connection pattern is the serial composition serial of two
circuits (see figure 3.2). It is a circuit parametrized by two circuits circl and
circ2. This means that serial circl circ2is a circuit, which feeds its input
a to circl, connects the output b of it to the input of circ2, and results in
that output c.

16



library ieee;
use ieee.std_logic_1164.all;

entity
adder
is
port
(

cin : in std_logic
; a_0 : in std_logic
a_l : in std_logic
a_2 : in std_logic
a_3 : in std_logic
; b_0 : in std_logic
b_1 : in std_logic
b_2 in std_logic
; b_3 : in std_logic

; sum_0 : out std_logic
; sum_1 : out std_logic
; sum_2 : out std_logic
; sum_3 : out std_logic
; cout : out std_logic
);

end adder;

architecture
structural

of
adder

is
signal wl : std_logic;
signal w2 : std_logic;
signal w3 : std_logic;
signal w4 : std_logic;
signal wb : std_logic;
signal w6 : std_logic;
signal w7 : std_logic;
signal w8 : std_logic;
signal w9 : std_logic;
signal w10 : std_logic;
signal wil : std_logic;

signal w28 : std_logic;
signal w29 : std_logic;

begin

c_w2 : entity work.wire port map (cin, w2);

c_wé : entity work.wire port map (a_0, w4);

c_w29 : entity work.andG port map (w21, w24, w29);
c_w27 : entity work.xorG port map (w28, w29, w27);
c_sum_0 : entity work.wire port map (wl, sum_0);
c_sum_1 : entity work.wire port map (w6, sum_1);
c_sum_2 : entity work.wire port map (w13, sum_2);
c_sum_3 : entity work.wire port maj w20, sum_3);
c_cout : entity work.wire port map (w27, cout);

end structural;

Figure 3.1: The VHDL code produced for a 4-bit adder (with parts omitted for
brevity).



a circl circ2——-c

Figure 3.2: Serial composition of circl and circ2.

all az a(r]-l) an
carryln F F F F |——= carryOut
b1 b2 bn-1) bn

Figure 3.3: The pattern row F', connecting n instances of F'.

serial circl circ2 a = c

where
b = circl a
c = circ2 b

More interesting connection patterns become possible when we consider recur-
sive circuit structures. For example, instead of the half adder circuit in the
addBit definition, we can plug in any other circuit. The result consists of a row
of smaller circuits (see figure 3.3).

Here is how we define the row connection pattern.

row circ (carryIn, [1) = ([], carryln)

row circ (carrylIn, a:as) (b:bs, carryOut)
where
(b, carry) = circ (carrylIm, a)

(bs, carryOut) = row circ (carry, as)

Once we have made this definition, we do not need to use recursion anymore to
define circuits of this specific pattern. Note that the definition of row assumes
that the component, circ, has a pair as input and produces a pair as output.
This was why we chose the type of fullAdd also to be of this form. Also, if the
components are to fit together properly into a linear array, it is necessary that
it be possible to connect the second output of one component to the first input
of the next. However, the types are not constrained any further than this. Note
also that row itself also produces a “pair-to-pair” circuit, as does the related
connection pattern column (see exercises 3.9 and 3.10).

Here are alternative definitions of bitAdder and adder:

bitAdder’ (carry, inps) = row halfAdd (carry, inps)

18



adder’ (carry, inps) = row fullAdd (carry, inps)

It turns out that one can get quite far with surprisingly few connection pat-
terns. The module Lava2000/Modules/Patterns.hs contains a few useful pat-
terns (including row). Using these patterns can lead to very concise circuit
descriptions that are still easy to read for those familiar with the patterns. It
is also convenient to mix the “named wire” style, which we saw in the recursive
definitions earlier, with the use of connection patterns.

Even shorter definitions of the same circuits are:

bitAdder’
adder’

row halfAdd
row fullAdd

Note that the type of adder’ is slightly different from adder, see exercise 3.3.

3.3 Arithmetic

In Lava, we can not only deal with low-level wire types like bits, and gates like
and?2 and xor2, but also with more abstract wire types and gates. One of these
types is integers (and indeed the lowest level wires in our circuits carry either
bits or integers).

On these integers, we have operations corresponding to abstract gates over in-
tegers. A list of these gates can be found in appendix A.

A simple circuit using these arithmetic gates is called numBreak. It takes a
number as input, and has a pair of a bit and a number as output. The bit in
the pair corresponds to the value of the first binary digit of the number; the
resulting number is the input number divided by 2.

numBreak num = (bit, num’)
where

digit = imod (num, 2)

bit int2bit digit

num’ idiv (num, 2)

The circuit 12b converts a number into a bit, by transforming a 0 into low, and
any other number into high.

We can use this arithmetical circuit to build a circuit that converts a number
into a binary number, that is, a list of bits. The circuit takes a parameter,
corresponding to the size of the list it has to produce, and has as input the
number that needs to be converted.

The converter int2bin converts an integer to a binary number. It has an extra
parameter, which specifies the number of bits the binary number should have.
Note again that parameters of circuits are different from inputs; int2bin is not
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really a circuit, but int2bin 16 is. We define this circuit by recursion over the
size of the binary number.

int2bin O num = []

int2bin n num = (bit:bits)
where
(bit,num’) = numBreak num
bits = int2bin (n-1) num’

Here, the actual circuit input is num, which is the kind of integer that flows in a
Lava circuit, and so has type Signal Int. Other arithmetic gates include plus,
times, etc.

Here are some example simulations of these circuits:

Main> simulate numBreak 7
(high,3)

Main> simulate (int2bin 3) 7
[high, high, high]

Main> simulate plus (3,4)
7

At present, VHDL netlist generation supports only bit level operations. It
will give an error if you try to generate VHDL for a circuit that operates on
integers. However, the integers can still be useful! For example, you can use
them in testing your arithmetic circuits. Let us wrap our binary adder up in
suitable conversions:

wrapAdd n (a,b) = out
where
as = int2bin n a
bs = int2bin n b
(ss,c) = adder (low, (as,bs))
out = bin2int (ss ++ [c])

We supply it with two n-bit inputs, which we produce from the integer inputs
a and b. For the output, we stick the carry onto the end of the list of sum
bits, since that list is least significant bit first. This is done by forming the
singleton list [c] and appending that list to the end of the list ss. (++ is the
Haskell operator that appends two lists.) Having made a single binary number,
we convert the result back into an integer. We would then expect the resulting
circuit to behave rather like plus, but with a limit on the size of the inputs that
it can deal with. Note that we must fix the size of the parameter n in order to
get a circuit that can be simulated.
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Main> simulate (wrapAdd 4) (3,5)

8

Perhaps you can figure out why we get

Main> simulate (wrapddd 2) (3,5)

4

3.4

3.1

3.2

3.3

34
3.5

3.6

3.7

3.8

Exercises

Define a bit subtractor, called bitSubber, which takes a bit and a binary
number as input, and subtracts the bit from the binary number.

Define a binary adder, called adder2, which does not take in a carry bit,
and throws away the resulting carry.

What is the difference between adder and adder’? Hint: look at the
types of the inputs.

Define a circuit bin2int, which converts a bit vector into an integer.

Define the circuit zipp, which takes a pair of list as inputs and produces
a list of pairs, one by one grouped together.

Main> simulate zipp ([low,high,low], [high,high, Low])
[(low,high), (high,high), (low,low)]

Also define the circuit unzipp, which is the inverse of zipp.

Define the circuit pair, which takes a list as input and produces a list of
pairs, with the neighbours grouped together.

Main> stmulate pair ([low,high,low,high,high, Low])
[(low,high), (low,high), (high,low)]

Also define the circuit unpair, which is the inverse of pair.

Define a connection pattern called par which turns two circuits, each
taking in one input and having one output, into one circuit taking in a
pair of inputs and having a pair of outputs.

Define, using recursion, a binary multiplier. What is the recursive struc-
ture?
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3.9

3.10

3.11

3.12

3.13

3.14

3.15

Looking at the definition of row, define a connection pattern called column
which carries the right part of the input and the left part of the output
through.

(*) Can you define column in terms of row?

Define a connection pattern called grid, which puts a number of copies
of circuits in a matrix. The left parts of the inputs are carried through
from left to right, and the right parts of the inputs and outputs are carried
through from top to bottom.

Hint: think of a grid as a row of columns (or a column of rows).

Can you think of a useful circuit that makes use of the grid connection
pattern?

Looking at the recursive definition of an adder, define a simple subtractor.
It will only have to subtract smaller numbers from bigger numbers. Can
you use any of the connection patterns described in this chapter to make
a non-recursive description?

Define a swapper, a circuit that takes in two inputs: an activate signal
and a pair of signals, and the output is a pair of signals. If the activate
signal is high, the order of the input pair is swapped, otherwise is stays
the same.

swapper (swap, (a, b)) = (%, y)
where ...

Define a comparator, a circuit that takes in two binary numbers of equal
length and tells you if the left one is less than or equal than the right one.

Implement a binary sorter. It takes as an input two binary numbers of
equal length, and outputs them in the correct order.
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Chapter 4

Verification

In this chapter we describe how we can define properties of circuits, and how
we can formally verify these properties using a SAT-solver or model checker.

4.1 Simple Properties

The main kind of properties of circuits we deal with in Lava are so-called safety
properties. These are properties which can be defined in such a way that they
state that some condition is always true (or, equivalently, never false).

Here is an example; a property that checks that the outputs of a half adder are
never both true.

prop_HalfAddOutputNeverBothTrue (a, b) = ok
where
(sum, carry) = halfAdd (a, b)
ok nand2 (sum, carry)

Note that this property looks pretty much like a normal circuit definition, and
in fact it is.

The actual verification question is: does this property circuit always yield true,
no matter what the input is? To answer the question, we use the Lava operation
satzoo, which is a call to a satisfiability solver (a propositional theorem prover).
To get access to this function, import the module Satzoo.

Main> satzoo prop_HalfAddOutputNeverBothITrue
Satzoo:
real Om0.005s
user Om0.000s
sys Om0.000s
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(t=)
Valid.

This process works in the following way. Just as we can generate VHDL from
a circuit description, we can also generate a logical formula representing the
circuit. This logical formula is then given to an external theorem prover which
will prove (or disprove) the validity of the formula. The result is then taken
back into Lava.

Here is another example; we formulate that a full adder does not care about the
order of the two one-bit arguments that are not the carry-in, but will always
produce the same result. This property is in general called commutativity.

prop_FullAddCommutative (c, (a, b)) = ok

where
outl = fullAdd (c, (a, b))
out2 = fullAdd (c, (b, a))
ok = outl <==> out2

Note that, since we are not interested in the exact shape of the output of the
two full adders, we can just give a name to the whole output, in this case out1
and out2. Another thing to notice is that we use the general equality <==>. We
can also use the circuit equal for that.

Main> satzoo prop_FullAddCommutative
Satzoo:

real Om0O.046s

user Om0.000s

sys Om0.002s

(t=)

Valid.

4.2 Quantification

The commutativity property is not only true for full adders, but also in general
for binary adders. Here is how we state that property:

prop_AdderCommutative (as, bs) = ok

where
outl = adder2 (as, bs)
out2 = adder2 (bs, as)
ok = outl <==> out2

Note that we use the adder adder2 we defined in exercise 3.2 (the answer is on
page 86).
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The problem is that this property holds for all circuit sizes, but we can only
verify it for specific sizes! This is because it is very hard to verify properties
automatically for all sizes.

So, instead of verifying it for all sizes, we will pick a specific size and verify
the property for those. Thus, we define a new property, which is explicit about
what size of input we want to verify the property.

prop_AdderCommutative_ForSize n =
forAll (list n) $ \as ->
forAll (list n) $ \bs —>
prop_AdderCommutative (as, bs)

This property means: “for all lists of size n called as, and for all lists of size
n called bs, the property that the adder is commutative holds for (as, bs) as
input”.

Now, we can verify the property using satzoo. We can of course do this for
more than one size.

Main> satzoo (prop_AdderCommutative_ForSize 2)
Satzoo:

real Om0.026s

user Om0.001s

sys Om0.001s

(t=)

Valid.

Main> satzoo (prop_AdderCommutative_ForSize 32)
Satzoo:

real Om0.375s

user Om0.089s

sys Om0.002s

(t=)

Valid.

What actually happens behind the scences when you do verifications like these is
that a file called circuit.cnf in the CNF (= conjunctive normal form) format
read by Satzoo is produced in the directory Verify. You should do a small
verification and then go into the directory Verify and look at the resulting file
circuit.cnf. In the same directory, you will find the file circuit.cnf.out that
shows what the satisfiability solver output when given circuit.cnf. (Note that
the SAT-solver actually checks that the negation of the formula is unsatisfiable,
leading to the Valid answer inside Lava.)

The expression (prop-AdderCommutative ForSize 32) means the function
prop-AdderCommutative ForSize applied to the parameter 32. The result of
this application is the circuit (of fixed size) that we want to verify with satzoo.
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Leaving out the brackets instead means passing two different (and wrongly
typed) arguments to satzoo. At this, the Haskell type checker complains:

Main> satzoo prop_AdderCommutative_ForSize 2
ERROR - Type error in application

*x%* Expression : satzoo prop_AdderCommutative_ForSize 2
*xx Term : satzoo
*x*x Type : d => I0 ProofResult

*¥*x*% Does not match : a -> b -> ¢

4.3 General Properties

General properties are properties that are parametrized by one or more circuits.
They can be defined just like connection patterns. Here is a general property
that poses the question if the two given circuits are equivalent.

prop_Equivalent circl circ2 a = ok

where
outl = circl a
out2 = circ2 a
ok = outl <==> out2

You will likely use this kind of equivalence checking often. As an example,
we can check that our own full adder (the one defined in the Getting Started
chapter) is the same as the one built into Lava (in the Arithmetic module). To
do this, you should add import Arithmetic to import that module. Now, the
built-in full adder is also called fullAdd, so we need to distinguish it from ours
by including the module name:

Main> satzoo (prop_Equivalent (Arithmetic.fullddd) fullAddd)
Satzoo:

real Om0.005s

user Om0.001s

sys O0m0.002s

(t=)

Valid.

The following property checks if a given circuit is commutative.

prop_Commutative circ (as, bs) = ok
where
outl = circ (as, bs)
out2 = circ (bs, as)
ok outl <==> out2

Of course, the circuits that one uses to instantiate these properties have to be
of the right shape (type).
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4.3.1 Using SMV

The other tool that you will be using (as a Lava backend) to do verification
is Cadence SMV [4]. This a model checker, and so makes most sense when
verifying sequential circuits (circuits with state holding elements). However,
even for combinational circuits, SMV can be used. For example, to verify that
the two full adders are equivalent in SMV, we write

Main> smv (prop_Equivalent (Arithmetic.fullAdd) fullAdd)
Smv: ... (t=0.00system)
Valid.

Now, the input file for SMV is Verify/circuit.smv.
-- Generated by Lava2000

MODULE main

VAR i0O : boolean;
VAR il : boolean;
VAR i2 : boolean;
DEFINE wb := i0;
DEFINE w7 := il;
DEFINE w8 := i2;

DEFINE w6 := !'(w7 <-> w8);
DEFINE w4 := !'(wb <-> w6);
DEFINE w10 := !'(w7 <-> w8);
DEFINE w9 := !'(wb <-> w10);
DEFINE w3 := !'(w4 <-> w9);
DEFINE w2 := !'(w3);

DEFINE w15 := w7 & w8;
DEFINE w16 := wb & w6;
DEFINE w14 := !'(wlb <-> wl6);
DEFINE w18 := w7 & w8;
DEFINE w19 := wb & wl0;

DEFINE w17 := !'(w18 <-> wl9);
DEFINE w13 := !'(wl14 <-> wlT7);
DEFINE w12 := !'(w13);

DEFINE w20 := 1;

DEFINE will := w12 & w20;
DEFINE wl := w2 & wll;
SPEC AG wi

Here, we check the CTL formula AG w1, asking SMV to prove that the output
of the comparison of the two circuits is always true. (This works both for
combinational circuits (as here) and for sequential circuits, as we shall see later.)
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4.4 Exercises

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Take a look at the two bit sorter you defined in exercise 2.2. To verify
that it is correct, two properties need to be true:

— The left part of the output is smaller than the right part of the
output,

— The output of the circuit contains the same bits as the input (but
possibly in a different order).

State these two properties separately, and verify them using satzoo.

Some properties are so easy to verify that we can actually do it by simulat-
ing them for all inputs (using domain). There are a few of these properties
in this chapter. Verify them by testing them for all inputs. Can you think
of other such easy-to-verify properties?

Check that the various adders in the previous chapter are all commuta-
tive, for sizes up to 16 bits. What happens if you try to prove that the
subtractor is commutative?

Check that the subtractor you defined in the previous chapter is really a
subtractor. How do you formulate your property; what is the ” definition”
of subtraction? Make sure you do not mess up the sizes of the binary
numbers.

Define a general property that states that a given circuit is associative.
An operator o is associative, if for every z,y, z it holds that (zoy) oz =
x o (yoz). Are all the adders associative?

Verify that the carry-save adder you defined in the previous chapter is
equivalent to a binary adder. Be careful how you formulate your property,
since the inputs do not have the same shape.

Prove that, for an adder and subtractor of your choice, it holds that = +
(y —2) = (x+y) — z. What extra condition should hold for y and 2? How
do you express that?

(Haskell) How would you proceed if you want to verify a property for all
sizes between, say, 1 and n?
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Chapter 5

Sequential Circuits

In this chapter we describe how to deal with sequential circuits in Lava. Se-
quential circuits in Lava are synchronous circuits, which means that there is one
global clock affecting all delay components in the circuit.

5.1 The Delay Component

A new component in sequential circuits is the delay component. It is a cir-
cuit with one parameter (the initial output of the delay) and one input, which
becomes its output in the next clock cycle.

Here is an example of a simple circuit called edge, that checks if its input
has changed with respect to its previous input. It uses a delay component to
remember the previous input.

edge inp = change

where
inp’ = delay low inp
change = xor2 (inp, inp’)

We can simulate a sequential circuit by using the operation simulateSeq. It
needs a circuit and a list of inputs. The list of inputs is interpreted as the
different inputs at each clock tick.

Main> simulateSeq edge [high, low, low, highl]
[high, high, low, high]

Here is another sequential circuit, which is called toggle. It has an internal

state, which it outputs, and it takes one input. If the input is high, it changes
the state. If not, it stays the same.
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toggle change = out

where
out’ = delay low out
out = xor2 (change, out’)

As we can see, the definition of out’ is dependent on out, whose definition is
dependent on out’. Thus, there is a loop in the circuit. Loops are not allowed
in combinational circuits, since the meaning of such circuits is unclear. But in
sequential circuits, they are essential to implement any interesting behavior.

Simulating toggle gives:

Main> simulateSeq toggle [high, low, low, high]
[high, high, high, low]

5.2 Multiple Delays

We have seen how we can delay a signal one time instant, so that we can refer to
the signal’s previous value. Sometimes, we want to delay a signal multiple time
instances. We can do this by defining a parametrized circuit, called delayN. It
has two parameters, n, the number of delays to use, and init, the initial values
of these delays.

We use recursion over n to define this circuit.

delayN O init inp inp

delayN n init inp = out

where

out delay init rest

delayN (n-1) init inp

rest

A useful sequential circuit that we can implement using delayN, is called puls.
It has no inputs, one output, and one parameter n. Its output is normally low,
except on the n-th, 2n-th, 3n-th, ... clock tick, where it outputs high.

We implement the circuit by creating n—1 delay components in a row, initialized
by low, ended with one delay component initialized by high.

puls n () = out

where
out = delayN (n-1) low last
last = delay high out

Note that we need to use a loop back here. This implementation is not optimal,
in the sense that it uses too many delay components; see exercise 5.6.

Simulating puls 3 gives:
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Main> simulateSeq (puls 3) [, (), (O, O, O, O, O
[low, low, high, low, low, high, low]

5.3 Counters

An n-bit counter is a circuit that outputs an n-bit binary number at every clock
tick, starting with 0, and increasing it by 1 every clock tick. We implement this
by keeping an internal state, which is a binary number. The circuit takes one
parameter, which indicates the number of bits to use, and has no inputs.

counter n () = number’
where
number’ = delay (zeroList n) number
(number, carryQut) bitAdder (high, number’)

We use the function zeroList, which creates a list of n zeros, denoting the
initial value. Note that the delay component not only works for bits, but also
for example for pairs of bits and lists (as in this case).

Simulating counter gives:

Main> simulateSeq (counter 3) [(), (), ()]
[[low, low, low], [high, low, low], [low, high, lowl]

A variant on this circuit is the up-counter, which takes an input, which indicates
if the number should increase or not. In this case, we want the desired increase
to take effect immediately, so we output the number before we delay it.

counterUp n up = number
where
number’ = delay (zeroList n) number
(number, carryOut) = bitAdder (up, number’)

Simulating counterUp gives:

Main> simulateSeq (counterUp 3) [high, low, highl]
[[high, low, low], [high, low, low], [low, high, low]]

5.4 Sequentialization

In chapter 3, we have seen a combinational binary adder. As an input, it takes
two n-bit binary numbers, and adds them up. For large n, this circuit can get
quite large, which means it takes more circuit area and consumes more power,
and will need a lower clock frequency to work properly.
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We can make use of the regularity in the circuit to make a small version of
the circuit that however needs several clock cycles to compute the result. If we
apply this technique on the binary adder, we obtain a sequential adder. It takes
one new digit of both binary numbers at each clock cycle. This is sometimes
called bit serial.

We can implement this by storing the carry as an internal state, so that the
current carry-in of the circuit is the previous carry-out.

adderSeq (a,b) = sum
where
carryln = delay low carryOut
(sum,carryQut) = fullAdd (carryIn, (a,b))

Simulating adderSeq gives:

Main> simulateSeq adderSeq [(high,low), (high,high), (low,high)]
[high, low, low]

Because we find that many sequential circuits have this structure, we define a
sequential connection pattern, called rowSeq which builds a row of circuits, just
like row, but interprets the row over time.

rowSeq circ inp = out
where
carryln delay zero carryOut
(out, carryOut) = circ (carryIn, inp)

Worth noting is that we make use of the generic delay and zero component
here. The structure is exactly the same as in the sequential adder.

Recalling the definition of a binary adder in terms of row, we can repeat it and
implement a sequential adder in terms of rowSeq:

adder’ row fullAdd -- combinational
adderSeq’ = rowSeq fullAdd -- sequential

In this way, using a connection pattern to define a combinational circuit helps
us to define the sequential version of the circuit.

5.5 Variations on rowSeq

The sequential row connection pattern is sometimes useful, but certainly not
always. If we use it to implement a sequential adder, as we did, we can also use
it to add up “infinitely big” binary numbers. The addition never ends, so we
can never start over adding two new numbers.
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Therefore, it is handy to have a connection pattern, called rowSeqReset, which
takes one extra input reset. When reset is high, the internal carry state will
be reset to zero.

rowSeqReset circ (reset,inp) = out
where

carryln delay zero carry
carry = mux (reset, (carryOut, zero))
(out, carryOut) = circ (carryIn, inp)

We use the standard multiplexer component mux here, which chooses the left or
right component of an input pair, depending on if the first incoming signal is
low or high, respectively.

Now we can define a resettable sequential adder adderSeqReset as follows:
adderSeqReset = rowSeqReset fullAdd

Very often, it is the case that the internal carry state has to be reset periodi-
cally, that is, on every n-th, 2n-th, ... clock tick. Therefore, we create a third
sequential row variation, which takes a parameter n, which indicates the reset
period.

rowSegPeriod n circ inp = out
where
reset = puls n ()
rowSeqReset circ (reset, inp)

out

Now we can define a sequential adder adderSeqPeriod adding n-bit numbers
as follows:

adderSeqPeriod n = rowSegPeriod n fullAdd

5.6 Exercises

5.1 Define a circuit evenSoFar, which takes one input, and has one output.
The output is high if and only if the number of high inputs has been even
so far.

Simulate your circuit in Lava and generate VHDL.

5.2 Implement a £1ipFlop circuit, which takes two inputs (set, reset), and
has one output. The circuit keeps an internal state, which is set to high
when set is high, and set to low when reset is high. The internal state
is also the output. You may decide yourself what to do when both inputs
are high.
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3.3

5.4

9.5

5.6

5.7

5.8

5.9

Implement a clocked delay component delayClk. It has one parameter,
the initial state, and it has an extra input c1k. Only when clk is high, the
output changes to the state and the state changes to the current input.

Define a circuit called always, which has one input and one output. The
output is high as long as the input stays high. If the input drops to low,
then the output stays low forever.

Define three different circuits that output high only on every 6th clock
tick (so it happens on the 6th, 12th, 18th, ... etc.). Use 6 delay elements
in the first circuit, 5 delay elements in the second, and 3 in the last.

Is it possible to define this circuit with less than 3 bit-level delay elements?

Define a puls generator puls2 which has a parameter k, and generates a
puls every 2¥-th clock tick. Your design should use a minimal number of
delay components (how many is that?).

Define an up-down counter. The counter gets a pair of inputs. If the left
input is high, it counts up. Otherwise, if the right input is high, it counts
down. Otherwise, the state stays the same.

Define a 0-to-9 counter. The counter has no inputs, and a 4-bit number
as output. Initially, the output starts at 0, and increments at every clock
tick, but after the output 9, it returns to 0.

Connect the display from exercise 2.6 to your counter.

Define a synchronizer, which has two inputs gol and go2, and one output
go. The output only becomes true when both gol and go2 have been high
in the past or are high now since the last go. .

Here is an example simulation:

Main> simulateSeq synchronize
[(low,high), (high,low), (high,high),
(high,low), (Low,low), (Low,high)]
[low, high, high, low, low, highl]

Define a circuit called outputList, which has one parameter, a list of
values, no inputs, and one output. The circuit outputs the elements in
the parameter list one by one at every clock tick repeatedly. Here is an
example simulation:

Main> simulateSeq (outputList [low, low, high])

[(O,0,0,0,0,01
[low, low, high, low, low, high]
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Chapter 6

Sequential Verification

In this chapter we describe how we can verify properties of sequential circuits.
We restrict ourselves to sequential safety properties.

6.1 Sequential Safety Properties

Let us take a look at how to define properties about sequential circuits. In
principle, we can use the same techniques as we did with combinational circuits.
Let us take a look at some examples.

Here is how we can compare the two sequential adders from section 5.4.

prop_SameAdderSeq inp = ok

where
outl = adderSeq inp
out2 = adderSeq’ inp
ok = outl <==> out2

Here is another example; the composition of edge and toggle from section 5.1
gives the identity circuit. This means that the input is the same as the output.

prop_ToggleEdgeldentity inp = ok

where
mid = toggle inp
out = edge mid
ok = out <==> inp

The properties we can describe in this way are called sequential safety properties.
Recall that safety properties are properties which can be described as a circuit
with one output, which should always be true (or never be false) for the property
to hold.
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Examples of properties which are not safety properties are for example liveness
properties. These can assert that a certain condition must hold at some point
in the future, for example.

6.2 Sequential Logic

Apart from the techniques we used to define combinational properties, there are
also special techniques we can apply to define sequential properties.

e When we want to refer to values of signals at different time instances, we
can use a delay to get access to previous values. But be careful about
what initial value you choose for this use of delay.

e When we want a certain property only to be true when a certain condition
holds, which does not necessarily hold all the time, we can use logical
implication. Implication is implemented by the Lava gate impl, and also
by the binary operator ==>,

Here is an example. Suppose we want to define the following property about
the toggle circuit: ”if the input is high, then the current output is different
from the previous output”.

The way we define this in Lava is:

prop_ToggleTogglesWhenHigh inp = ok

where
out = toggle inp
out’ = delay low out
change = xor2 (out, out’)
ok = inp ==> change

First, we compute the output out from toggle. Then, we use a delay component
to get access to the previous output out’. We define the situation change in
which these outputs differ. And then we say: ”if the input is high, then the
outputs differ”.

6.3 Verification

After defining these properties, we would like to formally verify them. Verifi-
cation of a sequential property means that we have to prove that the property
holds at all times. In Lava, we do this by induction over time. It works as
follows.
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Firstly, we have to do the base case: proving that the property holds for the first
time instance. Since looking at just one time instance does not involve time at
all, we can use the same techniques as we did in the combinational case.

Then, we do the inductive step. We want to prove that if the property holds at
time t, it also holds at time ¢t + 1. We do this as follows: we create an arbitrary
time instance by filling the states of the circuits with fresh variables. Then, we
run the circuit once on that state, obtaining an output and new state values.
Then we assert that the output is true, and run the circuit on the new state
values. Finally, we need to prove that the new output is true.

After proving the base case and the inductive step, we have proved our property.
Here is what happens in Lava:

Main> wverify prop_ToggleEdgeldentity
Proving: base 1 ... Valid.
Proving: step 1 ... Valid.

Result: Valid.

Lava> wverify prop_ToggleTogglesiWhenHigh
Proving: base 1 ... Valid.
Proving: step 1 ... Valid.

Result: Valid.

We give a more detailed explanation of induction in the next section.

6.4 Induction

To perform induction on a Lava property, we convert it to a logical formula
relating input ‘inp’ and old state variables ‘qq)q’ to output ‘ok’ and new state
variables ‘qnew’. Whenever we use a signal-level delay component in a circuit
or property, we introduce one state variable.

In this translation, we also introduce a special input, called ‘init’, which is true
only in the first time instance. So, after we have translated the property, we
have a logical formula of the following form:

T (init, inp, dold, Anew Ok)

This formula is usually called the transition relation.

A very simple way to prove that the output ‘ok’ is always true, would be to try
proving the following;:

T (init, inp, qoid, dnew, 0k) = ok (6.1)
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Unfortunately however, this method does not work very often, because even
when the property is always true in any run of the circuit, it might not be
true in every possible configuration of the state variables. This is why we use
induction.

First, we prove the base case, that is: ‘ok’ is true at the first time instance. In
this case, we know that the variable ‘init’ is true, so we prove:

T'(true,inp, gany, dnew, ok) = ok (6.2)

This is usually easy, since initially, we know the values of the state variables.

Then, we prove the induction step, that is: if ‘ok’ is true at time ¢, it is also true
at time ¢t + 1. So, we are looking at two time instances of the property.

T (inity, inpy, d1,qz2, true)
T(false7 inp27 qd2,93, Ok2) = 0k2 (63)

Note how we connect the different time instances 1 and 2 by reuse of the state
variables ‘q.’ as new states in the first time instance and as old states in the
second time instance. Also note that we use false for the value of ‘init’ in the
second time instance, because we know it is not the initial time instance. And
we use true for the value of ok in the first time, since we may assume that the
induction hypothesis holds.

If we have proven the two formulas 6.2 and 6.3, then we know that ‘ok’ must be
true at all time instances. This is the basic notion of induction.

6.5 Induction With Depth

Unfortunately, the method of induction mentioned in the previous section is not
complete. This means that there are properties which are true, which cannot
be proven by simple induction.

Here is an example: Consider the toggle circuit from section 5.1 and the puls
circuit from section 5.2. We might want to verify that these circuits do exactly
the opposite if toggle always has a high input, and puls has a period of 2.

prop_Toggle_vs_Puls () = ok

where
outl = toggle high
out2 = puls 2 ()
ok = inv (outl <==> out2)

This cannot be proven by normal induction, since the puls circuit has two delay
components in a row, so it is not enough to look at two time instances at a time.

So, instead, we will look at more time instances in the induction proof. We
introduce the concept of induction with depth k, which means that the base
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Figure 6.1: Base case for induction with depth k.

case proves that the first k steps are okay, and the step case may assume that a
sequence of k steps went okay, in order to prove that the k& + 1-th step is okay.

Here is the concrete formula for the base case (see also figure 6.1):

T(true,inp,;,qs1,qz,0k;)
T(false7 npy, q2, g3, OkZ) = Okla 0k2, . Okk (64)
T'(false, inpy, qx, Qk-+1, k)

Note that we use the same trick of reusing the state variables of consecutive
times to line up the time instances. Here is the concrete formula for the step
case (see also figure 6.2):

T (inity, inpy, d1,qz2, true)
T (false, inp,, g2, qs3, true)
= Okk+1 (65)
T(false7 inpk7 Ak, dk+1, true)
T'(false,inp;. 1, qk+1,qk+2,0Kk+1)

So, for any depth k, if we can prove the formulas 6.4 and 6.5, we have proved
that ‘ok’ holds at every time instance. Note that if we choose k = 1, then we
are back to normal induction again.

Here is what happens when we verify prop_Toggle_vs_Puls in Lava:

Main> wverify prop_Toggle_vs_Puls

Prover: base 1 ... Valid.
Prover: step 1 ... Falsifiable.
Prover: base 2 ... Valid.
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Figure 6.2: Inductive step for induction with depth k.

Prover: step 2 ... Valid.

Result: Valid.

So, the verifier realizes that induction depth 1 is not enough for the step to go
through, and increases the induction depth automatically. It will keep increasing
the depth until either the base case turns out to be false, or until it manages to
prove both the base case and the step case.

If we want to specify a specific depth to do the induction for, we can use the
operation verifyWith, which takes an extra list of verify options.

Main> verifyWith [Depth 2] prop_Toggle_vs_Puls
Prover: base 2 ... Valid.
Prover: step 2 ... Valid.

Result: Valid.

The operation verify is actually just a short-hand for verifyWith [Depth 1,

Increasing]. With the option Depth, one can specify the induction depth.
Increasing means that it will keep increasing the depth until it proves or

disproves the property.
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6.6 Induction With Restricted States

Unfortunately, even induction with depth is not a complete method. This means
that there exists properies which are always true, but for which there exists no
k such that the property can be proven by induction with depth k.

An example of such a property is to check if a periodic sequential adder of period
2 is equivalent to a resettable adder which we reset every second clock tick.

prop_AdderPeriod2 ab = ok

where
suml = adderSeqPeriod 2 ab
two = delay low (inv two) -- 010101...
sum2 = adderSeqReset (two, ab)
ok = suml <==> sum2

Verifying this property results in an infinite loop:

Main> wvertfy prop_AdderPeriod2

Prover: base 1 ... Valid.
Prover: step 1 ... Falsifiable.
Prover: base 2 ... Valid.
Prover: step 2 ... Falsifiable.

The problem is that there exist a lot of state variable configurations that never
occur when we run the circuit, but are logically possible. In some cases, these
so-called unreachable states mess up the induction proof. Even assuming that
the property we want to prove is true for a very large number £ of consecutive
running steps (like we do in the induction step) is not enough to ensure we are
in a reachable state. The reason for this is that we might be running around in
the unreachable states in circles for these k steps, so increasing k does not help.

Instead, we will strengthen the induction step by saying that all £ + 1 states we
visit in the formula must be distinct. In this way, we ensure that we are not
running around in circles.

The new formula for the inductive step becomes:

T (inity,inpy,qs, gz, true)
T(falsea inp27 q2,93, true)

T'(false, inpy,, qx, qr+1, true) e (00
T (false,inp; 1, qk+1,dk+2,OKry1)

qi # 92, 91 # 93, --+; Qk—1 # Ak+1, Ak 7 k1

For this method, proving formulas 6.4 and 6.6 for some k is enough to prove
the ‘ok’ holds at all time instances. Moreover, this is a complete method! This
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means that, if the property holds, there is always a k such that we can prove it
by induction with depth k£ with restricted states.

To use induction with restricted states in Lava, we can use the option RestrictStates:

Main> wvertfyWith [RestrictStates,Increasing] prop_AdderPeriod2

Proving: base 1 ... Valid.
Proving: step 1 ... Falsifiable.
Proving: base 5 ... Valid.
Proving: step 5 ... Valid.

Result: Valid.

We needed induction depth 5 for this property. Note that we used the option
Increasing also, otherwise the verification would have stopped at depth 1.

6.7 Exercises

6.1 Why is simulation not enough to do sequential verification?

6.2 Verify that the edge circuit and the circuit evenSoFar from exercise 5.1
always have opposite outputs if fed with the same inputs.

6.3 Verify that the three different implementations of a puls generator with
period 6 in exercise 5.5 are equivalent. What is the induction depth that
is needed?

6.4 Verify the obvious relationship between the puls circuit and the puls2
circuit from exercise 5.6, for different values of k. What is the induction
depth that is needed?

6.5 Verify that the up-part of the up-down counter you defined in exercie 5.7 is
equivalent to the up-counter from section 5.3. Do this for different values
of n.

6.6 Define and verify the following property: ”if the input to toggle is the
same twice in a row, then the current output is the same as the output
two steps ago”.

6.7 Consider the following general property: ”As long as A holds, then B
must hold”. How would you define such a property? Hint: use the always
circuit from 5.4.

6.8 Show that doing induction with depth 1 amounts to normal induction.

6.9 (*) Show that doing induction with depth k is sound, that is, if we have
proven the base case and the inductive step, then we have really proven
that the property always holds.
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6.10 (**) Show that doing induction with depth & and restricted states is sound.
You may use the fact that exercise 6.9 holds.

6.11 (**) Show that doing induction with depth k and restricted states is com-
plete.
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Chapter 7

Time Transformations

In this chapter, we will see some techniques with which we can compare circuits
that operate at different clock rates.

7.1 Timing Issues

So far, when we were comparing two circuits, we always assumed that they
consumed their inputs and produced their outputs at the same rate. Let us
take a look at an example where this is not the case: comparing a sequential
adder against a combinational adder.

The sequential adder (see figure 7.1) takes in a pair of bits every clock tick, and
outputs the sum, and remembers the carry for the next clock cycle. The carry
is reset every n-th clock tick. Here is how we defined it:

adderSeqPeriod n =
rowSeqPeriod n fullAdd

The combinational adder (see figure 7.2) takes in two n-bit binary numbers and
produces the sum as a n-bit binary number in one clock tick. Here is how we
define it:

adderCom abs = sum
where
(sum, carryQut) = row fullAdd (low, abs)

a__ADDER
b~ Seq sum

Figure 7.1: A sequential adder.
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Figure 7.3: The slowed down combinational adder.

For convenience, we abstract away from the carry.
There are two basic methods for comparing these two circuits.

The first method involves slowing down the combinational adder, so that it
takes more clock ticks to calculate the sum. So instead of taking n pairs of bits
at a time, it takes them in one-by-one, and when it has gotten all of them, it
outputs the sums one-by-one. The circuits now operate at the same rate, and
can be compared by conventional methods.

The second method involves speeding up the sequential adder, so that it com-
putes several results in one clock tick. So instead of taking in one pair of bits
at a time, it takes in n pairs of bits, and produces n sums in one clock cycle.

7.2 Slowing Down

The first technique we describe slows down the combinational circuit. So, in-
stead of computing everything in one clock tick, we force it to take n clock ticks
instead. We do this by transforming the circuit into a circuit that looks just like
the sequential version: it takes one input and produces one output at a time
(see figure 7.3).

Since the inputs come in one-by-one, we have to wait for n clock ticks until we
have the full input available for the circuit. This is done by the serial to parallel
converter (see figure 7.4). We can implement this component as follows:
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Figure 7.4: A serial to parallel converter.
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Figure 7.5: A parallel to serial converter.
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serialToParallel 1 inp = [inp]

serialToParallel n inp inp : rest

where
inp’ = delay zero inp
rest = serialToParallel (n-1) inp’

Then we have to take care of the outputs. At every clock tick, the combinational
circuit produces n outputs, but they only make sense on every n-th, 2n-th, ...
clock tick, because then we have the right input. Therefore, we need to add a
component on the outputs that spreads out the outputs of the important clock
ticks over the other clock ticks. This is done by the parallel to serial converter
(see figure 7.5). We can implement this component as follows:

parallelToSerial (load, [inp]) = out
where
out = mux (load, (low, inp))

parallelToSerial (load, inp:inps) = out
where
from = parallelToSerial (load, inps)
prev = delay low from
out mux (load, (prev, inp))

Then, we can put these components together in a new sequential adder:

adderSlowedDown n ab = sum

where
abs = serialToParallel n ab
sums = adderCom abs
load = puls n (O
sum = parallelToSerial (load, sums)

The load input to the parallel to serial converter is a puls with period n. Let
us take a look at how this sequential adder adds up binary numbers for n = 4.

clock 1 2 3 4 5 6 7 8 9
input ab1 ab2 ab3 ab4 ab’1 ab’2 ab’3 ab’4 ab” 1
output 0 0 0 S1 So S3 S4 s’ s’y

As we can see, the results s; are delayed by n — 1 clock ticks. This is of course
because the result is computed at the n-th, 2n-th, ... clock tick. So, when we
compare this with the original sequential adder, we have to slow the output of
that one down with n — 1 delay components. Here is the property:

prop_AdderSeqSlowedDown n ab = ok
where

47



dold

X——=| Rypl =Y

|

Unew

Figure 7.6: A combinational circuit with explicit states qqiq and qnew-

—

Xr— Fxpl [N

0 Fxpl %

X Fexpl = ¥n
}

D

]

Figure 7.7: A time transformed sequential circuit F'.

suml = adderSeqPeriod n ab
suml’ = delayN (n-1) low suml
sum2 = adderSlowedDown n ab
ok = suml’ <==> sum2

Unfortunately, this way of specifying the property introduces a lot of extra
logic, and moreover, extra state. This makes the verification of these kind of
properties very hard. In particular, the induction methods need an extremely
high induction depth. In the next section, we will see a simpler and more direct
method for specifying retiming properties.

7.3 Speeding Up

Another technique for retiming works as follows. Instead of slowing down the
combinational circuit, we speed up the sequential circuit. Unfortunately, this
cannot be done by adding retiming components around the circuit. Instead,
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we transform the circuit into another circuit. This is done by a built-in Lava
operation, called timeTransform.

The idea is that we make the state of the sequential circuit explicit by turning
a sequential circuit F' into a combinational circuit Feyp, that takes in the old
state as an extra input, and has the new state as an extra output (see figure
7.6).

The next step is to create a column of Fe,pj, where we thread the states through
as carry. The last step is to make the state implicit again by adding delay
components and a loop back (see figure 7.7).

All this is implemented by Lava’s primitive operation timeTransform. So, we
can make a new adder from the sequential adder, by using time transformation:

adderSpedUp abs = sums

where
sums = timeTransform (adderSeqPeriod n) abs
n = length abs

The function length computes the length of a list, so that we know what period
the sequential adder requires.

The property of comparing the two different adders now looks as follows:

prop_AdderSeqSpedUp abs = ok

where
suml = adderSpedUp abs
sum?2 = adderCom abs
ok = suml <==> sum?2

Because this is a property that has a list as an input, we need to be explicit
about the length of the list:

prop_AdderSeqSpedUp_ForSize n =
forAll (list n) $ \abs ->
prop_AdderSeqSpedUp abs

Verifying this by induction is easy, and needs induction depth 2 for any n.

7.4 Exercises

7.1 Consider the following circuit:
highLow () = [high, low]

Verify that the circuit toggle behaves twice as slow as this circuit if its
input is always high. Do this by slowing down and speeding up.
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7.2

7.3

74

7.5

What goes wrong when we try using the slowing down method for compar-
ing two sequential circuits that operate at different rate? Also see exercise
7.5.

Hint: what happens to the state of a circuit that is slowed down?

Does the speeding up method work when we use it for comparing two
sequential circuits that operate at different rate?

Design a property connection pattern that verifies two circuits that operate
at different rates equivalent. You may decide yourself what method to
choose.

Can you find a method to fix the problem in exercise 7.27

Hint: use clocked delays (see exercise 5.3).

50



Chapter 8

More connection patterns

In this chapter, we first review some standard connection patterns, and then
consider the problem of describing tree shaped circuits and butterfly circuits.
These are common circuit structures in digital signal processing.

8.1 Connection patterns revisited

In an earlier chapter, we saw the serial connection pattern, which connects two
circuits in series. It is convenient to have an infix version, so that we can write
f ->- g, instead of serial f g, see figure 8.1. Note that serial composition is
associative:

f->-(g->-h) === (f->g) ->h

Sometimes we want to compose a list of circuits. We call this compose.

compose [] inp = inp
compose (circ:circs) inp = out
where
X = circ inp
out = compose circs x

Note that we could have written this definition in a different style, using the
serial connection pattern.

composel [] inp = inp
composel (circ:circs) inp = out
where

out = (circ ->- composel circs) inp
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Figure 8.1: £ ->- g

We could go even further and drop the circuit inputs (inp) from each side of
the definitions. The identity circuit (which just returns its input) is written id.
This is a definite change of style to one in which the emphasis is on connection
patterns.

compose2 [] = id
compose2 (circ:circs) = circ ->- compose2 circs

All of these styles are equally good, and the choice is really just a matter of
taste. In fact it is quite convenient to be able to mix styles, sometimes choosing
one and sometimes the other.

Out of compose, we can easily make a connection pattern, called composeN, that
composes several copies of the same circuit in sequence.

composeN n circ = compose (replicate n circ)

Main> simulateSeq (composeN 5 inc) [0,2,4,6]
[5,7,9,11]

Here inc is the circuit that adds one to its integer input.

We also saw the par connection pattern: par £ g takes a pair of inputs, passing
the first to £ and the second to g, and combining the results into a pair. The
infix version of par f gis written £ -[- g.

A version of par that “does” f to the first half of a list and g to the second half
also turns out to be useful. We call this pattern parl. First, we define a helper
function, halveList, which divides a list in two.

halvelList inps = (left,right)
where
left take half inps
right = drop half inps
half = length inps ‘div‘ 2
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Figure 8.2: map g

Main> simulate halvelist [high, low,high, low]
([high,low], [high,low])

Then, we define the circuit append, which takes a pair of lists of length m
and n, and joins them together (or concatenates them), to give a list of length
m +n. This circuit is defined in terms of Haskell’s built-in infix list concatenate
operator (++).

append (a,b) = a ++ b
Lastly, we define parl:

parl circl circ2 =
halveList ->- (circl -|- circ2) ->- append

Main> simulate (parl reverse id) [1..16]
(s,7,6,5,4,3,2,1,9,10,11,12,13,14,15,16]

Sometimes, we want to perform an operation of each element of a list of signals
or bus. For this we use the connection pattern map, which you will have seen
if you have used a functional programming language. For example, map inv
inverts each of a list of bits.

Main> simulate (map inv) [high, low, high, low]
[low,high,low,high]

Buses need not contain only lists of bits. They can be more structured, so
that our circuit descriptions can match the logical structure of the circuit. For
example, the circuit map fullAdd makes perfect sense.

Main> simulate (map fullddd)

[(Low, (high,low)), (high, (high,high)), (Low, (high,high))]
[(high,low), (high,high), (low,high)]
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Figure 8.3: tri f

Figure 8.2 shows a map in the case where the input is a 4-list (of pairs or 2-lists).

Strangely enough, the connection pattern that places zero copies of a circuit
on the first signal in a bus, one copy on the next, two on the next, and so on,
is one that arises often in hardware design. It is a sort of mixture of map and
composeN. We call it tri for triangle. You should understand why when you
look at the diagram in figure 8.3. We leave the definition of tri as exercise 8.3.

An example of the use of triangle is

Main> simulate (tri inc) (replicate 10 0)
[0’1’2’3’4’5’6’7’8’9]

The connection patterns that we have seen in this section are all useful in many
different kinds of circuits. Now let us consider how to describe tree shaped
circuits.

8.2 Tree shaped circuits

Circuits in the shape of trees, like that shown in figure 8.4, can be used to sys-
tematically apply a function that combines data values together to a collection
of data. A binary tree circuit first combines each half of the input values, using
two smaller trees and then combines the two remaining results. One example
of such a circuit is an adder tree that adds up a list of numhers.

The outline of the recursive definition of a tree connection pattern is:

tree circ [inp] = ... inp ...
tree circ inps . tree circ ... tree circ ... circ ... inps

We call the parameter circ the component circuit. The first line in this outline
defines what should be done when we get down to the base case of the recursion.
The second line should use two copies of tree circ and combine their results
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Figure 8.4: A tree shaped circuit

using circ. Exactly how these definitions should look depends partly on what
the component circ looks like, and in particular on its type.

For example, if circ is a binary function taking a pair of inputs and returning
a single output, then it makes sense to make the following definition of a binary
tree connection pattern, binTree.

binTree circ [inp] = inp
binTree circ inps =
(halveList ->- (binTree circ -|- binTree circ) ->- circ) inps

This gives the behaviour that we expect: a binary tree of circ components gets
built.

An example use of a tree connection pattern is when we want to build a circuit
that adds up a lot of numbers. One way of doing this to make a so-called adder
tree. To do this, we need a binary adder that adds two n bit numbers, to give
an n + 1 bit number. This means that we must include the carry out in the
result. The resulting adder is therefore slightly different from those that we saw
earlier. We call it binAdder.

binAdder (as, bs) = cs ++ [carryOut]
where
(cs, carryQut) = adder (low, (as, bs))

And here is the definition of our adder tree addTree:
addTree = binTree binAdder

To test it, we wrap the circuit in converters from integer to binary and back.
wrapAddTree n =

map (int2bin n) ->- addTree ->- bin2int
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Main> simulate (wrapAddTree 8) [3,4,5,6,10,9,8,7]
52

Beware, this adder tree works only for input lists whose length is a power of
two. Exercise 8.5 asks you to define an adder tree that works for any size.

8.3 Describing Butterfly Circuits

Butterfly circuits are circuits with a particular recursive structure. Figures 8.6
and 8.7 show two such circuits and also indicate their recursive structures by
showing, by means of dotted boxes, where to find sub-circuits that themselves
have the same recursive structure. It turns out that these two circuits are in
fact equivalent: the same network of components can be recursively described
in two completely different ways. And indeed it turns out that there are many
more ways to describe the same network. We will study some of them.

Butterfly circuits are used for example to build routing networks from switches,
and in building efficient sorting circuits. Perhaps the best known butterfly-
like circuit is the standard Cooley-Tukey algorithm [5] for computing the Fast
Fourier Transform (FFT). We will not consider the FFT here. The twiddle-
factors complicate matters a bit. The circuit is not quite as uniform as those
that we consider. However, the interested reader is referred to [3], which shows
how to describe and compare various FFT circuits in an older version of Lava.
For more details about how the verification is actually done, see [2].

In this section, we first introduce two new connection patterns, and then show
that butterfly circuits can be made with just these two patterns and serial
composition.

The first of these patterns we call two. The circuit two circ contains two copies
of circ. The first of these operates on the first half of the input list, and the
second on the second half. Each copy of circ should have a list as output, and
the two resulting lists are appended. This pattern is easily defined in terms of
parl, which was introduced earlier in this chapter.

two circ = parl circ circ

Main> simulate (two reverse) [1..16]
(s,7,6,5,4,3,2,1,16,15,14,13,12,11,10,9]

Main> simulate (two (two reverse)) [1..16]
(4,3,2,1,8,7,6,5,12,11,10,9,16,15,14,13]

Related to two, we also introduce the pattern ilv, for interleave. Whereas two

f applies £ to the top and bottom halves of a list, i1v f applies f to the odd and
even elements. We define it in terms of the wiring pattern riffle, which performs
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the perfect shuffle on a list. Think of taking a pack of cards, halving it, and then
interleaving the two half packs. If you now unriffle the pack, you reverse the
process, returning the pack to its original condition. (This is somewhat more
difficult to accomplish with aplomb at the poker table.)

Main> simulate riffle [1..16]
[1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16]

Main> simulate (riffle ->- unriffle) [1..16]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

Main> simulate unriffle [1..16]
[1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16]

Note that unriffling the sequence from 1 to n divides into its odd and its even
elements. We use this fact to define ilv in terms of two.

ilv circ = unriffle ->- two circ ->- riffle

Main> simulate (ilv reverse) [1..16]
[15,16,13,14,11,12,9,10,7,8,5,6,3,4,1,2]

Main> simulate (ilv (ilv reverse)) [1..16]
[13,14,15,16,9,10,11,12,5,6,7,8,1,2,3,4]

Figure 8.5 shows ilv f and two (ilv g). We leave the definition of riffle
and unriffle as exercise 8.6.

We have seen from our examples that it makes sense to apply two and ilv

repeatedly. We will do this so often in the butterfly circuits, that it is useful to
define special functions.

twoN O circ = circ
twoN n circ = two (twoN (n-1) circ)
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Figure 8.6: bfly 3 g

ilvN O circ = circ
ilvN n circ ilv (i1lvN (n-1) circ)

Clearly, there are similarities between these two definitions. We might just as
well have defined a function that takes a connection pattern as input.

iter 0 comb circ = circ
iter n comb circ = comb (iter (n-1) comb circ)

Now, we can use iter n two f instead of twoN n f and iter n ilv f instead
of ilvN n f.

Now we are in a position to define a connection pattern for butterfly circuits,
that is circuits, like those shown in figures 8.6 and 8.7, that have a very partic-
ular recursive structure. Because the circuits are recursive, the corresponding
connection pattern is defined using recursion.

id
ilv (bfly (n-1) circ) ->- twolN (n-1) circ

bfly O circ
bfly n circ

The smallest butterfly is just the identity. A butterfly of size n, for n greater
than zero, consists of two interleaved butterflies of size n — 1, the output of
which is fed into a stack of circ components, which is made using twoN. This
connection pattern is shown in figure 8.6, which shows bfly 3 g.

The larger dashed box shows one instance of bfly 2 g, and there is another
instance just below it. These two smaller butterflies are interleaved, so there
is actually an unriffle to their left and a riffle to their right. (Make sure to
find these wiring patterns, and look again at the definition of ilv.) The two
interleaved butterflies feed their outputs into four g components, one above the
other, that is twoN 2 g. And if you look inside the bfly 2 g in the outer
dashed box, you will find that it again has the same recursive structure.

Strangely enough, the same connection pattern (that is the same netlist and
the same order of inputs and outputs, though a possibly different layout) can
be described using a different pattern of recursion.
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Figure 8.7: bflyl 3 g

bflyl O circ id
bflyl n circ = ilvN (n-1) circ ->- two (bflyl (n-1) circ)

This time, we start with a repeatedly interleaved stack of basic components,
whose outputs are fed into two smaller butterflies, which are combined using
two. Figure 8.7 shows this recursive decomposition.

It turns out that ilv (bfly n circ) is the same as bfly n (ilv circ). (See
the question below about two ilv g if you want to figure out why.) This means
that we can define the butterfly network using a single recursive call, but with
a larger component:

bfly2 0 circ = id
bfly2 n circ = ilvN (n-1) circ ->- bfly2 (n-1) (two circ)

bfly3 0 circ = id
bfly3 n circ = bfly3 (n-1) (ilv circ) ->- twoN (n-1) circ

The surprising thing is that all of these connection patterns give equivalent
circuits (for the same size and component).

The original butterfly defintions (bfly and bfly1) can also be expressed using
a tree-like combinator. Take a look at the connection pattern 1istTree, which
is a version of binTree which works for a component circuit circ processing
lists.

listTree circ [inp] = [inp]
listTree circ inps (two (listTree circ) ->- circ) inps

You should think about the types involved in this definition.

Replacing that two by ilv, we get ilvTree, a sort of interleaved tree.

ilvTree circ [inp] = [inp]
ilvTree circ inps (ilv (ilvTree circ) ->- circ) inps
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If we have a component that takes a pair as input and produces a pair as output,
then we can describe a stack of such components by using pairing, unpairing
and map as follows (see exercise 3.6 and the answer on page 86 for pair and
unpair).

pmap circ = pair ->- map circ ->- unpair

Main> simulate (pmap swap) [1..16]
[2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15]

Then, for inputs of length 2", ilvTree (pmap circ) is the same as bfly n
circl, where circl is the same as circ except that it relates a 2-list to a 2-list.

So what kinds of circuits can we build with these remarkably recursive struc-
tures? Well, it turns out that bfly 3 id is a complicated way to write the
identity function (on lists of length 8n.) And bfly n swapl reverses a list of
length 2™.

swapl [a,b] = [b,al]

Main> simulate (bfly 4 swapl) [1..16]
[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]

Main> simulate (ilvTree (pmap swap)) [1..16]
[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1]

If we choose our basic component to be the perfect shuffle on lists of length 4,
the circuit that we call s2, then we find that a butterfly of such components
performs the perfect shuffle!

s2 [a,b,c,d] = [a,c,b,d]

Main> simulate (bfly 3 s2) [1..16]
[1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16]

But all of these examples were just wiring functions. What happens when we
add some functionality to the component?

8.4 Batcher’s Bitonic Merger

One of the best known uses of the butterfly network is in the building of mergers
and sorters based on a two-input two-output comparator. Let us start with two
abstract comparators that work on integer inputs. One sorts into ascending
order, and the other into descending.

compUp  [x,y] = [imin (x,y), imax (x,y)]
compDown [x,y] [imax (x,y), imin (x,y)]
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Main> simulate (two compUp) [1,2,4,3]
[1,2,3,4]

Main> simulate (ilv compDown) [1,2,4,3]
[4,3,1,2]

It turns out that bfly n compUp sorts (into ascending order) a list whose first
half is ascending and second half is descending or vice-versa. We call such lists
inc-dec and dec-inc lists. (The merger sorts many other lists too, the so-called
bitonic lists, but we don’t need to worry about them.) This network is known as
Batcher’s bitonic merger [1]. Also, bfly n compDown sorts inc-dec and dec-inc
lists into descending order.

Main> simulate (bfly 3 compUp) [1,3,5,7,8,6,4,2]
[1,2,3,4,5,6,7,8]

Main> simulate (bfly 3 compDown) [1,3,5,7,8,6,4,2]
[8’7’6’5’4’3’2’1]

Knowing that the merger sorts inc-dec lists allows us to build a recursive sorter.
In fact, we can parameterise the circuit on the comparator (the comp parameter),
and define both an up and a down sorter at the same time. sorter n compUp

sorts into ascending order, while sorter n compDown sorts into descending or-
der.

sorter O comp [inp] = [inp]

sorter n comp inps = outs
where
sortlL = sorter (n-1) comp
sortR = sorter (n-1) (comp ->- swapl) -- reversed comparator
merger = bfly n comp -- bitonic merger
outs = (parl sortL sortR ->- merger) inps

Main> simulate (sorter 3 compUp) [8,7,1,2,3,4,6,5]
[1’2’3’4’5’6’7’8]

Main> stmulate (sorter 3 compDown) [8,7,1,2,3,4,6,5]
[8,7,6,5,4,3,2,1]

Note that our sorter is parameterised on the comparator or two-sorter compo-
nent. So we have really designed the connection pattern that must be used to
connect comparators. We have not in any way tied ourselves down to compara-
tors of a particular type. So, as long as we provide a comparator component
of the right type, then we get back a function of the same type that acts as a
sorter.

The next step is to refine the comparator component, by choosing a concrete
representation for the integer data. Examples of such representations are parallel
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least significant bit first binary, or serial signed twos complement. The point is
that whatever refinement we choose, we can simply plug in the new component
into our sorter function. This is an example of how Lava allows us to design
connection patterns and then reuse them. Exercise 8.9 asks you to build a
sorter based on the comparator for binary numbers that you designed in an
earlier exercise.

An interesting property of sorting circuits made from comparators is that they
obey the zero-one principle. If such a sorter works correctly on lists of integers
containing only zeros and ones, then it works correctly for arbitrary integers.
So, we can test an integer sorter by checking that it works on bits! In exercise
2.2, you were asked to define twoBitSort, which sorts a pair of bits. Here, we
need the circuit twoBitSortl that sorts a two-list of bits:

twoBitSortl [a,b] = [min, max]
where
(min, max) = twoBitSort (a, b)

Now, all we need to do is to plug this component into our sorter.

Main> simulateSeq (sorter 2 twoBitSortl) (domainList 4)
[[low,low,low,low], [low,low,low,high]

, [low,low,low,high], [low,low,high,high]

, [low,low,low,high], [low,low,high,high]

» [low,low,high,high], [low,high,high,high]

, [low,low,low,high], [low,low,high,high]

» [low,low,high,high], [low,high,high,high]

, [low,low,high,high], [low,high,high,high]

, [low,high,high,high], [high,high,high,high]

]

If, after studying these examples, you find that you have developed an interest in
butterfly networks, you might like to look at a paper that poses a puzzle about
butterfly networks of switches [18]. Do let us know if you solve the puzzle,
because we have not managed to do so!

8.5 Exercises

8.1 Is parallel composition (-|-) associative?

8.2 Are the circuits (a->-b) -|- (c->-d) and (a-|-c) ->- (b-|-d) the
same or not?

8.3 Define the connection pattern tri.

8.4 What does a triangle of delay elements do to its inputs? When might such
a circuit be useful?
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Figure 8.8: the shuffle-exchange network

The binary adder shown in this chapter works only when the binary num-
bers to be added are of the same length. Define a binary adder that adds
two binary numbers, whatever their lengths. Use this to make a general
adder tree that works for any size.

Define the wiring pattern riffle that corresponds to the perfect shuffle
of a pack of cards.

Define the wiring pattern unriffle that is the inverse of riffle.

Verify that the sorter defined in this chapter works on list of bits, for
several different sizes. How do you state the property? Hint: look at
exercise 2.2.

Define a comparator that works on binary numbers and use it to make a
binary number sorter.

If you have a pack of cards of size 2" and riffle it repeatedly, how many
riffles does it take before you are back where you started?

Consider the circuits two (ilv f) and ilv (two f). Are they the same
or not?

How would you show (using pencil and paper) that the two connection
patterns bfly and bflyl are the same?

(*) Give an iterative rather than recursive description of the butterfly
network. Hint: think of the number of two and ilv combinators in each
stack of basic components. You might find a list comprehension useful.

It turns out that for two-input two-output components the butterfly net-
work is also the same as the so-called shuffle-exchange network, which
consists of a sequence of identical blocks, each of which is riffle ->-
twoN n circ.

Figure out how many such columns you need (assuming that circ has two
inputs and two outputs). Define the shuffle-exchange network in Lava.
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Check that it is really the same as the butterfly network. In what circum-
stances might a circuit designer prefer the shuffle-exchange network?

8.15 We saw that bfly n swapl reverses its input list. Can you make riffle
by plugging a two-input two-output wiring component into a butterfly? If
not, why not?
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Chapter 9

Synthesizing Lava Circuits

In this chapter, we present a number of examples where we generate a Lava
circuit from a different kind of specification. We assume that the reader is
familiar with the Haskell programming language [10].

9.1 State Machines

A very common way of specifying a sequential system is by constructing a state
machine. A state machine consists of four parts: a set of states, a set of inputs,
a set of initial states and a transition function. The transition function maps a
state and an input to a set of next states. Usually, we draw state machines as
pictures. An example of a state machine is pictured in figure 9.1.

In Haskell, here is how we might specify a datatype for representing state ma-
chines. We parametrize over the types of the states and the inputs.

data StateMachine state inp

= StateMachine
{ states :: [state]
, inputs :: [inp]
, initial :: [statel
, transition :: state -> inp -> [state]
}

Here is how we can describe the state machine in figure 9.1:

theStateMachine =
StateMachine
{ states = ["a", "B", "C"]
, inputs = [’a’, 'b’]
, initial = ["A"]
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Figure 9.1: An example of a state machine.

A when —— active
- a b
]

B when |—— active
i a b
]

C when —— active
a b
]

Figure 9.2: A schematic translation of the state machine of figure 9.1.

, transition = \state inp ->
[ next | (state’, inp’, next) <-
[ (ma", ’a’, "C")
(A", ’b’, "A"M)
>
]
, state == state’
, inp == inp’
]
}

Note that the somewhat clumsy definition of the transition function would be
easier in an application where the states and inputs actually mean something.

Given a specification in terms of a state machine, we would like to be able
to translate in into a circuit. One reason for this might be because we want
a prototype implementation of the state machine. Another reason might be
because we want to verify that a given circuit implementation is equivalent to
the translated version.

One method of translating a state machine into a circuit is pictured in figures 9.2
and 9.3. The idea is that every state in the state machine maps to a component
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Figure 9.3: A more detailed view of the component belonging to a state.

in the circuit. The component has a delay element that keeps track of if we
are in that state. The component receives messages from other component
that activate it, and, depending on the inputs, also sends messages to other
components activating them.

An advantage of this translation method is that we can be in several states at
the same time, allowing for non-deterministic execution of our state machine.
A disadvantage is that, even when our state machine is deterministic, we still
have one delay component per state, which is often too much.

The type of circuits we are translating state machines to is a circuit from input
signals to a list of indicators for each state.

type StateCircuit
= [Signal Bool] -> [Signal Bool]

From these two type, we can declare the type of our translation function, which
takes a state machine into a state circuit.

stateMachine :: (Eq inp, Eq state)
=> StateMachine state inp -> StateCircuit
stateMachine machine inSignals = outSignals
where

First, we define the function inSignal which maps an input from the state
machine to the corresponding signal wire.

inSignal input =

head [ sig
| (input’,sig) <- inputs machine ‘zip‘ inSignals
, ilnput == input’
]

Then, we create a list of the components, which we use as a lookup table in the
rest of the translation.

components =
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[ component state
| state <- states machine

]

A component for a certain state consists of a pair (active, emits), where
active is the indicator signal for the state, and emits is a lookup table, repre-
senting what signal to send to what state.

component state = (active, emits)
where
init

state ‘elem‘ initial machine
delay (bool init) (activating state)

active

emits =
[ ( state’
, and2 (active, inSignal input)
)
| input <- inputs machine
, state’ <- transition machine state input

]

The declaration of active uses one delay component, whose initial value de-
pends on this state being an initial state or not, and whose next value depends
on the signals the other components are sending to it (computed using the
function activating).

The list emits is constructed as follows. For every input signal, we use the
transition function to check what next states we have. We then send a signal
to the component of state if and only if we are active, and we have that input
as an incoming signal.

Here is how we define the function activating.

activating state =
orl [ activate

| (_, emits) <- components
, (state’, activate) <- emits
, state == state’

]
For all components, we look at what messages it wants to send, and filter out
the signals going to the right state. Then, we take the or of all these signals.

Finally, we can create the list of state indicators, by taking the first output of
the components.

outSignals =
[ active
| (active, _) <- components

]
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Here is how we can make the circuit for the state machine we specified earlier.

theCircuit (a, b) = (inA, inB, inC)
where
[inA, inB, inC] =
stateMachine theStateMachine [a, b]

9.2 Behavioral Descriptions

Another way of specifying the behavior of a circuit is by a behavioral description
language. Examples of these kind of languages are behavioral VHDL, Verilog,
Esterel, etc. The idea is to write a program in such a language, and then
transform the program to a circuit with the same behavior.

We show how to compile programs in a very simple description language to a
circuit. We call the language Pace. Here is a Haskell datatype respresenting
Pace programs:

data Pace out
= Skip
| Emit out
| Wait
| IfThenElse (Signal Bool) (Pace out, Pace out)
| While (Signal Bool) (Pace out)
| Pace out :>> Pace out
| Pace out :|| Pace out

A Pace program can send out messages of type out. Running a Pace program
takes a number of clock cycles. Here is the informal semantics of Pace constructs:

e Skip: This program does not send any messages, and takes no time to
execute.

e Emit msg: This program sends out the message msg, and takes no time
to execute.

e Wait: This program does not send any messages, and takes 1 clock cycle
to execute.

e IfThenElse cond (pl, p2): If the signal cond is high, it executes p1,
and sends the messages pl sends, and takes as long time as p1 takes. If
cond is low, the same, but for p2.

e While cond p: If cond is high, then it executes p, and sends the messages
p sends, waits for the amount of time p takes to finish, and then tries to
execute the program again. If cond is low, it finishes right away without
sending any messages. For this program to be valid, p must at least take
one clock cycle to execute if cond is high.
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start

emits

|

finish

Figure 9.4: The shape of a circuit representing a Pace program.

e pl :>> p2: (sequential composition) The program executes p1, waits for
the time it takes to finish, and then executes p2.

e pl : || p2: (parallel composition) The program executes pl and p2 in
parallel, waiting for both to finish until it finishes.

Here is an example of a Pace program, where we describe a toggle:

togglePace change =
While high
( While (inv change)
( Wait
)
:>> Emit ()
:>> Wait
:>> While (inv change)
( Emit ()
:>> Wait
)
:>> Wait

)

We can read the program as follows. Forever: wait until change is not low,
then emit a message, and wait. Then, wait until change is not low, and emit
a message all the time, then wait. The type of messages this Pace program is
using, is (), because there is only one message.

We can give a more formal semantics to this language by giving a translation
from a program to a circuit. And then we get an implementation for free!

We are going to define a function circuit, which takes a Pace program to a
Pace circuit.

type PaceCircuit out
= Signal Bool -> (PaceEmits out, Signal Bool)
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type PaceEmits out
= [(out, Signal Bool)]

circuit :: Pace out -> PaceCircuit out

A Pace circuit (see figure 9.4) takes in one input, called start, which is used to
activate the program, and has two outputs, a list emits, and a signal finished,
which the circuit uses to indicate that it is done. The list emits is a lookup
table, which relates output messages and signals.

We start with Skip. Here, we just connect start to finish, so that we finish

immediately.

circuit Skip start = ([], finish)
where
finish = start

In the case of Emit, we connect the start to the right output, and we finish
immediately.

circuit (Emit out) start = (emits, finish)

where
emits = [(out, start)]
finish = start

When we execute a Wait, we connect start and finish, but with a delay, so
that it takes one clock cycle to finish.

circuit Wait start = ([], finish)
where
finish = delay low start

To transform an IfThenElse, we first transform the two subprograms progi
and prog2. We start progl if start is high and if the condition is true, and we
start prog2 if start is high and the condition is false. We collect all emitted
messages, and finish if either one of them finishes.

circuit (IfThenElse cond (progl, prog2)) start = (emits, finish)
where
(emitsl, finishl) = circuit progl startl
(emits2, finish2) = circuit prog2 start2

startl = and2 (start, cond)
start2 = and2 (start, inv cond)

emits = emitsl ++ emits2
finish = or2 (finishl, finish2)
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To transform a While, we first transform the subprogram prog. Then, we
introduce an auxiliary signal called active, which is high exactly when we
should consider starting prog, that is when the whole while loop is started or
when prog has finished. We actually start prog when we are active, and the
condition is true. We finish the while loop when we are active but the condition
is false.

circuit (While cond prog) start = (emits, finish)
where
(emits, finish’) = circuit prog start’

active = or2 (start, finish?’)
start’ and?2 (active, cond)
finish = and2 (active, inv cond)

Transforming sequential composition just connects the finish of the first with
the start of the second, and collects the emitted messages.

circuit (progl :>> prog2) start = (emits, finish)

where
(emitsl, finishl) = circuit progl start
(emits2, finish) = circuit prog2 finishl

emits = emitsl ++ emits2

And lastly, transforming parallel composition starts both circuits when started,
collects the emitted messages, and synchronizes the finish signals for finishing.
We use the synchronize circuit, defined in exercise 5.9 (the answer is on page
90).

circuit (progl :|| prog2) start = (emits, finish)
where
(emitsl, finishl) = circuit progl start
(emits2, finish2) = circuit prog2 start

emits = emitsl ++ emits2
finish = synchronize (finishl, finish2)

Now we have made this translator, we can use it to turn a Pace program plus
a list of output messages we are interested in into a circuit, outputting these
messages.

compile :: Eq out => Pace out -> [out] -> [Signal Booll
compile prog outputs = signals
where
start
(emits, _)

delay high low
circuit prog start

72



signals =

[ orl [ sig
| (out’,sig) <- emits

out == out’

| out <- outputs

]

We first create a top-level start signal, which is to be high on the first clock
tick, and then low forever, then filter out the signals we are interested in from
the resulting circuit. Note that we have to take the or for these signals, since
there might be several parts of the Pace program emitting the same signal.

Here is how we can create a toggle circuit from the given Pace program:

toggle’ change = out
where
[out] = compile (togglePace change) [()]

We compile the Pace circuit, and say that we are only interested the () messages.

9.3 Exercises

9.1 In the circuit produced by the state machine translation, all inputs will
only have effect on the outputs in the next clock cycle. Sometimes, how-
ever, it might be desirable to change state depending on the current input
right away. In this way, you are not interested in the initial state.

Show how to change the definition of stateMachine to incorporate this
change.

9.2 Verify that the toggle circuit derived from the Pace program is equivalent
to a direct definition of a toggle circuit.

9.3 Describe the synchronize circuit from exercise 5.9 in terms of a state
machine, and generate a circuit for it. Verify that the implementation in
your answer to 5.9 is correct!

9.4 Describe the synchronize circuit from exercise 5.9 in terms of a Pace
program, and generate a circuit for it. Verify that the implementation in
your answer to 5.9 is correct!
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Chapter 10
Types

In this chapter, we will describe what role types play in the Lava system.

10.1 Signals and Circuits

The circuits in Lava are functions from input signals to output signals. The
basic signals in Lava are low, high, and integer signals. The type of the first
two signals is Signal Bool, and that of integer signals is Signal Int. The
notation for this is:

low :: Signal Bool
high :: Signal Bool
3 :: Signal Int
42 :: Signal Int
-17 :: Signal Int

The types of circuits are written using the symbol ->. Examples are:

and2 :: (Signal Bool, Signal Bool) -> Signal Bool

times :: (Signal Int, Signal Int) -> Signal Int

halfAdd :: (Signal Bool, Signal Bool) -> (Signal Bool, Signal Bool)
adder2 :: [(Signal Bool, Signal Bool)] -> [Signal Bool]

As we can see, the types for pairs are written using (, , and ), and the types
for lists are written using [ and J.

Types do not have to be explicitly written in Lava; they are automatically
derived and checked. So, if we make a type error, for example by giving a list of
signals rather than a pair of signals to an and gate as input, we get:

Main> and2 [high, low]
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ERROR: Type error in application

*x** Expression : and2 [low,high]
*x%x Term : [low,high]
*k% Type : [Signal Booll]

**xx Does not match : (Signal Bool,Signal Bool)

10.2 Connection Patterns

To be able to deal with types in the presence of connection patterns, we need
two features: polymorphism and higher-order functions.

e Polymorphism means that some circuits or connection patterns do not
care about what kind of type we are using, as long as it matches with
another (unknown) type.

e Higher-order functions allow us to have functions as parameters to other
functions.

Here is an example: the type of the row connection pattern.
row :: ((c,a) -> (b,c)) -> (c,[al) -> ([bl,c)

From this we can see that row expects a circuit of the following type as a
parameter:

(c,a) -> (b,c)

The connection pattern does not care however what exactly a, b or c is, as long
as the two uses of c are the same. This has to be the case since c is the type of
the carry, and the carries are matched up in the row. But apart from that, a, b
and c can be any type, a signal, a pair of signals, a list of pairs of signals, etc.

10.3 Overloading

We have seen a number of circuits and functions that behave differently when we
use them in different contexts. This is called overloading. We use overloading
because it is convenient, we do not have to have different versions of opera-
tions around, and we can write general operations and circuits using overloaded
operations.

An example is the constant zero, which is a generalized version of low. It
behaves as follows.
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Main> zero
ERROR: Unresolved overloading

Main> zero :: Signal Bool
low

Main> zero :: (Stgnal Bool, Signal Bool)
(low, low)

Main> zero :: Signal Int

Main> zero :: (Stgnal Bool, Signal Int)
(low, 0)

In the first example, we see that Lava complains because it has no idea in what
kind of context you want to use zero. In a Lava program, this can usually be
figured out, but we can be explicit about the shape of the result by using the
:: notation.

A similar constant we have seen is domain. It creates a list of all the possible

values of a certain type. Here is how it behaves.

Main> domain :: [Signal Bool]
[low, high]

Main> domain :: [(Signal Bool,Signal Bool)]
[(low, low), (low, high), (high, low), (high, high)]

And so forth. Other examples of overloaded operators are var and random.

All these overloaded operations have a special version that works for lists. The
reason for this is that, in the case of lists, we want to know how long they should
be. How else can we create a list with only low bits in it, or sum up all the
possible lists in a certain domain?

Here are some examples of how the special list versions behave in different
contexts.

Main> zeroList 3 :: [Signal Bool]
[low, low, low]

Main> zeroList 2 :: [(Signal Bool,Signal Bool)]
[(low, low), (low, low)l]

Main> domainList 2 :: [[Stignal Booll]
[[low, low], [low, high], [high, low], [high, high]]
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n

Main> warList 3 "apa" :: [Signal Bool]

[apa_1, apa_2, apa_3]

Examples of a circuits that are overloaded are delay, mux, and equal.
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Appendix A

Quick Reference Guide

In this appendix we present an overview of options, operations, predefined cir-
cuits and connection patterns in Lava.

A.1 The lava command

Here are the command-line options for the lava command.

-hsize set memory size to size for interpreter
-c module compile

-ghc module compile using GHC (default)

-hbc module compile using HBC

-u update internal modules after change

-x ezecutable use <exzecutable> instead of compiler

A.2 Logical Gates

Here are the logical gates defined in the Lava system. Some binary gates have a
corresponding binary operator (for example, and2 can also be written as <&>).

-- Nullary gates :: Signal Bool
low -- constant low
high -- constant high

-- Unary gates :: Signal Bool -> Signal Bool

id -- identity
inv -- inverse, negation
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-- Binary gates :: (Signal Bool, Signal Bool) -> Signal Bool
and2, <&> -- logical and

nand?2 -- tnverse of logical and
or2, <|> -- logical or

nor2 -- tnverse of logical or
xor2, <#> -- logical exclusive or
xnor2, <=> -- inverse of exclusive or
equiv, <=> -- logical equivalence
impl, ==> -- logtcal implication

-- n-ary gates :: [Signal Bool] -> Signal Bool

andl -- logical and

nandl -- tnverse of logical and
orl -- logical or

norl -- tnverse of logical or
xorl -- logical exclusive or

A.3 Arithmetical Gates

Here are the arithmetical gates defined in the Lava system. Some binary gates
have a corresponding binary operator (for example, plus can also be written as

+).

-- Nullary gates :: Signal Int
n -- constant integer signal

-- Unary gates :: Signal Int -> Signal Int

id -- identity

neg, - -- negation

-- Unary conversion

int2bit -- 2nteger signal to boolean signal

bit2int -- boolean signal to integer signal

-- Binary gates :: (Signal Int, Signal Int) -> Signal Int

plus, + -- addition

times, * -- multiplication
sub, - —-- subtraction
idiv, / -- integer division
imod, %% —-- modulo

imin -= minimum

imax -— mazimum

-- Binary gates :: (Signal Int, Signal Int) -> Signal Bool
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gte, >>== —— greater than or equal

-- n-ary gates :: [Signal Int] -> Signal Int
plusl -- addition
timesl -- multiplication

A.4 Generic Gates

Here are some generic gates defined in the Lava system.

equal, <==> -- equality
delay, |-> -- delay component
mux -- multplexzer, tf-else-then

Furthermore, Lava defines some operations which can be used on some of these
types:

domain i [a]
domainList :: Int -> [[all

zero itoa
zeroList :: Int -> [a]

var :: String > a

varList :: Int -> String -> [a]

A.5 Module: Patterns

You get access to the following wiring circuits and connection patterns if you
include

import Pattermns

at the top of your Lava program.

swap :: (a, b) > (b, a)
swapl i [al —> [al

copy i a > (a, a)

riffle :: [a] —> [a]

unriffle :: [a] -> [a]

zipp :: ([al, [p]) -> [(a,b)]
unzipp :: [(a,b)] -> ([al,[p])
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pair i [al > [(a,a)]
unpair :: [(a,a)] - [a]

halveList :: [a] -> ([a],[a])

append :: ([al, [a]) —> [al

serial :: (a->b) > (b ->c) > (a->c)

(->-) :: (a->b) > (b ->c) > (a->c)

compose :: [a -> a] -> (a -> a)

composeN :: Int -> (a -> a) -> (a -> a)

par i (a->b) > (¢ > 4d) > ((a,c) -> (b,d))
-1- :: (@ > b) > (c ->d) -> ((a,c) -> (b,d))
parl :: ([a]l -> [b]) -> ([a]l -> [b]) -> ([a]l -> [bl)
two :: ([al -> [v]) —> ([al] -> [b])

ilv :: ([al -> [®]1) —> ([al -> [b])

twoN :: Int -> ([a] -> [b]) -> ([a]l -> [b]l)

ilvN :: Int -> ([a]l -> [b]) -> ([a]l -> [bl)

iter :: Int => (b ->Db) -> (b -> b)

bfly :: Int => ([b] -> [b]) -> [b] -> [b]

tri :: (a -> a) -> ([a] -> [a])

pmap :: ((a,a) -> (b,b)) -> [a] -> [b]

mirror :: ((a,b) -> (c,d)) -> ((b,a) -> (d,c))

Tow :: ((c,a) -> (b,c)) -> ((c,[al) -> ([bl,c))
column :: ((a,c) => (c,b)) —> (([al,c) -> (c,[p1))
grid :: ((a,b) -> (b,a)) -> (([al,[p]) -> ([b]l,[al))

A.6 Module: Arithmetic

You get access to the following arithmetical circuits if you include
import Arithmetic

at the top of your Lava program.

halfAdd :: (Signal Bool,Signal Bool)
-> (Signal Bool,Signal Bool)
fullAdd :: (Signal Bool, (Signal Bool,Signal Bool))

-> (Signal Bool,Signal Bool)
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bitAdder :: (Signal Bool, [Signal Bool])
-> ([Signal Bool],Signal Bool)
adder :: (Signal Bool, ([Signal Bool], [Signal Bool]))
-> ([Signal Bool],Signal Bool)
binAdder :: ([Signal Bool], [Signal Bool])
-> [Signal Booll]

bitMulti :: (Signal Bool, [Signal Bool])
-> [Signal Booll

multi :: ([Signal Bool], [Signal Bool])
-> [Signal Booll]

numBreak :: Signal Int -> (Signal Bool,Signal Int)

int2bin :: Int -> Signal Int -> [Signal Bool]
bin2int :: [Signal Bool] -> Signal Int

A.7 Module: SequentialCircuits

You get access to the following often used sequential circuits if you include
import SequentialCircuits

at the top of your Lava program.

edge :: Signal Bool -> Signal Bool

toggle :: Signal Bool -> Signal Bool

delayClk :: a -> (Signal Bool,a) -> a

delayN it Int ->a ->a->a

always :: Signal Bool -> Signal Bool

puls :: Int -> () -> Signal Bool

outputList :: [a]l -> () -> a

rowSeq :: ((a,b) -> (c,a)) -> (b -> c)

rowSeqReset :: ((a,b) -> (c,a)) -> ((Signal Bool,b) -> c)

rowSeqPeriod :: Int -> ((a,b) -> (c,a)) -> (b -> c)

Note that these functions are not completely polymorphic in a, but there are
certain restrictions.

A.8 Interpretations

Here are the various interpretations for circuits that Lava provides.

-- simulations
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simulate circutt tnput
simulateSeq circuit inputs
simulateCon circutt inputs
test circuit

-- VHDL

writeVhdl name circuit

writeVhdlInput name circuit input
writeVhdlInputOutput name circuit input output

-- wverification
verify property
verifyWith options property
fixit property

Possible verification opions are:

Name name
ShowTime

Sat level
NoBacktracking
Depth depth
Increasing
RestrictStates

A.9 Errors

Here, we list a number of error messages that might occur when running the
Lava system.

e ERROR: Garbage collection fails to reclaim
sufficient space

This means that Lava does not have enough memory to execute the cir-
cuit. Try to start up Lava with more memory, do this by saying lava
-h9999999. You can increase the number if you need more.

If this does not work, you might have an error in your circuit definition.
Do you have a circular definition somewhere?

e Program error: evaluating a delay component
You get this error when you try to use combinational simulation simulate
to simulate a sequential circuit. Use simulateSeq instead.

e Program error: evaluating a symbolic value

You get this error when you have used the forAll or var property con-
structors, and then later tried to simulate the circuit.
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e Program error: combinational loop

You get this error when you have defined a circuit which has a loop in
it, on which there is no delay. In general, these circuits are hard to give
meaning to, and are therefore not allowed in normal Lava simulation. You
have probably made a mistake somewhere.

You might try the constructive simulation simulateCon when this hap-
pens.
e Program error: combining incompatible structures

You get this error when you use a delay component or mux component on
structures of a different shape, for example two lists of different lengths.
This is not allowed, since the length of a list needs to be known when you
evaluate the circuit.

e Program error: there is no equality defined for this type
Sigh ... you get this error when you use the Haskell equality == on a signal
type. You probably want to use signal equality <==> instead.

e Program error: short circuit

This happens when you have a bad combinational loop in your circuit, and
you constructively simulate it using simulateCon. A real circuit would
have oscillated. An example is the following circuit:

shortCircuit () = out
where
out = inv out

e Program error: undriven output

This also happens when you have a bad combinational loop in your circuit.
The output wire is not driven by any component. An example is the
following circuit:

undrivenOutput () = out
where
out = and2 (out, out)

e Program error: you can not enumerate symbolic values

You get this error when you use .. on wires from a circuit instead of on
constants. Use .. only on constants!

e Program error: INTERNAL ERROR ...

Oops! This probably means that there is a bug in the Lava system. Please
report this bug by sending your program to us, so that we can fix it.

If you have some typical error that you would have liked to appear here, please
e-mail us so that we can make this list more complete.
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Appendix B

Answers

2.1 Here is how we define swap and copy:

swap (a, b) = (b, a)
copy a (a, a)

2.2 We could define the sorter twoBitSort in the following way:

twoBitSort (a, b) = (min, max)
where
min = and2 (a, b)
max = or2 (a, b)

2.3 Here is the constant alwaysHigh circuit:
alwaysHigh () = high
2.4 One could define a multiplexer as follows:

multiplexer (c,(x,y)) = out

where
out = or2 (left, right)
left = and2 (inv c, x)
right = and2 (c, y)

There is a built-in multiplexer in Lava, called mux. Using that one, we
could define:

multiplexer’ (c,(x,y)) = mux (c,(x, y))

2.5 A threeBitAdder can be defined as follows:
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threeBitAdder (carryIn, ((al,bl,cl), (a2,b2,c2))) =
((a3, b3, c3), carrylut)

where
(a3, carryA)
(b3, carryB)
(c3, carryOut)

fullAdd (carryIn, (al, a2))
fullAdd (carryA, (bl, b2))
fullAdd (carryB, (cl, c2))

3.2 We can make use of the adder we already have:

adder2 (as, bs) = cs
where
(cs, carryOut) = adder (low, (as, bs))

3.3 The adder circuit takes as an input a pair of lists of bits, whereas the
adder’ circuit gets a list of pairs of bits.

3.4 Here is a binary number to integer converter bin2int:

bin2int [] =0
bin2int (b:bs) = num
where
num’ = bin2int bs

num bit2int b + 2 * num’

3.5 Here is how we can define zipp:

zipp ([, [1)
zipp (a:as, b:bs)
where
rest = zipp (as, bs)

1
(a,b) : rest

And here is how we define unzipp:

unzipp [] = ([, WD)
unzipp ((a,b):abs) = (a:as, b:bs)
where

(as, bs) = unzipp abs
3.6 Here is how we can define pair:

pair (x:y:xs) = (x,y) : pair xs
pair xs 1

We choose to ignore the last input if the number of elements is odd. And
here is how we define unpair:
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unpair ((x,y):xys) = x : y : unpair xys
unpair [] =1

3.7 This is how we can define parallel composition of circuits par:

par circl circ2 (a, b) = (c, d)

where
c = circl a
d = circ2 b

3.9 Here is how we can define column:

column circ ([], carryIn) (carryln, [1)

column circ (a:as, carryIn) = (carryOut, b:bs)
where
(carry, b) = circ (a, carryIn)

(carryOut, bs) = column circ (as, carry)

Here is how we can define column in terms of row. First, we define a
connection pattern called mirror, which swaps the left and right parts of
input and output:
mirror circ (a, b) = (c, d)
where
(d, c) = circ (b, a)
And then, we use row and mirror the input to row:
column circ (as, carryIn) = (carryQOut, bs)
where
(bs, carryOut) = row (mirror circ) (carrylIn, as)
We could even say:
column circ = mirror (row (mirror circ))
3.10 We could define grid as:
grid circ (as, bs) = (cs, ds)
where
(cs, ds) = row (column circ) (as, bs)

Or, even shorter:

grid circ = row (column circ)
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3.13 Here is how we define a swapper:
swapper (swap, (a, b)) = (%, y)
where
(x, y) = mux (swap, ((a, b), (b, a)))
4.1 The first property can be defined as:

prop_SorterHasSortedOutput (a, b) = ok

where
(x, y) = twoBitSort (a, b)
ok = or2 (inv x, y) --z <=y

The second property can be stated as:

prop_SorterHasSameBits (a, b) = ok

where
(x, y) = twoBitSort (a, b)
same = (a, b) <==> (%, y)
swapped = (a, b) <==> (y, x)
ok = or2 (same, swapped)

4.4 To check that the subtractor really subtracts, we can define:

prop_SubtractorSubtracts (as, bs) = ok

where
cs = subtractor (as, bs)
as’ = adder2 (cs, bs)
ok = as <==> as’

4.5 Here is the general property of associativity:
prop_Associative circ (as, bs, cs) = ok
where
outl = circ (as, circ (bs, cs))
out2 = circ (circ (as, bs), cs)
ok = outl <==> out2
4.8 One can define a general verify function, as follows:
verifyFor prop ns = sequence [ prop n | n <- ns ]

and verify a property by saying for example:

Main> wverifyFor prop_AdderCommutative_ForSize [1..32]
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5.1 We can define evenSoFar as follows:

evenSoFar inp = out
where

out delay high even

even = xor2 (inp, even)
This is almost the same as the edge circuit.

5.2 We can define £1ipFlop as follows:

flipFlop (set, reset) = state

where
state’ = delay low state
state = and2 (up, inv reset)
up = or2 (state’, set)

5.3 We can define delayClk as follows:

delayClk init (clk, inp) = out

where
out = delay init val
val = mux (clk, (out, inp))

5.4 The circuit always can be defined as follows:

always inp = ok
where
sofar = delay high ok
ok and2 (inp, sofar)

5.5 The circuits are:

pulsSix6 () = out
where
out = puls 6 ()

pulsSixb () = out

where
a =puls 2 ()
b = puls 3 O
out = and2 (a, b)

pulsSix3 () = out

where
a = delay low (inv a)
b = delay low (xor2 (b, c))
¢ = delay low (nand2 (b, c))
out = and2 (a, b)
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5.6 Using a counter, we can define puls2 as follows:

puls2 k ()
where

number = counter k ()

out norl number

out

5.7 We can define the circuit counterUpDown as follows:

counterUpDown n (up, down) = number

where

number’ = delay (zerolList n) number

number = adder2 (diff, number’)

diff = one : replicate (n-1) rest

one = or2 (up, down) -— should I change?
rest = and2 (inv up, down) =-- +1 or -1%?

5.9 Here is how we could define synchronize:

synchronize (gol, go2) = go
where
both = and2 (gol, go2)
one = xor2 (gol, go2)
wait = delay low (xor2 (one, wait))
go = or2 (both, and2 (wait, one))

5.10 First, we define the following helper circuit outputDone. It does the same
as output, but takes an extra parameter done, the signal to output at the
time when the list is empty.

outputDone [] done () = done

outputDone (sig:sigs) done () = out

where
out = delay sig rest
rest = outputDone sigs done ()

Now, we can define the circuit outputList as follows:
outputList sigs () = out
where

out = outputDone sigs out ()

6.2 Here is a property that checks that:
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prop_Edge_vs_Even inp = ok
where
outl = edge inp
out2 = evenSoFar inp
ok = inv (outl <==> out2)

6.3 Here is a property that checks if they are equivalent:

prop_PulsSixEquivalent () = ok
where
out3 = pulsSix3 ()
outb = pulsSix5 ()
out6 = pulsSix6 ()

ok35 = out3 <==> outb
0okb6 = outb <==> outb
ok = and2 (ok35, ok56)

These can be verified with induction depth 6 or 7.
6.4 Here is a property that checks if they are equivalent:

prop_PulsesEquivalent k () = ok

where
outl = puls (2°k) ()
out2 = puls2 k ()
ok = outl <==> out2

6.5 Here is a property that checks that:

prop_CountingUp n up = ok
where
outl = counterUp n up
out2 = counterUpDown n (up, low)
ok outl <==> out2

6.6 Here is how we could define the property.

prop_ToggleTwiceStaysSame inp = ok

where
out = toggle inp
out’ = delay low out
out’’ = delay low out’
same0Qut = out <==> out’’
inp’ = delay low inp

sameInp = inp <==> inp’

ok = samelnp ==> sameQut
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7.1

7.2

7.3
8.1

8.2
8.3

8.6

First we compute the output from the input. Then, we define the outputs
and inputs at several different points in time. And then we compute the
implication.

Here are the properties which state this:

prop_ToggleHighlow_SlowedDown () = ok

where
load = puls 2 ()
outl = highLow ()
outl’ = parallelToSerial (load, outl)
out2 = toggle high
ok = outl’ <==> out2

prop_ToggleHighLow_SpedUp () = ok

where
outl = highLow ()
out2 = timeTransform toggle [high,high]
ok = outl <==> out2

Note that we do not need to use a serial to parallel converter in the first
property since highLow does not have any interesting input.

Slowing down a circuit means that there are only a few important clock
cycles, and we ignore all unimportant clock cycles. If we do not look at
some outputs, we cannot say anything about how the circuit behaves in
these outputs. The slowed down property might be true, but the circuits
are not equivalent.

Yes, here there is no problem.

No, parallel composition is not associative. (a, (b,c)) and ((a,b),c) are
not the same.

Yes, they are the same.

One possibility to define tri is

tri circ [] = [
tri circ (inp:inps) = inp : outs
where

outs = (map circ ->- tri circ) inps

There are many other ways of defining it. For example, you should try
defining tri using composeN.

We give a definition that closely reflects our informal explanation of how
a card sharp shuffles the pack. He halves it, zips the two halves together
(to get a lot of pairs of cards) which he then pats carefully on the sides so
as to unstick the pairs.
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riffle = halvelist ->- zipp ->- unpair

We use the circuit zipp, which we defined in exercise 3.5.

8.7 This definition is exactly the inverse of the definition of riffle:
unriffle = pair ->- unzipp ->- append

8.8 We need to verify two properties:

— The output of the sorter is sorted. We can verify this by checking
that the first output is smaller than the second, the second output is
smaller than the third, etc.

— The bits in the output are the same as the bits in the input, but
maybe in a different order. We can verify this by counting the number
of high inputs and high outputs, and checking that they are the same.

The details are left to the reader.

8.10 On inputs of length 2", n riffles in a row gets you back to where you
started.

Main> simulate (composelN 4 riffle) (map <int [1..(274)])
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

8.13 Here is how we define the butterfly circuit iteratively:

id

ibfly O circ
ibfly n circ
compose [ilvN (n-1-j) (twoN j circ) | j <- [0..(n-1)]1]

9.1 We could make the following change to the local definition of component:

component state = (activated, emits)
where
init state ‘elem‘ initial machine
activated = activating state
active delay (bool init) activated

The rest of the definition stays the same.
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