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Chapter 1Introdu
tionLava is an experimental tool for hardware design and veri�
ation. Using Lava,one 
an des
ribe 
ir
uits using a simple fun
tional hardware des
ription lan-guage. The des
riptions are short and sweet, and do not su�er from the ver-bosity of more standard hardware des
ription languages (HDLs) like VHDL andVerilog. On the other hand, we 
annot express the same things as in these large,expressive (and 
ompli
ated) languages. For example, we 
annot express lowlevel details about timing. What we 
an express very ni
ely, though, is the waysin whi
h 
ir
uits are built from sub-
ir
uits. Lava fa
ilitates the des
ription of
onne
tion patterns so that they are easily reusable. For some kinds of 
ir
uits,for example in signal pro
essing, this is exa
tly what we want to do. Lava alsoprovides many di�erent ways of analysing our 
ir
uit des
riptions. We 
an sim-ulate 
ir
uits, just as with more standard HDLs, but we 
an also use symboli
methods to generate input to analysis tools su
h as automati
 theorem proversand model 
he
kers. Indeed, the same methods are used to generate stru
turalVHDL from Lava 
ir
uit des
riptions. Our aim in this tutorial is to gentlyintrodu
e this new style of 
ir
uit design and analysis, by means of examples.Lava is used at Chalmers as a platform for experiments in the formal veri�
ationof hardware [3, 2℄. (Note, however, that both of these referen
es are about anolder version of Lava, in whi
h 
ir
uit des
riptions are a bit more 
ompli
ated.)Satnam Singh, on the other hand, uses Lava in real industrial design proje
tsat Xilinx In
., one of the main suppliers of Field Programmable Gate Arrays(FPGAs). In parti
ular, Lava has been used with great su

ess in the develop-ment of FPGA 
ores su
h as �lters and Bezier 
urve drawing 
ir
uits, and of
ustomer appli
ations su
h as digital signal pro
essing for high speed networksand for high performan
e graphi
s appli
ations.Lava really 
onsists of a simple hardware des
ription language embedded inthe powerful fun
tional programming language Haskell. So it 
an be seen as adomain spe
i�
 language embedded in a general purpose programming language.We des
ribe 
ir
uits by writing Haskell programs { and the Lava system itself4




onsists of a set of Haskell modules that give the user various fa
ilities. Theembedded language is quite similar to the Lustre syn
hronous data
ow language[7℄. The idea of using a fun
tional programming language to des
ribe hardwarewas �rst proposed in the early eighties [14, 15, 8℄, and there has been quite a lotof work in the area sin
e then [16, 17, 11, 13, 12, 6℄. Our intention in buildingthe Lava system (together with Singh) is to provide a tool that demonstratesthe feasibility of doing 
ir
uit design and analysis using a fun
tional language.The main idea in Lava is that a single 
ir
uit des
ription 
an be analysed in avariety of di�erent ways, by giving di�erent interpretations to its 
omponents(and sometimes even to its 
onne
tion patterns). The simplest of these inter-pretations gives us ordinary simulation. But we 
an do mu
h more. We 
anallow symboli
 rather than 
on
rete data to 
ow in the 
ir
uit, and in this way
olle
t information about the 
ir
uit in various di�erent ways. For example, we
an run the 
ir
uit on symboli
 data and produ
e expressions on the outputsthat indi
ate how ea
h output is related to the inputs. This 
an be useful whendeveloping a �rst implementation. However, the expressions 
an get too largefor humans to interpret. Then, we hook up external analysis tools, su
h as au-tomati
 theorem provers, to help us to analyse our 
ir
uits. When we hook upto external theorem provers, we are a
tually using Haskell as a proof s
riptinglanguage. This turns out to be very 
onvenient. Similarly, when we hook upto other external tools, su
h as VHDL-based CAD tools, we use Haskell as as
ripting language. One way to view the Lava system is as a tool for linkingtogether and 
ontrolling other tools in a uni�ed way! Thus Haskell is used notonly to 
onstru
t 
ir
uit des
riptions but also to 
ontrol the tools that pro
essthose des
riptions. The user sees only one language, rather than having to workwith many, as is more usual in the CAD world.This tutorial introdu
es the style of 
ir
uit des
ription used in Lava, by meansof very simple examples. It emphasises the way in whi
h Lava 
ombinators 
anbe used to 
apture 
ommon inter
onne
tion patterns. It shows the three mostimportant interpretations or 
ir
uit analysis methods { simulation, generationof VHDL 
ode, and generation of logi
al formulas for input to theorem provers.After working through the tutorial, you should understand how to des
ribe andanalyse simple 
ombinational and sequential 
ir
uits using Lava. We hope thatthe qui
k referen
e se
tions at the ba
k of the tutorial will also help you to getstarted.
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Chapter 2Getting StartedIn this 
hapter, we show how to des
ribe some simple 
ir
uits in the Lava system,and run the interpreter on them.2.1 Your First Cir
uitTo make a �rst 
ir
uit des
ription, start up the text editor of your 
hoi
e,and 
reate a text �le 
alled First.hs, for example. Lava �le names have theextension .hs.We are going to de�ne a so-
alled half adder (see �gure 2.1). A half adder is a
omponent that is for example used in the implementation of a binary adder. Ittakes as an input two bits, and adds them up. The result is a sum and a 
arrybit. A half adder is usually realized using one and and one xor gate.Here is how we de�ne a half adder halfAdd in Lava.import LavahalfAdd (a, b) = (sum, 
arry)wheresum = xor2 (a, b)
arry = and2 (a, b)We import a module 
alled Lava, whi
h de�nes a number of operations that we
an use to build 
ir
uits. Notably, it 
ontains the de�nitions of the gates xor2and and2. Appendix A 
ontains a list of su
h prede�ned operations.Note that the order of de�nitions after a where does not matter! Sin
e these
ir
uit 
omponents a
t in parallel, we 
ould just as well have put them the otherway around. 6
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Figure 2.1: A half adder.2.2 The Lava InterpreterDuring the development of a 
olle
tion of 
ir
uits, we mainly use the Lavainterpreter. This is a
tually the Haskell interpreter Hugs [9℄. The 
ommand islava.% lava-- Lava2000 ---------------------------------------------------...Prelude>We 
an use the interpreter to load di�erent modules with 
ir
uit de�nitions,and to type in 
ommands that we want to exe
ute.If we type in the half adder de�nition in the �le First.hs, we 
an load it in theinterpreter,using the 
ommand :l:Prelude> :l First.hsReading file "First.hs":...First.hsMain>One of the things we 
an do with a 
ir
uit is to simulate it. Simulation is donein Lava with the operation simulate. It takes two arguments; one is the 
ir
uitto simulate (in this 
ase halfAdd), and the other is the input to the 
ir
uit (inthis 
ase a pair of bits).Main> simulate halfAdd (low,low)(low, low)Main> simulate halfAdd (high,high)(low, high)If we make any 
hanges to the �le with our 
ir
uit de�nitions, we 
an type thereload 
ommand :r in the interpreter:Main> :r...Main> 7
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carry2Figure 2.2: A full adder.The 
hanges are now updated. If you ever want to exit from the interpreter,you 
an use the :q 
ommand.Main> :q[Leaving Hugs℄%2.3 Your Se
ond Cir
uitYou guessed it! Your se
ond 
ir
uit is going to be a full adder (see �gure 2.2),a 
omponent fullAdd that 
onsists of two half adders. To de�ne it, add thefollowing de�nition to the �le First.hs.fullAdd (
arryIn, (a, b)) = (sum, 
arryOut)where(sum1, 
arry1) = halfAdd (a, b)(sum, 
arry2) = halfAdd (
arryIn, sum1)
arryOut = xor2 (
arry2, 
arry1)Note that, just like the half adder, this 
ir
uit has one input. This one input
onsists of a pair of a bit and a pair of bits. We 
ould also have representedthe input as a triple of bits, but we shall later see why we made this parti
ular
hoi
e.We trans
ribe the diagram of the 
ir
uit (Figure 2.2) by giving names to all theinternal signals (here sum1, 
arry1 and 
arry2) and then simply writing downall the sub-parts of the 
ir
uit. To ease this pro
ess, we have de
ided to readthe inputs to a sub-
omponent from bottom to top. The order of the resultingequations doesn't matter. The equations 
an make use either of previouslyde�ned 
omponents (su
h as halfAdd) or of the Boolean gates.We 
an simulate this 
ir
uit by using the simulate operation that we used inthe previous se
tion. Though as inputs get bigger, typing in di�erent test inputsin the interpreter is a lot of work. To avoid this, we 
an des
ribe a number oftest 
ases in the �le First.hs:test1 = simulate halfAdd (low,low)8



test2 = simulate fullAdd (low,(high,low))test3 = simulate fullAdd (high,(low,high))And we 
an perform tests in the interpreter.Main> test3(low, high)Main> test2(high, low)Note that if we try to simulate a 
ir
uit with inputs of the wrong type, we geta type error:Main> simulate fullAdd (low,high,low)ERROR - Type error in appli
ation*** Expression : simulate fullAdd (low,high,low)*** Term : fullAdd*** Type : (Signal Bool,(Signal Bool,Signal Bool))-> (Signal Bool,Signal Bool)*** Does not mat
h : (Signal Bool,Signal Bool,Signal Bool)-> (Signal Bool,Signal Bool)Signal Bool is the type of a single bit wire in Lava.To simulate your 
ir
uit for more than one input at a time, you 
an use theoperation simulateSeq. It takes a 
ir
uit and a list of sample inputs as aparameter. Lists are denoted between square bra
kets.Main> simulateSeq halfAdd [(low,low), (low,high), (high,low)℄[(low,low), (high,low), (high,low)℄There is a spe
ial list, 
alled domain, whi
h 
ontains all the values of a 
ertaininput shape.Main> simulateSeq halfAdd domain[(low,low), (high,low), (high,low), (low,high)℄Here, domain produ
ed ea
h possible two bit input. To 
he
k what those valueswere, we 
an simply ask for the value of domain at the appropriate type:Main> domain::[(Signal Bool, Signal Bool)℄[(low,low),(low,high),(high,low),(high,high)℄Main> domain::[(Signal Bool, (Signal Bool, Signal Bool))℄[(low,(low,low)),(low,(low,high)),(low,(high,low)),(low,(high,high)),(high,(low,low)),(high,(low,high)),(high,(high,low)),(high,(high,high))℄It is also possible to ask for the type of a given fun
tion:9



Main> :t halfAddhalfAdd :: (Signal Bool,Signal Bool) -> (Signal Bool,Signal Bool)Not all input shapes (for example inputs 
ontaining numbers!) have a �nitedomain list asso
iated with them.2.4 Generating VHDLGiven a Lava 
ir
uit des
ription, we 
an generate VHDL from it, by using theoperation writeVhdl. It takes two arguments, the name of the VHDL de�nitionas a string, and the 
ir
uit.Main> writeVhdl "fullAdd" fullAddWriting to file "fullAdd.vhd" ... Done.The VHDL �le that is generated will assume that there are de�nitions of thegates. The Lava distribution provides these de�nitions in the �le Lava2000/Vhdl/lava.vhd. We must load this �le into the VHDL working library and
ompile it.Normally, the VHDL generator gives names to the inputs and outputs automat-i
ally. If we want to give names to the input ourselves, we 
an do this by usingthe operation writeVhdlInput. Here is how we use it:Main> writeVhdlInput "fullAdd" fullAdd(var "
arryIn", (var "a", var "b"))Writing to file "fullAdd.vhd" ... Done.And lastly, if we also want to give names for the outputs, we 
an use the oper-ations writeVhdlInputOutput. Here is how we use it:Main> writeVhdlInputOutput "fullAdd" fullAdd(var "
arryIn", (var "a", var "b"))(var "sum", var "
arryOut")Writing to file "fullAdd.vhd" ... Done.See �gure 2.3 for the result of this last operation. Note that the des
ription hasbeen 
attened all the way down to a gate-level netlist. No hierar
hy remains.Lava really is just some modules that help with writing netlist generators. Whathappens under the hood is that we run the 
ir
uit des
ription with symboli
inputs, produ
ing an internal representation of the netlist. Then, we walk overthis to print VHDL. Later, we will instead print the netlist in CNF (for inputto a SAT-solver) or in SMV input format (for input to a model 
he
ker).Looking at this VHDL 
ode, you 
an see that it is odd, in that it passes the
lo
k to every 
ombinational gate! If you don't feel like doing this, you 
oulduse the module VhdlNew and the a

ompanying gate de�nitions available in the10



-- Generated by Lava 2000use work.all;entityfullAddisport-- 
lo
k( 
lk : in bit-- inputs; 
arryIn : in bit; a : in bit; b : in bit-- outputs; sum : out bit; 
arryOut : out bit);end entity fullAdd;ar
hite
turestru
turaloffullAddissignal w1 : bit;signal w2 : bit;signal w3 : bit;signal w4 : bit;signal w5 : bit;signal w6 : bit;signal w7 : bit;signal w8 : bit;begin
_w2 : entity id port map (
lk, 
arryIn, w2);
_w4 : entity id port map (
lk, a, w4);
_w5 : entity id port map (
lk, b, w5);
_w3 : entity xor2 port map (
lk, w4, w5, w3);
_w1 : entity xor2 port map (
lk, w2, w3, w1);
_w7 : entity and2 port map (
lk, w2, w3, w7);
_w8 : entity and2 port map (
lk, w4, w5, w8);
_w6 : entity xor2 port map (
lk, w7, w8, w6);-- naming outputs
_sum : entity id port map (
lk, w1, sum);
_
arryOut : entity id port map (
lk, w6, 
arryOut);end stru
tural;Figure 2.3: The VHDL 
ode for the full adder in fullAdd.vhd.
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�le gates.vhd in dire
tory Lava2000/Vhdl. Now, ea
h of the VHDL generationfun
tions has a 
lo
ked and un
lo
ked version (writeVHdlClk, writeVhdlNoClket
.). You should import the module VhdlNew if you want to use these fun
tions.(It has been assumed that your proje
t dire
tory is 
alled work.) The full adderis a purely 
ombinational 
ir
uit, so it makes sense to produ
e a 
ir
uit withouta 
lo
k. (We will return to 
lo
ks, D 
ip-
ops et
. in a later 
hapter.) Thefollowing exampletest1 = writeVhdlInputOutputNoClk "fullAddNew" fullAdd(var "
in", (var "a", var "b")) (var "sum", var "
out")produ
es the VHDL 
ode in Figure 2.42.5 Exer
ises2.1 De�ne the 
ir
uits swap and 
opy. Swap gets a pair of inputs, and outputsthem in the swapped order. Copy gets one input and outputs it twi
e, asa pair. Here is how they should behave:Main> simulateSeq swap [(low, high), (low, low), (high, low)℄[(high, low), (low, low), (low, high)℄Main> simulateSeq 
opy [low, high℄[(low, low), (high, high)℄2.2 De�ne a two-bit sorter. It takes as input a pair of bits, and outputs thesame bits, but the lowest one on the left hand side, and the highest oneon the right hand side.2.3 De�ne a 
ir
uit with no inputs, and one output, whi
h is always high.Hint: input 
onsisting of no wires is written as ().2.4 De�ne and simulate a multiplexer in Lava. A multiplexer 
ir
uit has asan input a pair of a signal and a pair (x, y). The output is equal to x ifthe signal is low, and to y if the signal is high.2.5 Use three full adders to make a three bit binary adder. Simulate yourdesign and generate VHDL 
ode.2.6 Suppose you are designing a digital wat
h. It might 
ome in handy tohave a 
ir
uit that takes a four-bit binary number and displays it as adigital digit, using a seven segment display. Your 
ir
uit might have thefollowing interfa
e (see �gure 2.5):digitalDisplay (one, two, four, eight) =(a, b, 
, d, e, f, g)where ... 12



library ieee;use ieee.std_logi
_1164.all;entityfullAddNewisport( 
in : in std_logi
; a : in std_logi
; b : in std_logi
; sum : out std_logi
; 
out : out std_logi
);end fullAddNew;ar
hite
turestru
turaloffullAddNewissignal w1 : std_logi
;signal w2 : std_logi
;signal w3 : std_logi
;signal w4 : std_logi
;signal w5 : std_logi
;signal w6 : std_logi
;signal w7 : std_logi
;signal w8 : std_logi
;begin
_w2 : entity work.wire port map (
in, w2);
_w4 : entity work.wire port map (a, w4);
_w5 : entity work.wire port map (b, w5);
_w3 : entity work.xorG port map (w4, w5, w3);
_w1 : entity work.xorG port map (w2, w3, w1);
_w7 : entity work.andG port map (w2, w3, w7);
_w8 : entity work.andG port map (w4, w5, w8);
_w6 : entity work.xorG port map (w7, w8, w6);
_sum : entity work.wire port map (w1, sum);
_
out : entity work.wire port map (w6, 
out);end stru
tural;Figure 2.4: The VHDL 
ode produ
ed by test1 for the full adder.
13
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dFigure 2.5: Digital display.Hint: start by making a table with 10 entries (0 .. 9) where you 
an seewhat parts of the display should light up for what number.
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Chapter 3Bigger Cir
uitsIn this 
hapter we des
ribe how to make more 
ompli
ated 
ir
uits using re
ur-sion and 
onne
tion patterns. We will also see how we use numbers in Lava.3.1 Re
ursion over ListsA bit adder takes a pair of inputs. The �rst part is a 
arry bit, the se
ond partis a binary number, represented as a list of bits, least signi�
ant bit �rst. Thebit adder will add the bit to the binary number, resulting in a binary numberand a 
arry out.We de�ne a bit adder bitAdder in Lava by re
ursion over the list of bits. Thereare two 
ases. Either the list is empty, denoted as [℄, and there is nothing toadd. Or the list has at least one element a, and we 
an split the list up in twoparts, a, the least signi�
ant bit, and as, the remaining bits, written a:as. Inthis 
ase, we will use a half adder to add a and the 
arry, and re
ursively addthe resulting 
arry to the rest of the binary number.bitAdder (
arryIn, [℄) = ([℄, 
arryIn)bitAdder (
arryIn, a:as) = (sum:sums, 
arryOut)where(sum, 
arry) = halfAdd (
arryIn, a)(sums, 
arryOut) = bitAdder (
arry, as)A more 
ompli
ated 
ir
uit is the 
ir
uit adder that takes a 
arry and a pair ofbinary numbers, and adds them up. This is 
alled a binary adder. The re
ursivestru
ture is almost the same, but we are doing simultaneous re
ursion over bothbinary numbers.adder (
arryIn, ([℄, [℄)) = ([℄, 
arryIn)15



adder (
arryIn, (a:as, b:bs)) = (sum:sums, 
arryOut)where(sum, 
arry) = fullAdd (
arryIn, (a, b))(sums, 
arryOut) = adder (
arry, (as, bs))[Note: This adder is a
tually prede�ned in the module Arithmeti
.℄3.1.1 Generating VHDL for a binary adderTo generate a VHDL netlist for the adder that we have just de�ned, we needto spe
ify the size of the 
ir
uit, that we need to �x the lengths of its inputlists. This is be
ause we have written a generi
 
ir
uit des
ription using patternmat
hing over lists, but a netlist must have a �xed size. For example, to �x thelengths of the two binary numbers to be added to 4, we writetest2 = writeVhdlInputOutputNoClk "adder" adder(var "
in", (varList 4 "a", varList 4 "b"))(varList 4 "sum", var "
out")Typing test2 at the Lava prompt then produ
es the VHDL �le shown in Figure3.1. It is also possible to parameterise the de�nition with the adder size:test3 n = writeVhdlInputOutputNoClk "adder" adder(var "
in", (varList n "a", varList n "b"))(varList n "sum", var "
out")making it very easy to produ
e large netlists.3.2 Conne
tion PatternsLooking at the two 
ir
uit de�nitions in the previous se
tion, bitAdder andadder, we 
an see that they have a lot in 
ommon. Even though the gates thatthey use are di�erent, their stru
ture is very similar.In Lava, we 
an 
apture these 
ommon stru
tures in 
onne
tion patterns. Con-ne
tion patterns are higher-order fun
tions that build 
ir
uits from other (smaller)
ir
uits.A very 
ommon 
onne
tion pattern is the serial 
omposition serial of two
ir
uits (see �gure 3.2). It is a 
ir
uit parametrized by two 
ir
uits 
ir
1 and
ir
2. This means that serial 
ir
1 
ir
2 is a 
ir
uit, whi
h feeds its inputa to 
ir
1, 
onne
ts the output b of it to the input of 
ir
2, and results inthat output 
. 16



library ieee;use ieee.std_logi
_1164.all;entityadderisport( 
in : in std_logi
; a_0 : in std_logi
; a_1 : in std_logi
; a_2 : in std_logi
; a_3 : in std_logi
; b_0 : in std_logi
; b_1 : in std_logi
; b_2 : in std_logi
; b_3 : in std_logi
; sum_0 : out std_logi
; sum_1 : out std_logi
; sum_2 : out std_logi
; sum_3 : out std_logi
; 
out : out std_logi
);end adder;ar
hite
turestru
turalofadderissignal w1 : std_logi
;signal w2 : std_logi
;signal w3 : std_logi
;signal w4 : std_logi
;signal w5 : std_logi
;signal w6 : std_logi
;signal w7 : std_logi
;signal w8 : std_logi
;signal w9 : std_logi
;signal w10 : std_logi
;signal w11 : std_logi
;...signal w28 : std_logi
;signal w29 : std_logi
;begin
_w2 : entity work.wire port map (
in, w2);
_w4 : entity work.wire port map (a_0, w4);...
_w29 : entity work.andG port map (w21, w24, w29);
_w27 : entity work.xorG port map (w28, w29, w27);
_sum_0 : entity work.wire port map (w1, sum_0);
_sum_1 : entity work.wire port map (w6, sum_1);
_sum_2 : entity work.wire port map (w13, sum_2);
_sum_3 : entity work.wire port map (w20, sum_3);
_
out : entity work.wire port map (w27, 
out);end stru
tural;Figure 3.1: The VHDL 
ode produ
ed for a 4-bit adder (with parts omitted forbrevity).
17



a b ccirc1 circ2Figure 3.2: Serial 
omposition of 
ir
1 and 
ir
2.
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Figure 3.3: The pattern row F , 
onne
ting n instan
es of F .serial 
ir
1 
ir
2 a = 
whereb = 
ir
1 a
 = 
ir
2 bMore interesting 
onne
tion patterns be
ome possible when we 
onsider re
ur-sive 
ir
uit stru
tures. For example, instead of the half adder 
ir
uit in theaddBit de�nition, we 
an plug in any other 
ir
uit. The result 
onsists of a rowof smaller 
ir
uits (see �gure 3.3).Here is how we de�ne the row 
onne
tion pattern.row 
ir
 (
arryIn, [℄) = ([℄, 
arryIn)row 
ir
 (
arryIn, a:as) = (b:bs, 
arryOut)where(b, 
arry) = 
ir
 (
arryIn, a)(bs, 
arryOut) = row 
ir
 (
arry, as)On
e we have made this de�nition, we do not need to use re
ursion anymore tode�ne 
ir
uits of this spe
i�
 pattern. Note that the de�nition of row assumesthat the 
omponent, 
ir
, has a pair as input and produ
es a pair as output.This was why we 
hose the type of fullAdd also to be of this form. Also, if the
omponents are to �t together properly into a linear array, it is ne
essary thatit be possible to 
onne
t the se
ond output of one 
omponent to the �rst inputof the next. However, the types are not 
onstrained any further than this. Notealso that row itself also produ
es a \pair-to-pair" 
ir
uit, as does the related
onne
tion pattern 
olumn (see exer
ises 3.9 and 3.10).Here are alternative de�nitions of bitAdder and adder:bitAdder' (
arry, inps) = row halfAdd (
arry, inps)18



adder' (
arry, inps) = row fullAdd (
arry, inps)It turns out that one 
an get quite far with surprisingly few 
onne
tion pat-terns. The module Lava2000/Modules/Patterns.hs 
ontains a few useful pat-terns (in
luding row). Using these patterns 
an lead to very 
on
ise 
ir
uitdes
riptions that are still easy to read for those familiar with the patterns. Itis also 
onvenient to mix the \named wire" style, whi
h we saw in the re
ursivede�nitions earlier, with the use of 
onne
tion patterns.Even shorter de�nitions of the same 
ir
uits are:bitAdder' = row halfAddadder' = row fullAddNote that the type of adder' is slightly di�erent from adder, see exer
ise 3.3.3.3 Arithmeti
In Lava, we 
an not only deal with low-level wire types like bits, and gates likeand2 and xor2, but also with more abstra
t wire types and gates. One of thesetypes is integers (and indeed the lowest level wires in our 
ir
uits 
arry eitherbits or integers).On these integers, we have operations 
orresponding to abstra
t gates over in-tegers. A list of these gates 
an be found in appendix A.A simple 
ir
uit using these arithmeti
 gates is 
alled numBreak. It takes anumber as input, and has a pair of a bit and a number as output. The bit inthe pair 
orresponds to the value of the �rst binary digit of the number; theresulting number is the input number divided by 2.numBreak num = (bit, num')wheredigit = imod (num, 2)bit = int2bit digitnum' = idiv (num, 2)The 
ir
uit i2b 
onverts a number into a bit, by transforming a 0 into low, andany other number into high.We 
an use this arithmeti
al 
ir
uit to build a 
ir
uit that 
onverts a numberinto a binary number, that is, a list of bits. The 
ir
uit takes a parameter,
orresponding to the size of the list it has to produ
e, and has as input thenumber that needs to be 
onverted.The 
onverter int2bin 
onverts an integer to a binary number. It has an extraparameter, whi
h spe
i�es the number of bits the binary number should have.Note again that parameters of 
ir
uits are di�erent from inputs; int2bin is not19



really a 
ir
uit, but int2bin 16 is. We de�ne this 
ir
uit by re
ursion over thesize of the binary number.int2bin 0 num = [℄int2bin n num = (bit:bits)where(bit,num') = numBreak numbits = int2bin (n-1) num'Here, the a
tual 
ir
uit input is num, whi
h is the kind of integer that 
ows in aLava 
ir
uit, and so has type Signal Int. Other arithmeti
 gates in
lude plus,times, et
.Here are some example simulations of these 
ir
uits:Main> simulate numBreak 7(high,3)Main> simulate (int2bin 3) 7[high, high, high℄Main> simulate plus (3,4)7At present, VHDL netlist generation supports only bit level operations. Itwill give an error if you try to generate VHDL for a 
ir
uit that operates onintegers. However, the integers 
an still be useful! For example, you 
an usethem in testing your arithmeti
 
ir
uits. Let us wrap our binary adder up insuitable 
onversions:wrapAdd n (a,b) = outwhereas = int2bin n abs = int2bin n b(ss,
) = adder (low,(as,bs))out = bin2int (ss ++ [
℄)We supply it with two n-bit inputs, whi
h we produ
e from the integer inputsa and b. For the output, we sti
k the 
arry onto the end of the list of sumbits, sin
e that list is least signi�
ant bit �rst. This is done by forming thesingleton list [
℄ and appending that list to the end of the list ss. (++ is theHaskell operator that appends two lists.) Having made a single binary number,we 
onvert the result ba
k into an integer. We would then expe
t the resulting
ir
uit to behave rather like plus, but with a limit on the size of the inputs thatit 
an deal with. Note that we must �x the size of the parameter n in order toget a 
ir
uit that 
an be simulated. 20



Main> simulate (wrapAdd 4) (3,5)8Perhaps you 
an �gure out why we getMain> simulate (wrapAdd 2) (3,5)4.3.4 Exer
ises3.1 De�ne a bit subtra
tor, 
alled bitSubber, whi
h takes a bit and a binarynumber as input, and subtra
ts the bit from the binary number.3.2 De�ne a binary adder, 
alled adder2, whi
h does not take in a 
arry bit,and throws away the resulting 
arry.3.3 What is the di�eren
e between adder and adder'? Hint: look at thetypes of the inputs.3.4 De�ne a 
ir
uit bin2int, whi
h 
onverts a bit ve
tor into an integer.3.5 De�ne the 
ir
uit zipp, whi
h takes a pair of list as inputs and produ
esa list of pairs, one by one grouped together.Main> simulate zipp ([low,high,low℄,[high,high,low℄)[(low,high),(high,high),(low,low)℄Also de�ne the 
ir
uit unzipp, whi
h is the inverse of zipp.3.6 De�ne the 
ir
uit pair, whi
h takes a list as input and produ
es a list ofpairs, with the neighbours grouped together.Main> simulate pair ([low,high,low,high,high,low℄)[(low,high),(low,high),(high,low)℄Also de�ne the 
ir
uit unpair, whi
h is the inverse of pair.3.7 De�ne a 
onne
tion pattern 
alled par whi
h turns two 
ir
uits, ea
htaking in one input and having one output, into one 
ir
uit taking in apair of inputs and having a pair of outputs.3.8 De�ne, using re
ursion, a binary multiplier. What is the re
ursive stru
-ture? 21



3.9 Looking at the de�nition of row, de�ne a 
onne
tion pattern 
alled 
olumnwhi
h 
arries the right part of the input and the left part of the outputthrough.(*) Can you de�ne 
olumn in terms of row?3.10 De�ne a 
onne
tion pattern 
alled grid, whi
h puts a number of 
opiesof 
ir
uits in a matrix. The left parts of the inputs are 
arried throughfrom left to right, and the right parts of the inputs and outputs are 
arriedthrough from top to bottom.Hint: think of a grid as a row of 
olumns (or a 
olumn of rows).3.11 Can you think of a useful 
ir
uit that makes use of the grid 
onne
tionpattern?3.12 Looking at the re
ursive de�nition of an adder, de�ne a simple subtra
tor.It will only have to subtra
t smaller numbers from bigger numbers. Canyou use any of the 
onne
tion patterns des
ribed in this 
hapter to makea non-re
ursive des
ription?3.13 De�ne a swapper, a 
ir
uit that takes in two inputs: an a
tivate signaland a pair of signals, and the output is a pair of signals. If the a
tivatesignal is high, the order of the input pair is swapped, otherwise is staysthe same.swapper (swap, (a, b)) = (x, y)where ...3.14 De�ne a 
omparator, a 
ir
uit that takes in two binary numbers of equallength and tells you if the left one is less than or equal than the right one.3.15 Implement a binary sorter. It takes as an input two binary numbers ofequal length, and outputs them in the 
orre
t order.

22



Chapter 4Veri�
ationIn this 
hapter we des
ribe how we 
an de�ne properties of 
ir
uits, and howwe 
an formally verify these properties using a SAT-solver or model 
he
ker.4.1 Simple PropertiesThe main kind of properties of 
ir
uits we deal with in Lava are so-
alled safetyproperties. These are properties whi
h 
an be de�ned in su
h a way that theystate that some 
ondition is always true (or, equivalently, never false).Here is an example; a property that 
he
ks that the outputs of a half adder arenever both true.prop_HalfAddOutputNeverBothTrue (a, b) = okwhere(sum, 
arry) = halfAdd (a, b)ok = nand2 (sum, 
arry)Note that this property looks pretty mu
h like a normal 
ir
uit de�nition, andin fa
t it is.The a
tual veri�
ation question is: does this property 
ir
uit always yield true,no matter what the input is? To answer the question, we use the Lava operationsatzoo, whi
h is a 
all to a satis�ability solver (a propositional theorem prover).To get a

ess to this fun
tion, import the module Satzoo.Main> satzoo prop_HalfAddOutputNeverBothTrueSatzoo: ...real 0m0.005suser 0m0.000ssys 0m0.000s 23



(t=)Valid.This pro
ess works in the following way. Just as we 
an generate VHDL froma 
ir
uit des
ription, we 
an also generate a logi
al formula representing the
ir
uit. This logi
al formula is then given to an external theorem prover whi
hwill prove (or disprove) the validity of the formula. The result is then takenba
k into Lava.Here is another example; we formulate that a full adder does not 
are about theorder of the two one-bit arguments that are not the 
arry-in, but will alwaysprodu
e the same result. This property is in general 
alled 
ommutativity.prop_FullAddCommutative (
, (a, b)) = okwhereout1 = fullAdd (
, (a, b))out2 = fullAdd (
, (b, a))ok = out1 <==> out2Note that, sin
e we are not interested in the exa
t shape of the output of thetwo full adders, we 
an just give a name to the whole output, in this 
ase out1and out2. Another thing to noti
e is that we use the general equality <==>. We
an also use the 
ir
uit equal for that.Main> satzoo prop_FullAddCommutativeSatzoo: ...real 0m0.046suser 0m0.000ssys 0m0.002s(t=)Valid.4.2 Quanti�
ationThe 
ommutativity property is not only true for full adders, but also in generalfor binary adders. Here is how we state that property:prop_AdderCommutative (as, bs) = okwhereout1 = adder2 (as, bs)out2 = adder2 (bs, as)ok = out1 <==> out2Note that we use the adder adder2 we de�ned in exer
ise 3.2 (the answer is onpage 86). 24



The problem is that this property holds for all 
ir
uit sizes, but we 
an onlyverify it for spe
i�
 sizes! This is be
ause it is very hard to verify propertiesautomati
ally for all sizes.So, instead of verifying it for all sizes, we will pi
k a spe
i�
 size and verifythe property for those. Thus, we de�ne a new property, whi
h is expli
it aboutwhat size of input we want to verify the property.prop_AdderCommutative_ForSize n =forAll (list n) $ \as ->forAll (list n) $ \bs ->prop_AdderCommutative (as, bs)This property means: \for all lists of size n 
alled as, and for all lists of sizen 
alled bs, the property that the adder is 
ommutative holds for (as, bs) asinput".Now, we 
an verify the property using satzoo. We 
an of 
ourse do this formore than one size.Main> satzoo (prop_AdderCommutative_ForSize 2)Satzoo: ...real 0m0.026suser 0m0.001ssys 0m0.001s(t=)Valid.Main> satzoo (prop_AdderCommutative_ForSize 32)Satzoo: ...real 0m0.375suser 0m0.089ssys 0m0.002s(t=)Valid.What a
tually happens behind the s
en
es when you do veri�
ations like these isthat a �le 
alled 
ir
uit.
nf in the CNF (= 
onjun
tive normal form) formatread by Satzoo is produ
ed in the dire
tory Verify. You should do a smallveri�
ation and then go into the dire
tory Verify and look at the resulting �le
ir
uit.
nf. In the same dire
tory, you will �nd the �le 
ir
uit.
nf.out thatshows what the satis�ability solver output when given 
ir
uit.
nf. (Note thatthe SAT-solver a
tually 
he
ks that the negation of the formula is unsatis�able,leading to the Valid answer inside Lava.)The expression (prop AdderCommutative ForSize 32) means the fun
tionprop AdderCommutative ForSize applied to the parameter 32. The result ofthis appli
ation is the 
ir
uit (of �xed size) that we want to verify with satzoo.25



Leaving out the bra
kets instead means passing two di�erent (and wronglytyped) arguments to satzoo. At this, the Haskell type 
he
ker 
omplains:Main> satzoo prop_AdderCommutative_ForSize 2ERROR - Type error in appli
ation*** Expression : satzoo prop_AdderCommutative_ForSize 2*** Term : satzoo*** Type : d -> IO ProofResult*** Does not mat
h : a -> b -> 
4.3 General PropertiesGeneral properties are properties that are parametrized by one or more 
ir
uits.They 
an be de�ned just like 
onne
tion patterns. Here is a general propertythat poses the question if the two given 
ir
uits are equivalent.prop_Equivalent 
ir
1 
ir
2 a = okwhereout1 = 
ir
1 aout2 = 
ir
2 aok = out1 <==> out2You will likely use this kind of equivalen
e 
he
king often. As an example,we 
an 
he
k that our own full adder (the one de�ned in the Getting Started
hapter) is the same as the one built into Lava (in the Arithmeti
module). Todo this, you should add import Arithmeti
 to import that module. Now, thebuilt-in full adder is also 
alled fullAdd, so we need to distinguish it from oursby in
luding the module name:Main> satzoo (prop_Equivalent (Arithmeti
.fullAdd) fullAdd)Satzoo: ...real 0m0.005suser 0m0.001ssys 0m0.002s(t=)Valid.The following property 
he
ks if a given 
ir
uit is 
ommutative.prop_Commutative 
ir
 (as, bs) = okwhereout1 = 
ir
 (as, bs)out2 = 
ir
 (bs, as)ok = out1 <==> out2Of 
ourse, the 
ir
uits that one uses to instantiate these properties have to beof the right shape (type). 26



4.3.1 Using SMVThe other tool that you will be using (as a Lava ba
kend) to do veri�
ationis Caden
e SMV [4℄. This a model 
he
ker, and so makes most sense whenverifying sequential 
ir
uits (
ir
uits with state holding elements). However,even for 
ombinational 
ir
uits, SMV 
an be used. For example, to verify thatthe two full adders are equivalent in SMV, we writeMain> smv (prop_Equivalent (Arithmeti
.fullAdd) fullAdd)Smv: ... (t=0.00system)Valid.Now, the input �le for SMV is Verify/
ir
uit.smv.-- Generated by Lava2000MODULE mainVAR i0 : boolean;VAR i1 : boolean;VAR i2 : boolean;DEFINE w5 := i0;DEFINE w7 := i1;DEFINE w8 := i2;DEFINE w6 := !(w7 <-> w8);DEFINE w4 := !(w5 <-> w6);DEFINE w10 := !(w7 <-> w8);DEFINE w9 := !(w5 <-> w10);DEFINE w3 := !(w4 <-> w9);DEFINE w2 := !(w3);DEFINE w15 := w7 & w8;DEFINE w16 := w5 & w6;DEFINE w14 := !(w15 <-> w16);DEFINE w18 := w7 & w8;DEFINE w19 := w5 & w10;DEFINE w17 := !(w18 <-> w19);DEFINE w13 := !(w14 <-> w17);DEFINE w12 := !(w13);DEFINE w20 := 1;DEFINE w11 := w12 & w20;DEFINE w1 := w2 & w11;SPEC AG w1Here, we 
he
k the CTL formula AG w1, asking SMV to prove that the outputof the 
omparison of the two 
ir
uits is always true. (This works both for
ombinational 
ir
uits (as here) and for sequential 
ir
uits, as we shall see later.)27



4.4 Exer
ises4.1 Take a look at the two bit sorter you de�ned in exer
ise 2.2. To verifythat it is 
orre
t, two properties need to be true:{ The left part of the output is smaller than the right part of theoutput,{ The output of the 
ir
uit 
ontains the same bits as the input (butpossibly in a di�erent order).State these two properties separately, and verify them using satzoo.4.2 Some properties are so easy to verify that we 
an a
tually do it by simulat-ing them for all inputs (using domain). There are a few of these propertiesin this 
hapter. Verify them by testing them for all inputs. Can you thinkof other su
h easy-to-verify properties?4.3 Che
k that the various adders in the previous 
hapter are all 
ommuta-tive, for sizes up to 16 bits. What happens if you try to prove that thesubtra
tor is 
ommutative?4.4 Che
k that the subtra
tor you de�ned in the previous 
hapter is really asubtra
tor. How do you formulate your property; what is the "de�nition"of subtra
tion? Make sure you do not mess up the sizes of the binarynumbers.4.5 De�ne a general property that states that a given 
ir
uit is asso
iative.An operator Æ is asso
iative, if for every x; y; z it holds that (x Æ y) Æ z =x Æ (y Æ z). Are all the adders asso
iative?4.6 Verify that the 
arry-save adder you de�ned in the previous 
hapter isequivalent to a binary adder. Be 
areful how you formulate your property,sin
e the inputs do not have the same shape.4.7 Prove that, for an adder and subtra
tor of your 
hoi
e, it holds that x+(y� z) = (x+y)� z. What extra 
ondition should hold for y and z? Howdo you express that?4.8 (Haskell) How would you pro
eed if you want to verify a property for allsizes between, say, 1 and n?
28



Chapter 5Sequential Cir
uitsIn this 
hapter we des
ribe how to deal with sequential 
ir
uits in Lava. Se-quential 
ir
uits in Lava are syn
hronous 
ir
uits, whi
h means that there is oneglobal 
lo
k a�e
ting all delay 
omponents in the 
ir
uit.5.1 The Delay ComponentA new 
omponent in sequential 
ir
uits is the delay 
omponent. It is a 
ir-
uit with one parameter (the initial output of the delay) and one input, whi
hbe
omes its output in the next 
lo
k 
y
le.Here is an example of a simple 
ir
uit 
alled edge, that 
he
ks if its inputhas 
hanged with respe
t to its previous input. It uses a delay 
omponent toremember the previous input.edge inp = 
hangewhereinp' = delay low inp
hange = xor2 (inp, inp')We 
an simulate a sequential 
ir
uit by using the operation simulateSeq. Itneeds a 
ir
uit and a list of inputs. The list of inputs is interpreted as thedi�erent inputs at ea
h 
lo
k ti
k.Main> simulateSeq edge [high, low, low, high℄[high, high, low, high℄Here is another sequential 
ir
uit, whi
h is 
alled toggle. It has an internalstate, whi
h it outputs, and it takes one input. If the input is high, it 
hangesthe state. If not, it stays the same. 29



toggle 
hange = outwhereout' = delay low outout = xor2 (
hange, out')As we 
an see, the de�nition of out' is dependent on out, whose de�nition isdependent on out'. Thus, there is a loop in the 
ir
uit. Loops are not allowedin 
ombinational 
ir
uits, sin
e the meaning of su
h 
ir
uits is un
lear. But insequential 
ir
uits, they are essential to implement any interesting behavior.Simulating toggle gives:Main> simulateSeq toggle [high, low, low, high℄[high, high, high, low℄5.2 Multiple DelaysWe have seen how we 
an delay a signal one time instant, so that we 
an refer tothe signal's previous value. Sometimes, we want to delay a signal multiple timeinstan
es. We 
an do this by de�ning a parametrized 
ir
uit, 
alled delayN. Ithas two parameters, n, the number of delays to use, and init, the initial valuesof these delays.We use re
ursion over n to de�ne this 
ir
uit.delayN 0 init inp = inpdelayN n init inp = outwhereout = delay init restrest = delayN (n-1) init inpA useful sequential 
ir
uit that we 
an implement using delayN, is 
alled puls.It has no inputs, one output, and one parameter n. Its output is normally low,ex
ept on the n-th, 2n-th, 3n-th, ... 
lo
k ti
k, where it outputs high.We implement the 
ir
uit by 
reating n�1 delay 
omponents in a row, initializedby low, ended with one delay 
omponent initialized by high.puls n () = outwhereout = delayN (n-1) low lastlast = delay high outNote that we need to use a loop ba
k here. This implementation is not optimal,in the sense that it uses too many delay 
omponents; see exer
ise 5.6.Simulating puls 3 gives: 30



Main> simulateSeq (puls 3) [(), (), (), (), (), (), ()℄[low, low, high, low, low, high, low℄5.3 CountersAn n-bit 
ounter is a 
ir
uit that outputs an n-bit binary number at every 
lo
kti
k, starting with 0, and in
reasing it by 1 every 
lo
k ti
k. We implement thisby keeping an internal state, whi
h is a binary number. The 
ir
uit takes oneparameter, whi
h indi
ates the number of bits to use, and has no inputs.
ounter n () = number'wherenumber' = delay (zeroList n) number(number, 
arryOut) = bitAdder (high, number')We use the fun
tion zeroList, whi
h 
reates a list of n zeros, denoting theinitial value. Note that the delay 
omponent not only works for bits, but alsofor example for pairs of bits and lists (as in this 
ase).Simulating 
ounter gives:Main> simulateSeq (
ounter 3) [(), (), ()℄[[low, low, low℄, [high, low, low℄, [low, high, low℄℄A variant on this 
ir
uit is the up-
ounter, whi
h takes an input, whi
h indi
atesif the number should in
rease or not. In this 
ase, we want the desired in
reaseto take e�e
t immediately, so we output the number before we delay it.
ounterUp n up = numberwherenumber' = delay (zeroList n) number(number, 
arryOut) = bitAdder (up, number')Simulating 
ounterUp gives:Main> simulateSeq (
ounterUp 3) [high, low, high℄[[high, low, low℄, [high, low, low℄, [low, high, low℄℄5.4 SequentializationIn 
hapter 3, we have seen a 
ombinational binary adder. As an input, it takestwo n-bit binary numbers, and adds them up. For large n, this 
ir
uit 
an getquite large, whi
h means it takes more 
ir
uit area and 
onsumes more power,and will need a lower 
lo
k frequen
y to work properly.31



We 
an make use of the regularity in the 
ir
uit to make a small version ofthe 
ir
uit that however needs several 
lo
k 
y
les to 
ompute the result. If weapply this te
hnique on the binary adder, we obtain a sequential adder. It takesone new digit of both binary numbers at ea
h 
lo
k 
y
le. This is sometimes
alled bit serial.We 
an implement this by storing the 
arry as an internal state, so that the
urrent 
arry-in of the 
ir
uit is the previous 
arry-out.adderSeq (a,b) = sumwhere
arryIn = delay low 
arryOut(sum,
arryOut) = fullAdd (
arryIn, (a,b))Simulating adderSeq gives:Main> simulateSeq adderSeq [(high,low), (high,high), (low,high)℄[high, low, low℄Be
ause we �nd that many sequential 
ir
uits have this stru
ture, we de�ne asequential 
onne
tion pattern, 
alled rowSeq whi
h builds a row of 
ir
uits, justlike row, but interprets the row over time.rowSeq 
ir
 inp = outwhere
arryIn = delay zero 
arryOut(out, 
arryOut) = 
ir
 (
arryIn, inp)Worth noting is that we make use of the generi
 delay and zero 
omponenthere. The stru
ture is exa
tly the same as in the sequential adder.Re
alling the de�nition of a binary adder in terms of row, we 
an repeat it andimplement a sequential adder in terms of rowSeq:adder' = row fullAdd -- 
ombinationaladderSeq' = rowSeq fullAdd -- sequentialIn this way, using a 
onne
tion pattern to de�ne a 
ombinational 
ir
uit helpsus to de�ne the sequential version of the 
ir
uit.5.5 Variations on rowSeqThe sequential row 
onne
tion pattern is sometimes useful, but 
ertainly notalways. If we use it to implement a sequential adder, as we did, we 
an also useit to add up \in�nitely big" binary numbers. The addition never ends, so we
an never start over adding two new numbers.32



Therefore, it is handy to have a 
onne
tion pattern, 
alled rowSeqReset, whi
htakes one extra input reset. When reset is high, the internal 
arry state willbe reset to zero.rowSeqReset 
ir
 (reset,inp) = outwhere
arryIn = delay zero 
arry
arry = mux (reset, (
arryOut, zero))(out, 
arryOut) = 
ir
 (
arryIn, inp)We use the standard multiplexer 
omponent mux here, whi
h 
hooses the left orright 
omponent of an input pair, depending on if the �rst in
oming signal islow or high, respe
tively.Now we 
an de�ne a resettable sequential adder adderSeqReset as follows:adderSeqReset = rowSeqReset fullAddVery often, it is the 
ase that the internal 
arry state has to be reset periodi-
ally, that is, on every n-th, 2n-th, ... 
lo
k ti
k. Therefore, we 
reate a thirdsequential row variation, whi
h takes a parameter n, whi
h indi
ates the resetperiod.rowSeqPeriod n 
ir
 inp = outwherereset = puls n ()out = rowSeqReset 
ir
 (reset, inp)Now we 
an de�ne a sequential adder adderSeqPeriod adding n-bit numbersas follows:adderSeqPeriod n = rowSeqPeriod n fullAdd5.6 Exer
ises5.1 De�ne a 
ir
uit evenSoFar, whi
h takes one input, and has one output.The output is high if and only if the number of high inputs has been evenso far.Simulate your 
ir
uit in Lava and generate VHDL.5.2 Implement a flipFlop 
ir
uit, whi
h takes two inputs (set, reset), andhas one output. The 
ir
uit keeps an internal state, whi
h is set to highwhen set is high, and set to low when reset is high. The internal stateis also the output. You may de
ide yourself what to do when both inputsare high. 33



5.3 Implement a 
lo
ked delay 
omponent delayClk. It has one parameter,the initial state, and it has an extra input 
lk. Only when 
lk is high, theoutput 
hanges to the state and the state 
hanges to the 
urrent input.5.4 De�ne a 
ir
uit 
alled always, whi
h has one input and one output. Theoutput is high as long as the input stays high. If the input drops to low,then the output stays low forever.5.5 De�ne three di�erent 
ir
uits that output high only on every 6th 
lo
kti
k (so it happens on the 6th, 12th, 18th, ... et
.). Use 6 delay elementsin the �rst 
ir
uit, 5 delay elements in the se
ond, and 3 in the last.Is it possible to de�ne this 
ir
uit with less than 3 bit-level delay elements?5.6 De�ne a puls generator puls2 whi
h has a parameter k, and generates apuls every 2k-th 
lo
k ti
k. Your design should use a minimal number ofdelay 
omponents (how many is that?).5.7 De�ne an up-down 
ounter. The 
ounter gets a pair of inputs. If the leftinput is high, it 
ounts up. Otherwise, if the right input is high, it 
ountsdown. Otherwise, the state stays the same.5.8 De�ne a 0-to-9 
ounter. The 
ounter has no inputs, and a 4-bit numberas output. Initially, the output starts at 0, and in
rements at every 
lo
kti
k, but after the output 9, it returns to 0.Conne
t the display from exer
ise 2.6 to your 
ounter.5.9 De�ne a syn
hronizer, whi
h has two inputs go1 and go2, and one outputgo. The output only be
omes true when both go1 and go2 have been highin the past or are high now sin
e the last go. .Here is an example simulation:Main> simulateSeq syn
hronize[(low,high),(high,low),(high,high),(high,low),(low,low),(low,high)℄[low, high, high, low, low, high℄5.10 De�ne a 
ir
uit 
alled outputList, whi
h has one parameter, a list ofvalues, no inputs, and one output. The 
ir
uit outputs the elements inthe parameter list one by one at every 
lo
k ti
k repeatedly. Here is anexample simulation:Main> simulateSeq (outputList [low, low, high℄)[(),(),(),(),(),()℄[low, low, high, low, low, high℄
34



Chapter 6Sequential Veri�
ationIn this 
hapter we des
ribe how we 
an verify properties of sequential 
ir
uits.We restri
t ourselves to sequential safety properties.6.1 Sequential Safety PropertiesLet us take a look at how to de�ne properties about sequential 
ir
uits. Inprin
iple, we 
an use the same te
hniques as we did with 
ombinational 
ir
uits.Let us take a look at some examples.Here is how we 
an 
ompare the two sequential adders from se
tion 5.4.prop_SameAdderSeq inp = okwhereout1 = adderSeq inpout2 = adderSeq' inpok = out1 <==> out2Here is another example; the 
omposition of edge and toggle from se
tion 5.1gives the identity 
ir
uit. This means that the input is the same as the output.prop_ToggleEdgeIdentity inp = okwheremid = toggle inpout = edge midok = out <==> inpThe properties we 
an des
ribe in this way are 
alled sequential safety properties.Re
all that safety properties are properties whi
h 
an be des
ribed as a 
ir
uitwith one output, whi
h should always be true (or never be false) for the propertyto hold. 35



Examples of properties whi
h are not safety properties are for example livenessproperties. These 
an assert that a 
ertain 
ondition must hold at some pointin the future, for example.6.2 Sequential Logi
Apart from the te
hniques we used to de�ne 
ombinational properties, there arealso spe
ial te
hniques we 
an apply to de�ne sequential properties.� When we want to refer to values of signals at di�erent time instan
es, we
an use a delay to get a

ess to previous values. But be 
areful aboutwhat initial value you 
hoose for this use of delay.� When we want a 
ertain property only to be true when a 
ertain 
onditionholds, whi
h does not ne
essarily hold all the time, we 
an use logi
alimpli
ation. Impli
ation is implemented by the Lava gate impl, and alsoby the binary operator ==>.Here is an example. Suppose we want to de�ne the following property aboutthe toggle 
ir
uit: "if the input is high, then the 
urrent output is di�erentfrom the previous output".The way we de�ne this in Lava is:prop_ToggleTogglesWhenHigh inp = okwhereout = toggle inpout' = delay low out
hange = xor2 (out, out')ok = inp ==> 
hangeFirst, we 
ompute the output out from toggle. Then, we use a delay 
omponentto get a

ess to the previous output out'. We de�ne the situation 
hange inwhi
h these outputs di�er. And then we say: "if the input is high, then theoutputs di�er".6.3 Veri�
ationAfter de�ning these properties, we would like to formally verify them. Veri�-
ation of a sequential property means that we have to prove that the propertyholds at all times. In Lava, we do this by indu
tion over time. It works asfollows. 36



Firstly, we have to do the base 
ase: proving that the property holds for the �rsttime instan
e. Sin
e looking at just one time instan
e does not involve time atall, we 
an use the same te
hniques as we did in the 
ombinational 
ase.Then, we do the indu
tive step. We want to prove that if the property holds attime t, it also holds at time t+1. We do this as follows: we 
reate an arbitrarytime instan
e by �lling the states of the 
ir
uits with fresh variables. Then, werun the 
ir
uit on
e on that state, obtaining an output and new state values.Then we assert that the output is true, and run the 
ir
uit on the new statevalues. Finally, we need to prove that the new output is true.After proving the base 
ase and the indu
tive step, we have proved our property.Here is what happens in Lava:Main> verify prop_ToggleEdgeIdentityProving: base 1 ... Valid.Proving: step 1 ... Valid.--Result: Valid.Lava> verify prop_ToggleTogglesWhenHighProving: base 1 ... Valid.Proving: step 1 ... Valid.--Result: Valid.We give a more detailed explanation of indu
tion in the next se
tion.6.4 Indu
tionTo perform indu
tion on a Lava property, we 
onvert it to a logi
al formularelating input `inp' and old state variables `qold' to output `ok' and new statevariables `qnew'. Whenever we use a signal-level delay 
omponent in a 
ir
uitor property, we introdu
e one state variable.In this translation, we also introdu
e a spe
ial input, 
alled `init', whi
h is trueonly in the �rst time instan
e. So, after we have translated the property, wehave a logi
al formula of the following form:T (init; inp; qold; qnew; ok)This formula is usually 
alled the transition relation.A very simple way to prove that the output `ok' is always true, would be to tryproving the following: T (init; inp; qold; qnew; ok)) ok (6.1)37



Unfortunately however, this method does not work very often, be
ause evenwhen the property is always true in any run of the 
ir
uit, it might not betrue in every possible 
on�guration of the state variables. This is why we useindu
tion.First, we prove the base 
ase, that is: `ok' is true at the �rst time instan
e. Inthis 
ase, we know that the variable `init' is true, so we prove:T (true; inp; qany; qnew; ok)) ok (6.2)This is usually easy, sin
e initially, we know the values of the state variables.Then, we prove the indu
tion step, that is: if `ok' is true at time t, it is also trueat time t+ 1. So, we are looking at two time instan
es of the property.T (init1; inp1; q1; q2; true)T (false; inp2; q2; q3; ok2) �) ok2 (6.3)Note how we 
onne
t the di�erent time instan
es 1 and 2 by reuse of the statevariables `q2' as new states in the �rst time instan
e and as old states in these
ond time instan
e. Also note that we use false for the value of `init' in these
ond time instan
e, be
ause we know it is not the initial time instan
e. Andwe use true for the value of ok in the �rst time, sin
e we may assume that theindu
tion hypothesis holds.If we have proven the two formulas 6.2 and 6.3, then we know that `ok' must betrue at all time instan
es. This is the basi
 notion of indu
tion.6.5 Indu
tion With DepthUnfortunately, the method of indu
tion mentioned in the previous se
tion is not
omplete. This means that there are properties whi
h are true, whi
h 
annotbe proven by simple indu
tion.Here is an example: Consider the toggle 
ir
uit from se
tion 5.1 and the puls
ir
uit from se
tion 5.2. We might want to verify that these 
ir
uits do exa
tlythe opposite if toggle always has a high input, and puls has a period of 2.prop_Toggle_vs_Puls () = okwhereout1 = toggle highout2 = puls 2 ()ok = inv (out1 <==> out2)This 
annot be proven by normal indu
tion, sin
e the puls 
ir
uit has two delay
omponents in a row, so it is not enough to look at two time instan
es at a time.So, instead, we will look at more time instan
es in the indu
tion proof. Weintrodu
e the 
on
ept of indu
tion with depth k, whi
h means that the base38
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Figure 6.1: Base 
ase for indu
tion with depth k.
ase proves that the �rst k steps are okay, and the step 
ase may assume that asequen
e of k steps went okay, in order to prove that the k + 1-th step is okay.Here is the 
on
rete formula for the base 
ase (see also �gure 6.1):T (true; inp1; q1; q2; ok1)T (false; inp2; q2; q3; ok2): : :T (false; inpk; qk; qk+1; okk) 9>>=>>;) ok1; ok2; : : : ; okk (6.4)Note that we use the same tri
k of reusing the state variables of 
onse
utivetimes to line up the time instan
es. Here is the 
on
rete formula for the step
ase (see also �gure 6.2): T (init1; inp1; q1; q2; true)T (false; inp2; q2; q3; true): : :T (false; inpk; qk; qk+1; true)T (false; inpk+1; qk+1; qk+2; okk+1) 9>>>>=>>>>;) okk+1 (6.5)So, for any depth k, if we 
an prove the formulas 6.4 and 6.5, we have provedthat `ok' holds at every time instan
e. Note that if we 
hoose k = 1, then weare ba
k to normal indu
tion again.Here is what happens when we verify prop Toggle vs Puls in Lava:Main> verify prop_Toggle_vs_PulsProver: base 1 ... Valid.Prover: step 1 ... Falsifiable.Prover: base 2 ... Valid. 39
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Figure 6.2: Indu
tive step for indu
tion with depth k.Prover: step 2 ... Valid.--Result: Valid.So, the veri�er realizes that indu
tion depth 1 is not enough for the step to gothrough, and in
reases the indu
tion depth automati
ally. It will keep in
reasingthe depth until either the base 
ase turns out to be false, or until it manages toprove both the base 
ase and the step 
ase.If we want to spe
ify a spe
i�
 depth to do the indu
tion for, we 
an use theoperation verifyWith, whi
h takes an extra list of verify options.Main> verifyWith [Depth 2℄ prop_Toggle_vs_PulsProver: base 2 ... Valid.Prover: step 2 ... Valid.--Result: Valid.The operation verify is a
tually just a short-hand for verifyWith [Depth 1,In
reasing℄. With the option Depth, one 
an spe
ify the indu
tion depth.In
reasing means that it will keep in
reasing the depth until it proves ordisproves the property.
40



6.6 Indu
tion With Restri
ted StatesUnfortunately, even indu
tion with depth is not a 
omplete method. This meansthat there exists properies whi
h are always true, but for whi
h there exists nok su
h that the property 
an be proven by indu
tion with depth k.An example of su
h a property is to 
he
k if a periodi
 sequential adder of period2 is equivalent to a resettable adder whi
h we reset every se
ond 
lo
k ti
k.prop_AdderPeriod2 ab = okwheresum1 = adderSeqPeriod 2 abtwo = delay low (inv two) -- 010101...sum2 = adderSeqReset (two, ab)ok = sum1 <==> sum2Verifying this property results in an in�nite loop:Main> verify prop_AdderPeriod2Prover: base 1 ... Valid.Prover: step 1 ... Falsifiable.Prover: base 2 ... Valid.Prover: step 2 ... Falsifiable....The problem is that there exist a lot of state variable 
on�gurations that nevero

ur when we run the 
ir
uit, but are logi
ally possible. In some 
ases, theseso-
alled unrea
hable states mess up the indu
tion proof. Even assuming thatthe property we want to prove is true for a very large number k of 
onse
utiverunning steps (like we do in the indu
tion step) is not enough to ensure we arein a rea
hable state. The reason for this is that we might be running around inthe unrea
hable states in 
ir
les for these k steps, so in
reasing k does not help.Instead, we will strengthen the indu
tion step by saying that all k+1 states wevisit in the formula must be distin
t. In this way, we ensure that we are notrunning around in 
ir
les.The new formula for the indu
tive step be
omes:T (init1; inp1; q1; q2; true)T (false; inp2; q2; q3; true): : :T (false; inpk; qk; qk+1; true)T (false; inpk+1; qk+1; qk+2; okk+1)q1 6= q2; q1 6= q3; : : : ; qk�1 6= qk+1; qk 6= qk+1
9>>>>>>=>>>>>>;) okk+1 (6.6)For this method, proving formulas 6.4 and 6.6 for some k is enough to provethe `ok' holds at all time instan
es. Moreover, this is a 
omplete method! This41



means that, if the property holds, there is always a k su
h that we 
an prove itby indu
tion with depth k with restri
ted states.To use indu
tion with restri
ted states in Lava, we 
an use the option Restri
tStates:Main> verifyWith [Restri
tStates,In
reasing℄ prop_AdderPeriod2Proving: base 1 ... Valid.Proving: step 1 ... Falsifiable....Proving: base 5 ... Valid.Proving: step 5 ... Valid.--Result: Valid.We needed indu
tion depth 5 for this property. Note that we used the optionIn
reasing also, otherwise the veri�
ation would have stopped at depth 1.6.7 Exer
ises6.1 Why is simulation not enough to do sequential veri�
ation?6.2 Verify that the edge 
ir
uit and the 
ir
uit evenSoFar from exer
ise 5.1always have opposite outputs if fed with the same inputs.6.3 Verify that the three di�erent implementations of a puls generator withperiod 6 in exer
ise 5.5 are equivalent. What is the indu
tion depth thatis needed?6.4 Verify the obvious relationship between the puls 
ir
uit and the puls2
ir
uit from exer
ise 5.6, for di�erent values of k. What is the indu
tiondepth that is needed?6.5 Verify that the up-part of the up-down 
ounter you de�ned in exer
ie 5.7 isequivalent to the up-
ounter from se
tion 5.3. Do this for di�erent valuesof n.6.6 De�ne and verify the following property: "if the input to toggle is thesame twi
e in a row, then the 
urrent output is the same as the outputtwo steps ago".6.7 Consider the following general property: "As long as A holds, then Bmust hold". How would you de�ne su
h a property? Hint: use the always
ir
uit from 5.4.6.8 Show that doing indu
tion with depth 1 amounts to normal indu
tion.6.9 (*) Show that doing indu
tion with depth k is sound, that is, if we haveproven the base 
ase and the indu
tive step, then we have really proventhat the property always holds. 42



6.10 (**) Show that doing indu
tion with depth k and restri
ted states is sound.You may use the fa
t that exer
ise 6.9 holds.6.11 (**) Show that doing indu
tion with depth k and restri
ted states is 
om-plete.
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Chapter 7Time TransformationsIn this 
hapter, we will see some te
hniques with whi
h we 
an 
ompare 
ir
uitsthat operate at di�erent 
lo
k rates.7.1 Timing IssuesSo far, when we were 
omparing two 
ir
uits, we always assumed that they
onsumed their inputs and produ
ed their outputs at the same rate. Let ustake a look at an example where this is not the 
ase: 
omparing a sequentialadder against a 
ombinational adder.The sequential adder (see �gure 7.1) takes in a pair of bits every 
lo
k ti
k, andoutputs the sum, and remembers the 
arry for the next 
lo
k 
y
le. The 
arryis reset every n-th 
lo
k ti
k. Here is how we de�ned it:adderSeqPeriod n =rowSeqPeriod n fullAddThe 
ombinational adder (see �gure 7.2) takes in two n-bit binary numbers andprodu
es the sum as a n-bit binary number in one 
lo
k ti
k. Here is how wede�ne it:adderCom abs = sumwhere(sum, 
arryOut) = row fullAdd (low, abs)
b
a sum

Seq
ADDERFigure 7.1: A sequential adder.44
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Figure 7.3: The slowed down 
ombinational adder.For 
onvenien
e, we abstra
t away from the 
arry.There are two basi
 methods for 
omparing these two 
ir
uits.The �rst method involves slowing down the 
ombinational adder, so that ittakes more 
lo
k ti
ks to 
al
ulate the sum. So instead of taking n pairs of bitsat a time, it takes them in one-by-one, and when it has gotten all of them, itoutputs the sums one-by-one. The 
ir
uits now operate at the same rate, and
an be 
ompared by 
onventional methods.The se
ond method involves speeding up the sequential adder, so that it 
om-putes several results in one 
lo
k ti
k. So instead of taking in one pair of bitsat a time, it takes in n pairs of bits, and produ
es n sums in one 
lo
k 
y
le.7.2 Slowing DownThe �rst te
hnique we des
ribe slows down the 
ombinational 
ir
uit. So, in-stead of 
omputing everything in one 
lo
k ti
k, we for
e it to take n 
lo
k ti
ksinstead. We do this by transforming the 
ir
uit into a 
ir
uit that looks just likethe sequential version: it takes one input and produ
es one output at a time(see �gure 7.3).Sin
e the inputs 
ome in one-by-one, we have to wait for n 
lo
k ti
ks until wehave the full input available for the 
ir
uit. This is done by the serial to parallel
onverter (see �gure 7.4). We 
an implement this 
omponent as follows:45
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serialToParallel 1 inp = [inp℄serialToParallel n inp = inp : restwhereinp' = delay zero inprest = serialToParallel (n-1) inp'Then we have to take 
are of the outputs. At every 
lo
k ti
k, the 
ombinational
ir
uit produ
es n outputs, but they only make sense on every n-th, 2n-th, ...
lo
k ti
k, be
ause then we have the right input. Therefore, we need to add a
omponent on the outputs that spreads out the outputs of the important 
lo
kti
ks over the other 
lo
k ti
ks. This is done by the parallel to serial 
onverter(see �gure 7.5). We 
an implement this 
omponent as follows:parallelToSerial (load, [inp℄) = outwhereout = mux (load, (low, inp))parallelToSerial (load, inp:inps) = outwherefrom = parallelToSerial (load, inps)prev = delay low fromout = mux (load, (prev, inp))Then, we 
an put these 
omponents together in a new sequential adder:adderSlowedDown n ab = sumwhereabs = serialToParallel n absums = adderCom absload = puls n ()sum = parallelToSerial (load, sums)The load input to the parallel to serial 
onverter is a puls with period n. Letus take a look at how this sequential adder adds up binary numbers for n = 4.
lo
k 1 2 3 4 5 6 7 8 9input ab1 ab2 ab3 ab4 ab'1 ab'2 ab'3 ab'4 ab"1output 0 0 0 s1 s2 s3 s4 s'1 s'2As we 
an see, the results si are delayed by n� 1 
lo
k ti
ks. This is of 
oursebe
ause the result is 
omputed at the n-th, 2n-th, ... 
lo
k ti
k. So, when we
ompare this with the original sequential adder, we have to slow the output ofthat one down with n� 1 delay 
omponents. Here is the property:prop_AdderSeqSlowedDown n ab = okwhere 47
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Figure 7.7: A time transformed sequential 
ir
uit F .sum1 = adderSeqPeriod n absum1' = delayN (n-1) low sum1sum2 = adderSlowedDown n abok = sum1' <==> sum2Unfortunately, this way of spe
ifying the property introdu
es a lot of extralogi
, and moreover, extra state. This makes the veri�
ation of these kind ofproperties very hard. In parti
ular, the indu
tion methods need an extremelyhigh indu
tion depth. In the next se
tion, we will see a simpler and more dire
tmethod for spe
ifying retiming properties.7.3 Speeding UpAnother te
hnique for retiming works as follows. Instead of slowing down the
ombinational 
ir
uit, we speed up the sequential 
ir
uit. Unfortunately, this
annot be done by adding retiming 
omponents around the 
ir
uit. Instead,48



we transform the 
ir
uit into another 
ir
uit. This is done by a built-in Lavaoperation, 
alled timeTransform.The idea is that we make the state of the sequential 
ir
uit expli
it by turninga sequential 
ir
uit F into a 
ombinational 
ir
uit Fexpl, that takes in the oldstate as an extra input, and has the new state as an extra output (see �gure7.6).The next step is to 
reate a 
olumn of Fexpl, where we thread the states throughas 
arry. The last step is to make the state impli
it again by adding delay
omponents and a loop ba
k (see �gure 7.7).All this is implemented by Lava's primitive operation timeTransform. So, we
an make a new adder from the sequential adder, by using time transformation:adderSpedUp abs = sumswheresums = timeTransform (adderSeqPeriod n) absn = length absThe fun
tion length 
omputes the length of a list, so that we know what periodthe sequential adder requires.The property of 
omparing the two di�erent adders now looks as follows:prop_AdderSeqSpedUp abs = okwheresum1 = adderSpedUp abssum2 = adderCom absok = sum1 <==> sum2Be
ause this is a property that has a list as an input, we need to be expli
itabout the length of the list:prop_AdderSeqSpedUp_ForSize n =forAll (list n) $ \abs ->prop_AdderSeqSpedUp absVerifying this by indu
tion is easy, and needs indu
tion depth 2 for any n.7.4 Exer
ises7.1 Consider the following 
ir
uit:highLow () = [high, low℄Verify that the 
ir
uit toggle behaves twi
e as slow as this 
ir
uit if itsinput is always high. Do this by slowing down and speeding up.49



7.2 What goes wrong when we try using the slowing down method for 
ompar-ing two sequential 
ir
uits that operate at di�erent rate? Also see exer
ise7.5.Hint: what happens to the state of a 
ir
uit that is slowed down?7.3 Does the speeding up method work when we use it for 
omparing twosequential 
ir
uits that operate at di�erent rate?7.4 Design a property 
onne
tion pattern that veri�es two 
ir
uits that operateat di�erent rates equivalent. You may de
ide yourself what method to
hoose.7.5 Can you �nd a method to �x the problem in exer
ise 7.2?Hint: use 
lo
ked delays (see exer
ise 5.3).
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Chapter 8More 
onne
tion patternsIn this 
hapter, we �rst review some standard 
onne
tion patterns, and then
onsider the problem of des
ribing tree shaped 
ir
uits and butter
y 
ir
uits.These are 
ommon 
ir
uit stru
tures in digital signal pro
essing.8.1 Conne
tion patterns revisitedIn an earlier 
hapter, we saw the serial 
onne
tion pattern, whi
h 
onne
ts two
ir
uits in series. It is 
onvenient to have an in�x version, so that we 
an writef ->- g, instead of serial f g, see �gure 8.1. Note that serial 
omposition isasso
iative:f ->- (g ->- h) === (f ->- g) ->- hSometimes we want to 
ompose a list of 
ir
uits. We 
all this 
ompose.
ompose [℄ inp = inp
ompose (
ir
:
ir
s) inp = outwherex = 
ir
 inpout = 
ompose 
ir
s xNote that we 
ould have written this de�nition in a di�erent style, using theserial 
onne
tion pattern.
ompose1 [℄ inp = inp
ompose1 (
ir
:
ir
s) inp = outwhereout = (
ir
 ->- 
ompose1 
ir
s) inp51



f g
Figure 8.1: f ->- gWe 
ould go even further and drop the 
ir
uit inputs (inp) from ea
h side ofthe de�nitions. The identity 
ir
uit (whi
h just returns its input) is written id.This is a de�nite 
hange of style to one in whi
h the emphasis is on 
onne
tionpatterns.
ompose2 [℄ = id
ompose2 (
ir
:
ir
s) = 
ir
 ->- 
ompose2 
ir
sAll of these styles are equally good, and the 
hoi
e is really just a matter oftaste. In fa
t it is quite 
onvenient to be able to mix styles, sometimes 
hoosingone and sometimes the other.Out of 
ompose, we 
an easily make a 
onne
tion pattern, 
alled 
omposeN, that
omposes several 
opies of the same 
ir
uit in sequen
e.
omposeN n 
ir
 = 
ompose (repli
ate n 
ir
)Main> simulateSeq (
omposeN 5 in
) [0,2,4,6℄[5,7,9,11℄Here in
 is the 
ir
uit that adds one to its integer input.We also saw the par 
onne
tion pattern: par f g takes a pair of inputs, passingthe �rst to f and the se
ond to g, and 
ombining the results into a pair. Thein�x version of par f g is written f -|- g.A version of par that \does" f to the �rst half of a list and g to the se
ond halfalso turns out to be useful. We 
all this pattern parl. First, we de�ne a helperfun
tion, halveList, whi
h divides a list in two.halveList inps = (left,right)whereleft = take half inpsright = drop half inpshalf = length inps `div` 252
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Figure 8.2: map gMain> simulate halveList [high,low,high,low℄([high,low℄,[high,low℄)Then, we de�ne the 
ir
uit append, whi
h takes a pair of lists of length mand n, and joins them together (or 
on
atenates them), to give a list of lengthm+n. This 
ir
uit is de�ned in terms of Haskell's built-in in�x list 
on
atenateoperator (++).append (a,b) = a ++ bLastly, we de�ne parl:parl 
ir
1 
ir
2 =halveList ->- (
ir
1 -|- 
ir
2) ->- appendMain> simulate (parl reverse id) [1..16℄[8,7,6,5,4,3,2,1,9,10,11,12,13,14,15,16℄Sometimes, we want to perform an operation of ea
h element of a list of signalsor bus. For this we use the 
onne
tion pattern map, whi
h you will have seenif you have used a fun
tional programming language. For example, map invinverts ea
h of a list of bits.Main> simulate (map inv) [high, low, high, low℄[low,high,low,high℄Buses need not 
ontain only lists of bits. They 
an be more stru
tured, sothat our 
ir
uit des
riptions 
an mat
h the logi
al stru
ture of the 
ir
uit. Forexample, the 
ir
uit map fullAdd makes perfe
t sense.Main> simulate (map fullAdd)[(low,(high,low)),(high,(high,high)),(low,(high,high))℄[(high,low),(high,high),(low,high)℄53
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Figure 8.3: tri fFigure 8.2 shows a map in the 
ase where the input is a 4-list (of pairs or 2-lists).Strangely enough, the 
onne
tion pattern that pla
es zero 
opies of a 
ir
uiton the �rst signal in a bus, one 
opy on the next, two on the next, and so on,is one that arises often in hardware design. It is a sort of mixture of map and
omposeN. We 
all it tri for triangle. You should understand why when youlook at the diagram in �gure 8.3. We leave the de�nition of tri as exer
ise 8.3.An example of the use of triangle isMain> simulate (tri in
) (repli
ate 10 0)[0,1,2,3,4,5,6,7,8,9℄The 
onne
tion patterns that we have seen in this se
tion are all useful in manydi�erent kinds of 
ir
uits. Now let us 
onsider how to des
ribe tree shaped
ir
uits.8.2 Tree shaped 
ir
uitsCir
uits in the shape of trees, like that shown in �gure 8.4, 
an be used to sys-temati
ally apply a fun
tion that 
ombines data values together to a 
olle
tionof data. A binary tree 
ir
uit �rst 
ombines ea
h half of the input values, usingtwo smaller trees and then 
ombines the two remaining results. One exampleof su
h a 
ir
uit is an adder tree that adds up a list of numhers.The outline of the re
ursive de�nition of a tree 
onne
tion pattern is:tree 
ir
 [inp℄ = ... inp ...tree 
ir
 inps = ... tree 
ir
 ... tree 
ir
 ... 
ir
 ... inpsWe 
all the parameter 
ir
 the 
omponent 
ir
uit. The �rst line in this outlinede�nes what should be done when we get down to the base 
ase of the re
ursion.The se
ond line should use two 
opies of tree 
ir
 and 
ombine their results54
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Figure 8.4: A tree shaped 
ir
uitusing 
ir
. Exa
tly how these de�nitions should look depends partly on whatthe 
omponent 
ir
 looks like, and in parti
ular on its type.For example, if 
ir
 is a binary fun
tion taking a pair of inputs and returninga single output, then it makes sense to make the following de�nition of a binarytree 
onne
tion pattern, binTree.binTree 
ir
 [inp℄ = inpbinTree 
ir
 inps =(halveList ->- (binTree 
ir
 -|- binTree 
ir
) ->- 
ir
) inpsThis gives the behaviour that we expe
t: a binary tree of 
ir
 
omponents getsbuilt.An example use of a tree 
onne
tion pattern is when we want to build a 
ir
uitthat adds up a lot of numbers. One way of doing this to make a so-
alled addertree. To do this, we need a binary adder that adds two n bit numbers, to givean n + 1 bit number. This means that we must in
lude the 
arry out in theresult. The resulting adder is therefore slightly di�erent from those that we sawearlier. We 
all it binAdder.binAdder (as, bs) = 
s ++ [
arryOut℄where(
s, 
arryOut) = adder (low, (as, bs))And here is the de�nition of our adder tree addTree:addTree = binTree binAdderTo test it, we wrap the 
ir
uit in 
onverters from integer to binary and ba
k.wrapAddTree n =map (int2bin n) ->- addTree ->- bin2int55



Main> simulate (wrapAddTree 8) [3,4,5,6,10,9,8,7℄52Beware, this adder tree works only for input lists whose length is a power oftwo. Exer
ise 8.5 asks you to de�ne an adder tree that works for any size.8.3 Des
ribing Butter
y Cir
uitsButter
y 
ir
uits are 
ir
uits with a parti
ular re
ursive stru
ture. Figures 8.6and 8.7 show two su
h 
ir
uits and also indi
ate their re
ursive stru
tures byshowing, by means of dotted boxes, where to �nd sub-
ir
uits that themselveshave the same re
ursive stru
ture. It turns out that these two 
ir
uits are infa
t equivalent: the same network of 
omponents 
an be re
ursively des
ribedin two 
ompletely di�erent ways. And indeed it turns out that there are manymore ways to des
ribe the same network. We will study some of them.Butter
y 
ir
uits are used for example to build routing networks from swit
hes,and in building eÆ
ient sorting 
ir
uits. Perhaps the best known butter
y-like 
ir
uit is the standard Cooley-Tukey algorithm [5℄ for 
omputing the FastFourier Transform (FFT). We will not 
onsider the FFT here. The twiddle-fa
tors 
ompli
ate matters a bit. The 
ir
uit is not quite as uniform as thosethat we 
onsider. However, the interested reader is referred to [3℄, whi
h showshow to des
ribe and 
ompare various FFT 
ir
uits in an older version of Lava.For more details about how the veri�
ation is a
tually done, see [2℄.In this se
tion, we �rst introdu
e two new 
onne
tion patterns, and then showthat butter
y 
ir
uits 
an be made with just these two patterns and serial
omposition.The �rst of these patterns we 
all two. The 
ir
uit two 
ir
 
ontains two 
opiesof 
ir
. The �rst of these operates on the �rst half of the input list, and these
ond on the se
ond half. Ea
h 
opy of 
ir
 should have a list as output, andthe two resulting lists are appended. This pattern is easily de�ned in terms ofparl, whi
h was introdu
ed earlier in this 
hapter.two 
ir
 = parl 
ir
 
ir
Main> simulate (two reverse) [1..16℄[8,7,6,5,4,3,2,1,16,15,14,13,12,11,10,9℄Main> simulate (two (two reverse)) [1..16℄[4,3,2,1,8,7,6,5,12,11,10,9,16,15,14,13℄Related to two, we also introdu
e the pattern ilv, for interleave. Whereas twof applies f to the top and bottom halves of a list, ilv f applies f to the odd andeven elements. We de�ne it in terms of the wiring pattern ri�e, whi
h performs56
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��������Figure 8.5: ilv f and two (ilv g)the perfe
t shu�e on a list. Think of taking a pa
k of 
ards, halving it, and theninterleaving the two half pa
ks. If you now unri�e the pa
k, you reverse thepro
ess, returning the pa
k to its original 
ondition. (This is somewhat morediÆ
ult to a

omplish with aplomb at the poker table.)Main> simulate riffle [1..16℄[1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16℄Main> simulate (riffle ->- unriffle) [1..16℄[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16℄Main> simulate unriffle [1..16℄[1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16℄Note that unri�ing the sequen
e from 1 to n divides into its odd and its evenelements. We use this fa
t to de�ne ilv in terms of two.ilv 
ir
 = unriffle ->- two 
ir
 ->- riffleMain> simulate (ilv reverse) [1..16℄[15,16,13,14,11,12,9,10,7,8,5,6,3,4,1,2℄Main> simulate (ilv (ilv reverse)) [1..16℄[13,14,15,16,9,10,11,12,5,6,7,8,1,2,3,4℄Figure 8.5 shows ilv f and two (ilv g). We leave the de�nition of riffleand unriffle as exer
ise 8.6.We have seen from our examples that it makes sense to apply two and ilvrepeatedly. We will do this so often in the butter
y 
ir
uits, that it is useful tode�ne spe
ial fun
tions.twoN 0 
ir
 = 
ir
twoN n 
ir
 = two (twoN (n-1) 
ir
)57
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Figure 8.6: bfly 3 gilvN 0 
ir
 = 
ir
ilvN n 
ir
 = ilv (ilvN (n-1) 
ir
)Clearly, there are similarities between these two de�nitions. We might just aswell have de�ned a fun
tion that takes a 
onne
tion pattern as input.iter 0 
omb 
ir
 = 
ir
iter n 
omb 
ir
 = 
omb (iter (n-1) 
omb 
ir
)Now, we 
an use iter n two f instead of twoN n f and iter n ilv f insteadof ilvN n f.Now we are in a position to de�ne a 
onne
tion pattern for butter
y 
ir
uits,that is 
ir
uits, like those shown in �gures 8.6 and 8.7, that have a very parti
-ular re
ursive stru
ture. Be
ause the 
ir
uits are re
ursive, the 
orresponding
onne
tion pattern is de�ned using re
ursion.bfly 0 
ir
 = idbfly n 
ir
 = ilv (bfly (n-1) 
ir
) ->- twoN (n-1) 
ir
The smallest butter
y is just the identity. A butter
y of size n, for n greaterthan zero, 
onsists of two interleaved butter
ies of size n � 1, the output ofwhi
h is fed into a sta
k of 
ir
 
omponents, whi
h is made using twoN. This
onne
tion pattern is shown in �gure 8.6, whi
h shows bfly 3 g.The larger dashed box shows one instan
e of bfly 2 g, and there is anotherinstan
e just below it. These two smaller butter
ies are interleaved, so thereis a
tually an unri�e to their left and a ri�e to their right. (Make sure to�nd these wiring patterns, and look again at the de�nition of ilv.) The twointerleaved butter
ies feed their outputs into four g 
omponents, one above theother, that is twoN 2 g. And if you look inside the bfly 2 g in the outerdashed box, you will �nd that it again has the same re
ursive stru
ture.Strangely enough, the same 
onne
tion pattern (that is the same netlist andthe same order of inputs and outputs, though a possibly di�erent layout) 
anbe des
ribed using a di�erent pattern of re
ursion.58
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Figure 8.7: bfly1 3 gbfly1 0 
ir
 = idbfly1 n 
ir
 = ilvN (n-1) 
ir
 ->- two (bfly1 (n-1) 
ir
)This time, we start with a repeatedly interleaved sta
k of basi
 
omponents,whose outputs are fed into two smaller butter
ies, whi
h are 
ombined usingtwo. Figure 8.7 shows this re
ursive de
omposition.It turns out that ilv (bfly n 
ir
) is the same as bfly n (ilv 
ir
). (Seethe question below about two ilv g if you want to �gure out why.) This meansthat we 
an de�ne the butter
y network using a single re
ursive 
all, but witha larger 
omponent:bfly2 0 
ir
 = idbfly2 n 
ir
 = ilvN (n-1) 
ir
 ->- bfly2 (n-1) (two 
ir
)bfly3 0 
ir
 = idbfly3 n 
ir
 = bfly3 (n-1) (ilv 
ir
) ->- twoN (n-1) 
ir
The surprising thing is that all of these 
onne
tion patterns give equivalent
ir
uits (for the same size and 
omponent).The original butter
y de�ntions (bfly and bfly1) 
an also be expressed usinga tree-like 
ombinator. Take a look at the 
onne
tion pattern listTree, whi
his a version of binTree whi
h works for a 
omponent 
ir
uit 
ir
 pro
essinglists.listTree 
ir
 [inp℄ = [inp℄listTree 
ir
 inps = (two (listTree 
ir
) ->- 
ir
) inpsYou should think about the types involved in this de�nition.Repla
ing that two by ilv, we get ilvTree, a sort of interleaved tree.ilvTree 
ir
 [inp℄ = [inp℄ilvTree 
ir
 inps = (ilv (ilvTree 
ir
) ->- 
ir
) inps59



If we have a 
omponent that takes a pair as input and produ
es a pair as output,then we 
an des
ribe a sta
k of su
h 
omponents by using pairing, unpairingand map as follows (see exer
ise 3.6 and the answer on page 86 for pair andunpair).pmap 
ir
 = pair ->- map 
ir
 ->- unpairMain> simulate (pmap swap) [1..16℄[2,1,4,3,6,5,8,7,10,9,12,11,14,13,16,15℄Then, for inputs of length 2n, ilvTree (pmap 
ir
) is the same as bfly n
ir
l, where 
ir
l is the same as 
ir
 ex
ept that it relates a 2-list to a 2-list.So what kinds of 
ir
uits 
an we build with these remarkably re
ursive stru
-tures? Well, it turns out that bfly 3 id is a 
ompli
ated way to write theidentity fun
tion (on lists of length 8n.) And bfly n swapl reverses a list oflength 2n.swapl [a,b℄ = [b,a℄Main> simulate (bfly 4 swapl) [1..16℄[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1℄Main> simulate (ilvTree (pmap swap)) [1..16℄[16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1℄If we 
hoose our basi
 
omponent to be the perfe
t shu�e on lists of length 4,the 
ir
uit that we 
all s2, then we �nd that a butter
y of su
h 
omponentsperforms the perfe
t shu�e!s2 [a,b,
,d℄ = [a,
,b,d℄Main> simulate (bfly 3 s2) [1..16℄[1,9,2,10,3,11,4,12,5,13,6,14,7,15,8,16℄But all of these examples were just wiring fun
tions. What happens when weadd some fun
tionality to the 
omponent?8.4 Bat
her's Bitoni
 MergerOne of the best known uses of the butter
y network is in the building of mergersand sorters based on a two-input two-output 
omparator. Let us start with twoabstra
t 
omparators that work on integer inputs. One sorts into as
endingorder, and the other into des
ending.
ompUp [x,y℄ = [imin (x,y), imax (x,y)℄
ompDown [x,y℄ = [imax (x,y), imin (x,y)℄60



Main> simulate (two 
ompUp) [1,2,4,3℄[1,2,3,4℄Main> simulate (ilv 
ompDown) [1,2,4,3℄[4,3,1,2℄It turns out that bfly n 
ompUp sorts (into as
ending order) a list whose �rsthalf is as
ending and se
ond half is des
ending or vi
e-versa. We 
all su
h listsin
-de
 and de
-in
 lists. (The merger sorts many other lists too, the so-
alledbitoni
 lists, but we don't need to worry about them.) This network is known asBat
her's bitoni
 merger [1℄. Also, bfly n 
ompDown sorts in
-de
 and de
-in
lists into des
ending order.Main> simulate (bfly 3 
ompUp) [1,3,5,7,8,6,4,2℄[1,2,3,4,5,6,7,8℄Main> simulate (bfly 3 
ompDown) [1,3,5,7,8,6,4,2℄[8,7,6,5,4,3,2,1℄Knowing that the merger sorts in
-de
 lists allows us to build a re
ursive sorter.In fa
t, we 
an parameterise the 
ir
uit on the 
omparator (the 
omp parameter),and de�ne both an up and a down sorter at the same time. sorter n 
ompUpsorts into as
ending order, while sorter n 
ompDown sorts into des
ending or-der.sorter 0 
omp [inp℄ = [inp℄sorter n 
omp inps = outswheresortL = sorter (n-1) 
ompsortR = sorter (n-1) (
omp ->- swapl) -- reversed 
omparatormerger = bfly n 
omp -- bitoni
 mergerouts = (parl sortL sortR ->- merger) inpsMain> simulate (sorter 3 
ompUp) [8,7,1,2,3,4,6,5℄[1,2,3,4,5,6,7,8℄Main> simulate (sorter 3 
ompDown) [8,7,1,2,3,4,6,5℄[8,7,6,5,4,3,2,1℄Note that our sorter is parameterised on the 
omparator or two-sorter 
ompo-nent. So we have really designed the 
onne
tion pattern that must be used to
onne
t 
omparators. We have not in any way tied ourselves down to 
ompara-tors of a parti
ular type. So, as long as we provide a 
omparator 
omponentof the right type, then we get ba
k a fun
tion of the same type that a
ts as asorter.The next step is to re�ne the 
omparator 
omponent, by 
hoosing a 
on
reterepresentation for the integer data. Examples of su
h representations are parallel61



least signi�
ant bit �rst binary, or serial signed twos 
omplement. The point isthat whatever re�nement we 
hoose, we 
an simply plug in the new 
omponentinto our sorter fun
tion. This is an example of how Lava allows us to design
onne
tion patterns and then reuse them. Exer
ise 8.9 asks you to build asorter based on the 
omparator for binary numbers that you designed in anearlier exer
ise.An interesting property of sorting 
ir
uits made from 
omparators is that theyobey the zero-one prin
iple. If su
h a sorter works 
orre
tly on lists of integers
ontaining only zeros and ones, then it works 
orre
tly for arbitrary integers.So, we 
an test an integer sorter by 
he
king that it works on bits! In exer
ise2.2, you were asked to de�ne twoBitSort, whi
h sorts a pair of bits. Here, weneed the 
ir
uit twoBitSortl that sorts a two-list of bits:twoBitSortl [a,b℄ = [min, max℄where(min, max) = twoBitSort (a, b)Now, all we need to do is to plug this 
omponent into our sorter.Main> simulateSeq (sorter 2 twoBitSortl) (domainList 4)[[low,low,low,low℄,[low,low,low,high℄,[low,low,low,high℄,[low,low,high,high℄,[low,low,low,high℄,[low,low,high,high℄,[low,low,high,high℄,[low,high,high,high℄,[low,low,low,high℄,[low,low,high,high℄,[low,low,high,high℄,[low,high,high,high℄,[low,low,high,high℄,[low,high,high,high℄,[low,high,high,high℄,[high,high,high,high℄℄If, after studying these examples, you �nd that you have developed an interest inbutter
y networks, you might like to look at a paper that poses a puzzle aboutbutter
y networks of swit
hes [18℄. Do let us know if you solve the puzzle,be
ause we have not managed to do so!8.5 Exer
ises8.1 Is parallel 
omposition (-|-) asso
iative?8.2 Are the 
ir
uits (a->-b) -|- (
->-d) and (a-|-
) ->- (b-|-d) thesame or not?8.3 De�ne the 
onne
tion pattern tri.8.4 What does a triangle of delay elements do to its inputs? When might su
ha 
ir
uit be useful? 62
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Figure 8.8: the shu�e-ex
hange network8.5 The binary adder shown in this 
hapter works only when the binary num-bers to be added are of the same length. De�ne a binary adder that addstwo binary numbers, whatever their lengths. Use this to make a generaladder tree that works for any size.8.6 De�ne the wiring pattern riffle that 
orresponds to the perfe
t shu�eof a pa
k of 
ards.8.7 De�ne the wiring pattern unriffle that is the inverse of riffle.8.8 Verify that the sorter de�ned in this 
hapter works on list of bits, forseveral di�erent sizes. How do you state the property? Hint: look atexer
ise 2.2.8.9 De�ne a 
omparator that works on binary numbers and use it to make abinary number sorter.8.10 If you have a pa
k of 
ards of size 2n and ri�e it repeatedly, how manyri�es does it take before you are ba
k where you started?8.11 Consider the 
ir
uits two (ilv f) and ilv (two f). Are they the sameor not?8.12 How would you show (using pen
il and paper) that the two 
onne
tionpatterns bfly and bfly1 are the same?8.13 (*) Give an iterative rather than re
ursive des
ription of the butter
ynetwork. Hint: think of the number of two and ilv 
ombinators in ea
hsta
k of basi
 
omponents. You might �nd a list 
omprehension useful.8.14 It turns out that for two-input two-output 
omponents the butter
y net-work is also the same as the so-
alled shu�e-ex
hange network, whi
h
onsists of a sequen
e of identi
al blo
ks, ea
h of whi
h is riffle ->-twoN n 
ir
.Figure out how many su
h 
olumns you need (assuming that 
ir
 has twoinputs and two outputs). De�ne the shu�e-ex
hange network in Lava.63



Che
k that it is really the same as the butter
y network. In what 
ir
um-stan
es might a 
ir
uit designer prefer the shu�e-ex
hange network?8.15 We saw that bfly n swapl reverses its input list. Can you make riffleby plugging a two-input two-output wiring 
omponent into a butter
y? Ifnot, why not?
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Chapter 9Synthesizing Lava Cir
uitsIn this 
hapter, we present a number of examples where we generate a Lava
ir
uit from a di�erent kind of spe
i�
ation. We assume that the reader isfamiliar with the Haskell programming language [10℄.9.1 State Ma
hinesA very 
ommon way of spe
ifying a sequential system is by 
onstru
ting a statema
hine. A state ma
hine 
onsists of four parts: a set of states, a set of inputs,a set of initial states and a transition fun
tion. The transition fun
tion maps astate and an input to a set of next states. Usually, we draw state ma
hines aspi
tures. An example of a state ma
hine is pi
tured in �gure 9.1.In Haskell, here is how we might spe
ify a datatype for representing state ma-
hines. We parametrize over the types of the states and the inputs.data StateMa
hine state inp= StateMa
hine{ states :: [state℄, inputs :: [inp℄, initial :: [state℄, transition :: state -> inp -> [state℄}Here is how we 
an des
ribe the state ma
hine in �gure 9.1:theStateMa
hine =StateMa
hine{ states = ["A", "B", "C"℄, inputs = ['a', 'b'℄, initial = ["A"℄ 65
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hemati
 translation of the state ma
hine of �gure 9.1., transition = \state inp ->[ next | (state', inp', next) <-[ ("A", 'a', "C"), ("A", 'b', "A"), ...℄, state == state', inp == inp'℄}Note that the somewhat 
lumsy de�nition of the transition fun
tion would beeasier in an appli
ation where the states and inputs a
tually mean something.Given a spe
i�
ation in terms of a state ma
hine, we would like to be ableto translate in into a 
ir
uit. One reason for this might be be
ause we wanta prototype implementation of the state ma
hine. Another reason might bebe
ause we want to verify that a given 
ir
uit implementation is equivalent tothe translated version.One method of translating a state ma
hine into a 
ir
uit is pi
tured in �gures 9.2and 9.3. The idea is that every state in the state ma
hine maps to a 
omponent66
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Figure 9.3: A more detailed view of the 
omponent belonging to a state.in the 
ir
uit. The 
omponent has a delay element that keeps tra
k of if weare in that state. The 
omponent re
eives messages from other 
omponentthat a
tivate it, and, depending on the inputs, also sends messages to other
omponents a
tivating them.An advantage of this translation method is that we 
an be in several states atthe same time, allowing for non-deterministi
 exe
ution of our state ma
hine.A disadvantage is that, even when our state ma
hine is deterministi
, we stillhave one delay 
omponent per state, whi
h is often too mu
h.The type of 
ir
uits we are translating state ma
hines to is a 
ir
uit from inputsignals to a list of indi
ators for ea
h state.type StateCir
uit= [Signal Bool℄ -> [Signal Bool℄From these two type, we 
an de
lare the type of our translation fun
tion, whi
htakes a state ma
hine into a state 
ir
uit.stateMa
hine :: (Eq inp, Eq state)=> StateMa
hine state inp -> StateCir
uitstateMa
hine ma
hine inSignals = outSignalswhere...First, we de�ne the fun
tion inSignal whi
h maps an input from the statema
hine to the 
orresponding signal wire.inSignal input =head [ sig| (input',sig) <- inputs ma
hine `zip` inSignals, input == input'℄Then, we 
reate a list of the 
omponents, whi
h we use as a lookup table in therest of the translation.
omponents = 67



[ 
omponent state| state <- states ma
hine℄A 
omponent for a 
ertain state 
onsists of a pair (a
tive, emits), wherea
tive is the indi
ator signal for the state, and emits is a lookup table, repre-senting what signal to send to what state.
omponent state = (a
tive, emits)whereinit = state `elem` initial ma
hinea
tive = delay (bool init) (a
tivating state)emits =[ ( state', and2 (a
tive, inSignal input))| input <- inputs ma
hine, state' <- transition ma
hine state input℄The de
laration of a
tive uses one delay 
omponent, whose initial value de-pends on this state being an initial state or not, and whose next value dependson the signals the other 
omponents are sending to it (
omputed using thefun
tion a
tivating).The list emits is 
onstru
ted as follows. For every input signal, we use thetransition fun
tion to 
he
k what next states we have. We then send a signalto the 
omponent of state if and only if we are a
tive, and we have that inputas an in
oming signal.Here is how we de�ne the fun
tion a
tivating.a
tivating state =orl [ a
tivate| (_, emits) <- 
omponents, (state', a
tivate) <- emits, state == state'℄For all 
omponents, we look at what messages it wants to send, and �lter outthe signals going to the right state. Then, we take the or of all these signals.Finally, we 
an 
reate the list of state indi
ators, by taking the �rst output ofthe 
omponents.outSignals =[ a
tive| (a
tive, _) <- 
omponents℄ 68



Here is how we 
an make the 
ir
uit for the state ma
hine we spe
i�ed earlier.theCir
uit (a, b) = (inA, inB, inC)where[inA, inB, inC℄ =stateMa
hine theStateMa
hine [a, b℄9.2 Behavioral Des
riptionsAnother way of spe
ifying the behavior of a 
ir
uit is by a behavioral des
riptionlanguage. Examples of these kind of languages are behavioral VHDL, Verilog,Esterel, et
. The idea is to write a program in su
h a language, and thentransform the program to a 
ir
uit with the same behavior.We show how to 
ompile programs in a very simple des
ription language to a
ir
uit. We 
all the language Pa
e. Here is a Haskell datatype respresentingPa
e programs:data Pa
e out= Skip| Emit out| Wait| IfThenElse (Signal Bool) (Pa
e out, Pa
e out)| While (Signal Bool) (Pa
e out)| Pa
e out :>> Pa
e out| Pa
e out :|| Pa
e outA Pa
e program 
an send out messages of type out. Running a Pa
e programtakes a number of 
lo
k 
y
les. Here is the informal semanti
s of Pa
e 
onstru
ts:� Skip: This program does not send any messages, and takes no time toexe
ute.� Emit msg: This program sends out the message msg, and takes no timeto exe
ute.� Wait: This program does not send any messages, and takes 1 
lo
k 
y
leto exe
ute.� IfThenElse 
ond (p1, p2): If the signal 
ond is high, it exe
utes p1,and sends the messages p1 sends, and takes as long time as p1 takes. If
ond is low, the same, but for p2.� While 
ond p: If 
ond is high, then it exe
utes p, and sends the messagesp sends, waits for the amount of time p takes to �nish, and then tries toexe
ute the program again. If 
ond is low, it �nishes right away withoutsending any messages. For this program to be valid, p must at least takeone 
lo
k 
y
le to exe
ute if 
ond is high.69
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Figure 9.4: The shape of a 
ir
uit representing a Pa
e program.� p1 :>> p2: (sequential 
omposition) The program exe
utes p1, waits forthe time it takes to �nish, and then exe
utes p2.� p1 :|| p2: (parallel 
omposition) The program exe
utes p1 and p2 inparallel, waiting for both to �nish until it �nishes.Here is an example of a Pa
e program, where we des
ribe a toggle:togglePa
e 
hange =While high( While (inv 
hange)( Wait):>> Emit ():>> Wait:>> While (inv 
hange)( Emit ():>> Wait):>> Wait)We 
an read the program as follows. Forever: wait until 
hange is not low,then emit a message, and wait. Then, wait until 
hange is not low, and emita message all the time, then wait. The type of messages this Pa
e program isusing, is (), be
ause there is only one message.We 
an give a more formal semanti
s to this language by giving a translationfrom a program to a 
ir
uit. And then we get an implementation for free!We are going to de�ne a fun
tion 
ir
uit, whi
h takes a Pa
e program to aPa
e 
ir
uit.type Pa
eCir
uit out= Signal Bool -> (Pa
eEmits out, Signal Bool)70



type Pa
eEmits out= [(out, Signal Bool)℄
ir
uit :: Pa
e out -> Pa
eCir
uit outA Pa
e 
ir
uit (see �gure 9.4) takes in one input, 
alled start, whi
h is used toa
tivate the program, and has two outputs, a list emits, and a signal finished,whi
h the 
ir
uit uses to indi
ate that it is done. The list emits is a lookuptable, whi
h relates output messages and signals.We start with Skip. Here, we just 
onne
t start to finish, so that we �nishimmediately.
ir
uit Skip start = ([℄, finish)wherefinish = startIn the 
ase of Emit, we 
onne
t the start to the right output, and we �nishimmediately.
ir
uit (Emit out) start = (emits, finish)whereemits = [(out, start)℄finish = startWhen we exe
ute a Wait, we 
onne
t start and finish, but with a delay, sothat it takes one 
lo
k 
y
le to �nish.
ir
uit Wait start = ([℄, finish)wherefinish = delay low startTo transform an IfThenElse, we �rst transform the two subprograms prog1and prog2. We start prog1 if start is high and if the 
ondition is true, and westart prog2 if start is high and the 
ondition is false. We 
olle
t all emittedmessages, and �nish if either one of them �nishes.
ir
uit (IfThenElse 
ond (prog1, prog2)) start = (emits, finish)where(emits1, finish1) = 
ir
uit prog1 start1(emits2, finish2) = 
ir
uit prog2 start2start1 = and2 (start, 
ond)start2 = and2 (start, inv 
ond)emits = emits1 ++ emits2finish = or2 (finish1, finish2)71



To transform a While, we �rst transform the subprogram prog. Then, weintrodu
e an auxiliary signal 
alled a
tive, whi
h is high exa
tly when weshould 
onsider starting prog, that is when the whole while loop is started orwhen prog has �nished. We a
tually start prog when we are a
tive, and the
ondition is true. We �nish the while loop when we are a
tive but the 
onditionis false.
ir
uit (While 
ond prog) start = (emits, finish)where(emits, finish') = 
ir
uit prog start'a
tive = or2 (start, finish')start' = and2 (a
tive, 
ond)finish = and2 (a
tive, inv 
ond)Transforming sequential 
omposition just 
onne
ts the finish of the �rst withthe start of the se
ond, and 
olle
ts the emitted messages.
ir
uit (prog1 :>> prog2) start = (emits, finish)where(emits1, finish1) = 
ir
uit prog1 start(emits2, finish) = 
ir
uit prog2 finish1emits = emits1 ++ emits2And lastly, transforming parallel 
omposition starts both 
ir
uits when started,
olle
ts the emitted messages, and syn
hronizes the �nish signals for �nishing.We use the syn
hronize 
ir
uit, de�ned in exer
ise 5.9 (the answer is on page90).
ir
uit (prog1 :|| prog2) start = (emits, finish)where(emits1, finish1) = 
ir
uit prog1 start(emits2, finish2) = 
ir
uit prog2 startemits = emits1 ++ emits2finish = syn
hronize (finish1, finish2)Now we have made this translator, we 
an use it to turn a Pa
e program plusa list of output messages we are interested in into a 
ir
uit, outputting thesemessages.
ompile :: Eq out => Pa
e out -> [out℄ -> [Signal Bool℄
ompile prog outputs = signalswherestart = delay high low(emits, _) = 
ir
uit prog start72



signals =[ orl [ sig| (out',sig) <- emits, out == out'℄| out <- outputs℄We �rst 
reate a top-level start signal, whi
h is to be high on the �rst 
lo
kti
k, and then low forever, then �lter out the signals we are interested in fromthe resulting 
ir
uit. Note that we have to take the or for these signals, sin
ethere might be several parts of the Pa
e program emitting the same signal.Here is how we 
an 
reate a toggle 
ir
uit from the given Pa
e program:toggle' 
hange = outwhere[out℄ = 
ompile (togglePa
e 
hange) [()℄We 
ompile the Pa
e 
ir
uit, and say that we are only interested the ()messages.9.3 Exer
ises9.1 In the 
ir
uit produ
ed by the state ma
hine translation, all inputs willonly have e�e
t on the outputs in the next 
lo
k 
y
le. Sometimes, how-ever, it might be desirable to 
hange state depending on the 
urrent inputright away. In this way, you are not interested in the initial state.Show how to 
hange the de�nition of stateMa
hine to in
orporate this
hange.9.2 Verify that the toggle 
ir
uit derived from the Pa
e program is equivalentto a dire
t de�nition of a toggle 
ir
uit.9.3 Des
ribe the syn
hronize 
ir
uit from exer
ise 5.9 in terms of a statema
hine, and generate a 
ir
uit for it. Verify that the implementation inyour answer to 5.9 is 
orre
t!9.4 Des
ribe the syn
hronize 
ir
uit from exer
ise 5.9 in terms of a Pa
eprogram, and generate a 
ir
uit for it. Verify that the implementation inyour answer to 5.9 is 
orre
t!
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Chapter 10TypesIn this 
hapter, we will des
ribe what role types play in the Lava system.10.1 Signals and Cir
uitsThe 
ir
uits in Lava are fun
tions from input signals to output signals. Thebasi
 signals in Lava are low, high, and integer signals. The type of the �rsttwo signals is Signal Bool, and that of integer signals is Signal Int. Thenotation for this is:low :: Signal Boolhigh :: Signal Bool3 :: Signal Int42 :: Signal Int-17 :: Signal IntThe types of 
ir
uits are written using the symbol ->. Examples are:and2 :: (Signal Bool, Signal Bool) -> Signal Booltimes :: (Signal Int, Signal Int) -> Signal InthalfAdd :: (Signal Bool, Signal Bool) -> (Signal Bool, Signal Bool)adder2 :: [(Signal Bool, Signal Bool)℄ -> [Signal Bool℄As we 
an see, the types for pairs are written using (, , and ), and the typesfor lists are written using [ and ℄.Types do not have to be expli
itly written in Lava; they are automati
allyderived and 
he
ked. So, if we make a type error, for example by giving a list ofsignals rather than a pair of signals to an and gate as input, we get:Main> and2 [high, low℄ 74



ERROR: Type error in appli
ation*** Expression : and2 [low,high℄*** Term : [low,high℄*** Type : [Signal Bool℄*** Does not mat
h : (Signal Bool,Signal Bool)10.2 Conne
tion PatternsTo be able to deal with types in the presen
e of 
onne
tion patterns, we needtwo features: polymorphism and higher-order fun
tions.� Polymorphism means that some 
ir
uits or 
onne
tion patterns do not
are about what kind of type we are using, as long as it mat
hes withanother (unknown) type.� Higher-order fun
tions allow us to have fun
tions as parameters to otherfun
tions.Here is an example: the type of the row 
onne
tion pattern.row :: ((
,a) -> (b,
)) -> (
,[a℄) -> ([b℄,
)From this we 
an see that row expe
ts a 
ir
uit of the following type as aparameter:(
,a) -> (b,
)The 
onne
tion pattern does not 
are however what exa
tly a, b or 
 is, as longas the two uses of 
 are the same. This has to be the 
ase sin
e 
 is the type ofthe 
arry, and the 
arries are mat
hed up in the row. But apart from that, a, band 
 
an be any type, a signal, a pair of signals, a list of pairs of signals, et
.10.3 OverloadingWe have seen a number of 
ir
uits and fun
tions that behave di�erently when weuse them in di�erent 
ontexts. This is 
alled overloading. We use overloadingbe
ause it is 
onvenient, we do not have to have di�erent versions of opera-tions around, and we 
an write general operations and 
ir
uits using overloadedoperations.An example is the 
onstant zero, whi
h is a generalized version of low. Itbehaves as follows. 75



Main> zeroERROR: Unresolved overloadingMain> zero :: Signal BoollowMain> zero :: (Signal Bool, Signal Bool)(low, low)Main> zero :: Signal Int0Main> zero :: (Signal Bool, Signal Int)(low, 0)In the �rst example, we see that Lava 
omplains be
ause it has no idea in whatkind of 
ontext you want to use zero. In a Lava program, this 
an usually be�gured out, but we 
an be expli
it about the shape of the result by using the:: notation.A similar 
onstant we have seen is domain. It 
reates a list of all the possiblevalues of a 
ertain type. Here is how it behaves.Main> domain :: [Signal Bool℄[low, high℄Main> domain :: [(Signal Bool,Signal Bool)℄[(low, low), (low, high), (high, low), (high, high)℄And so forth. Other examples of overloaded operators are var and random.All these overloaded operations have a spe
ial version that works for lists. Thereason for this is that, in the 
ase of lists, we want to know how long they shouldbe. How else 
an we 
reate a list with only low bits in it, or sum up all thepossible lists in a 
ertain domain?Here are some examples of how the spe
ial list versions behave in di�erent
ontexts.Main> zeroList 3 :: [Signal Bool℄[low, low, low℄Main> zeroList 2 :: [(Signal Bool,Signal Bool)℄[(low, low), (low, low)℄Main> domainList 2 :: [[Signal Bool℄℄[[low, low℄, [low, high℄, [high, low℄, [high, high℄℄76



Main> varList 3 "apa" :: [Signal Bool℄[apa_1, apa_2, apa_3℄Examples of a 
ir
uits that are overloaded are delay, mux, and equal.
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Appendix AQui
k Referen
e GuideIn this appendix we present an overview of options, operations, prede�ned 
ir-
uits and 
onne
tion patterns in Lava.A.1 The lava 
ommandHere are the 
ommand-line options for the lava 
ommand.-hsize set memory size to size for interpreter-
 module 
ompile-gh
 module 
ompile using GHC (default)-hb
 module 
ompile using HBC-u update internal modules after 
hange-x exe
utable use <exe
utable> instead of 
ompilerA.2 Logi
al GatesHere are the logi
al gates de�ned in the Lava system. Some binary gates have a
orresponding binary operator (for example, and2 
an also be written as <&>).-- Nullary gates :: Signal Boollow -- 
onstant lowhigh -- 
onstant high-- Unary gates :: Signal Bool -> Signal Boolid -- identityinv -- inverse, negation78



-- Binary gates :: (Signal Bool, Signal Bool) -> Signal Booland2, <&> -- logi
al andnand2 -- inverse of logi
al andor2, <|> -- logi
al ornor2 -- inverse of logi
al orxor2, <#> -- logi
al ex
lusive orxnor2, <=> -- inverse of ex
lusive orequiv, <=> -- logi
al equivalen
eimpl, ==> -- logi
al impli
ation-- n-ary gates :: [Signal Bool℄ -> Signal Boolandl -- logi
al andnandl -- inverse of logi
al andorl -- logi
al ornorl -- inverse of logi
al orxorl -- logi
al ex
lusive orA.3 Arithmeti
al GatesHere are the arithmeti
al gates de�ned in the Lava system. Some binary gateshave a 
orresponding binary operator (for example, plus 
an also be written as+).-- Nullary gates :: Signal Intn -- 
onstant integer signal-- Unary gates :: Signal Int -> Signal Intid -- identityneg, - -- negation-- Unary 
onversionint2bit -- integer signal to boolean signalbit2int -- boolean signal to integer signal-- Binary gates :: (Signal Int, Signal Int) -> Signal Intplus, + -- additiontimes, * -- multipli
ationsub, - -- subtra
tionidiv, / -- integer divisionimod, %% -- moduloimin -- minimumimax -- maximum-- Binary gates :: (Signal Int, Signal Int) -> Signal Bool79



gte, >>== -- greater than or equal-- n-ary gates :: [Signal Int℄ -> Signal Intplusl -- additiontimesl -- multipli
ationA.4 Generi
 GatesHere are some generi
 gates de�ned in the Lava system.equal, <==> -- equalitydelay, |-> -- delay 
omponentmux -- multplexer, if-else-thenFurthermore, Lava de�nes some operations whi
h 
an be used on some of thesetypes:domain :: [a℄domainList :: Int -> [[a℄℄zero :: azeroList :: Int -> [a℄var :: String -> avarList :: Int -> String -> [a℄A.5 Module: PatternsYou get a

ess to the following wiring 
ir
uits and 
onne
tion patterns if youin
ludeimport Patternsat the top of your Lava program.swap :: (a, b) -> (b, a)swapl :: [a℄ -> [a℄
opy :: a -> (a, a)riffle :: [a℄ -> [a℄unriffle :: [a℄ -> [a℄zipp :: ([a℄,[b℄) -> [(a,b)℄unzipp :: [(a,b)℄ -> ([a℄,[b℄)80



pair :: [a℄ -> [(a,a)℄unpair :: [(a,a)℄ -> [a℄halveList :: [a℄ -> ([a℄,[a℄)append :: ([a℄,[a℄) -> [a℄serial :: (a -> b) -> (b -> 
) -> (a -> 
)(->-) :: (a -> b) -> (b -> 
) -> (a -> 
)
ompose :: [a -> a℄ -> (a -> a)
omposeN :: Int -> (a -> a) -> (a -> a)par :: (a -> b) -> (
 -> d) -> ((a,
) -> (b,d))(-|-) :: (a -> b) -> (
 -> d) -> ((a,
) -> (b,d))parl :: ([a℄ -> [b℄) -> ([a℄ -> [b℄) -> ([a℄ -> [b℄)two :: ([a℄ -> [b℄) -> ([a℄ -> [b℄)ilv :: ([a℄ -> [b℄) -> ([a℄ -> [b℄)twoN :: Int -> ([a℄ -> [b℄) -> ([a℄ -> [b℄)ilvN :: Int -> ([a℄ -> [b℄) -> ([a℄ -> [b℄)iter :: Int -> (b -> b) -> (b -> b)bfly :: Int -> ([b℄ -> [b℄) -> [b℄ -> [b℄tri :: (a -> a) -> ([a℄ -> [a℄)pmap :: ((a,a) -> (b,b)) -> [a℄ -> [b℄mirror :: ((a,b) -> (
,d)) -> ((b,a) -> (d,
))row :: ((
,a) -> (b,
)) -> ((
,[a℄) -> ([b℄,
))
olumn :: ((a,
) -> (
,b)) -> (([a℄,
) -> (
,[b℄))grid :: ((a,b) -> (b,a)) -> (([a℄,[b℄) -> ([b℄,[a℄))A.6 Module: Arithmeti
You get a

ess to the following arithmeti
al 
ir
uits if you in
ludeimport Arithmeti
at the top of your Lava program.halfAdd :: (Signal Bool,Signal Bool)-> (Signal Bool,Signal Bool)fullAdd :: (Signal Bool,(Signal Bool,Signal Bool))-> (Signal Bool,Signal Bool)81



bitAdder :: (Signal Bool,[Signal Bool℄)-> ([Signal Bool℄,Signal Bool)adder :: (Signal Bool,([Signal Bool℄,[Signal Bool℄))-> ([Signal Bool℄,Signal Bool)binAdder :: ([Signal Bool℄,[Signal Bool℄)-> [Signal Bool℄bitMulti :: (Signal Bool,[Signal Bool℄)-> [Signal Bool℄multi :: ([Signal Bool℄,[Signal Bool℄)-> [Signal Bool℄numBreak :: Signal Int -> (Signal Bool,Signal Int)int2bin :: Int -> Signal Int -> [Signal Bool℄bin2int :: [Signal Bool℄ -> Signal IntA.7 Module: SequentialCir
uitsYou get a

ess to the following often used sequential 
ir
uits if you in
ludeimport SequentialCir
uitsat the top of your Lava program.edge :: Signal Bool -> Signal Booltoggle :: Signal Bool -> Signal BooldelayClk :: a -> (Signal Bool,a) -> adelayN :: Int -> a -> a -> aalways :: Signal Bool -> Signal Boolpuls :: Int -> () -> Signal BooloutputList :: [a℄ -> () -> arowSeq :: ((a,b) -> (
,a)) -> (b -> 
)rowSeqReset :: ((a,b) -> (
,a)) -> ((Signal Bool,b) -> 
)rowSeqPeriod :: Int -> ((a,b) -> (
,a)) -> (b -> 
)Note that these fun
tions are not 
ompletely polymorphi
 in a, but there are
ertain restri
tions.A.8 InterpretationsHere are the various interpretations for 
ir
uits that Lava provides.-- simulations 82



simulate 
ir
uit inputsimulateSeq 
ir
uit inputssimulateCon 
ir
uit inputstest 
ir
uit-- VHDLwriteVhdl name 
ir
uitwriteVhdlInput name 
ir
uit inputwriteVhdlInputOutput name 
ir
uit input output-- verifi
ationverify propertyverifyWith options propertyfixit propertyPossible veri�
ation opions are:Name nameShowTimeSat levelNoBa
ktra
kingDepth depthIn
reasingRestri
tStatesA.9 ErrorsHere, we list a number of error messages that might o

ur when running theLava system.� ERROR: Garbage 
olle
tion fails to re
laimsuffi
ient spa
eThis means that Lava does not have enough memory to exe
ute the 
ir-
uit. Try to start up Lava with more memory, do this by saying lava-h9999999. You 
an in
rease the number if you need more.If this does not work, you might have an error in your 
ir
uit de�nition.Do you have a 
ir
ular de�nition somewhere?� Program error: evaluating a delay 
omponentYou get this error when you try to use 
ombinational simulation simulateto simulate a sequential 
ir
uit. Use simulateSeq instead.� Program error: evaluating a symboli
 valueYou get this error when you have used the forAll or var property 
on-stru
tors, and then later tried to simulate the 
ir
uit.83



� Program error: 
ombinational loopYou get this error when you have de�ned a 
ir
uit whi
h has a loop init, on whi
h there is no delay. In general, these 
ir
uits are hard to givemeaning to, and are therefore not allowed in normal Lava simulation. Youhave probably made a mistake somewhere.You might try the 
onstru
tive simulation simulateCon when this hap-pens.� Program error: 
ombining in
ompatible stru
turesYou get this error when you use a delay 
omponent or mux 
omponent onstru
tures of a di�erent shape, for example two lists of di�erent lengths.This is not allowed, sin
e the length of a list needs to be known when youevaluate the 
ir
uit.� Program error: there is no equality defined for this typeSigh ... you get this error when you use the Haskell equality == on a signaltype. You probably want to use signal equality <==> instead.� Program error: short 
ir
uitThis happens when you have a bad 
ombinational loop in your 
ir
uit, andyou 
onstru
tively simulate it using simulateCon. A real 
ir
uit wouldhave os
illated. An example is the following 
ir
uit:shortCir
uit () = outwhereout = inv out� Program error: undriven outputThis also happens when you have a bad 
ombinational loop in your 
ir
uit.The output wire is not driven by any 
omponent. An example is thefollowing 
ir
uit:undrivenOutput () = outwhereout = and2 (out, out)� Program error: you 
an not enumerate symboli
 valuesYou get this error when you use .. on wires from a 
ir
uit instead of on
onstants. Use .. only on 
onstants!� Program error: INTERNAL ERROR ...Oops! This probably means that there is a bug in the Lava system. Pleasereport this bug by sending your program to us, so that we 
an �x it.If you have some typi
al error that you would have liked to appear here, pleasee-mail us so that we 
an make this list more 
omplete.84



Appendix BAnswers2.1 Here is how we de�ne swap and 
opy:swap (a, b) = (b, a)
opy a = (a, a)2.2 We 
ould de�ne the sorter twoBitSort in the following way:twoBitSort (a, b) = (min, max)wheremin = and2 (a, b)max = or2 (a, b)2.3 Here is the 
onstant alwaysHigh 
ir
uit:alwaysHigh () = high2.4 One 
ould de�ne a multiplexer as follows:multiplexer (
,(x,y)) = outwhereout = or2 (left, right)left = and2 (inv 
, x)right = and2 (
, y)There is a built-in multiplexer in Lava, 
alled mux. Using that one, we
ould de�ne:multiplexer' (
,(x,y)) = mux (
,(x, y))2.5 A threeBitAdder 
an be de�ned as follows:85



threeBitAdder (
arryIn, ((a1,b1,
1), (a2,b2,
2))) =((a3, b3, 
3), 
arryOut)where(a3, 
arryA) = fullAdd (
arryIn, (a1, a2))(b3, 
arryB) = fullAdd (
arryA, (b1, b2))(
3, 
arryOut) = fullAdd (
arryB, (
1, 
2))3.2 We 
an make use of the adder we already have:adder2 (as, bs) = 
swhere(
s, 
arryOut) = adder (low, (as, bs))3.3 The adder 
ir
uit takes as an input a pair of lists of bits, whereas theadder' 
ir
uit gets a list of pairs of bits.3.4 Here is a binary number to integer 
onverter bin2int:bin2int [℄ = 0bin2int (b:bs) = numwherenum' = bin2int bsnum = bit2int b + 2 * num'3.5 Here is how we 
an de�ne zipp:zipp ([℄, [℄) = [℄zipp (a:as, b:bs) = (a,b) : restwhererest = zipp (as, bs)And here is how we de�ne unzipp:unzipp [℄ = ([℄, [℄)unzipp ((a,b):abs) = (a:as, b:bs)where(as, bs) = unzipp abs3.6 Here is how we 
an de�ne pair:pair (x:y:xs) = (x,y) : pair xspair xs = [℄We 
hoose to ignore the last input if the number of elements is odd. Andhere is how we de�ne unpair: 86



unpair ((x,y):xys) = x : y : unpair xysunpair [℄ = [℄3.7 This is how we 
an de�ne parallel 
omposition of 
ir
uits par:par 
ir
1 
ir
2 (a, b) = (
, d)where
 = 
ir
1 ad = 
ir
2 b3.9 Here is how we 
an de�ne 
olumn:
olumn 
ir
 ([℄, 
arryIn) = (
arryIn, [℄)
olumn 
ir
 (a:as, 
arryIn) = (
arryOut, b:bs)where(
arry, b) = 
ir
 (a, 
arryIn)(
arryOut, bs) = 
olumn 
ir
 (as, 
arry)Here is how we 
an de�ne 
olumn in terms of row. First, we de�ne a
onne
tion pattern 
alled mirror, whi
h swaps the left and right parts ofinput and output:mirror 
ir
 (a, b) = (
, d)where(d, 
) = 
ir
 (b, a)And then, we use row and mirror the input to row:
olumn 
ir
 (as, 
arryIn) = (
arryOut, bs)where(bs, 
arryOut) = row (mirror 
ir
) (
arryIn, as)We 
ould even say:
olumn 
ir
 = mirror (row (mirror 
ir
))3.10 We 
ould de�ne grid as:grid 
ir
 (as, bs) = (
s, ds)where(
s, ds) = row (
olumn 
ir
) (as, bs)Or, even shorter:grid 
ir
 = row (
olumn 
ir
)87



3.13 Here is how we de�ne a swapper:swapper (swap, (a, b)) = (x, y)where(x, y) = mux (swap, ((a, b), (b, a)))4.1 The �rst property 
an be de�ned as:prop_SorterHasSortedOutput (a, b) = okwhere(x, y) = twoBitSort (a, b)ok = or2 (inv x, y) -- x <= yThe se
ond property 
an be stated as:prop_SorterHasSameBits (a, b) = okwhere(x, y) = twoBitSort (a, b)same = (a, b) <==> (x, y)swapped = (a, b) <==> (y, x)ok = or2 (same, swapped)4.4 To 
he
k that the subtra
tor really subtra
ts, we 
an de�ne:prop_Subtra
torSubtra
ts (as, bs) = okwhere
s = subtra
tor (as, bs)as' = adder2 (
s, bs)ok = as <==> as'4.5 Here is the general property of asso
iativity:prop_Asso
iative 
ir
 (as, bs, 
s) = okwhereout1 = 
ir
 (as, 
ir
 (bs, 
s))out2 = 
ir
 (
ir
 (as, bs), 
s)ok = out1 <==> out24.8 One 
an de�ne a general verify fun
tion, as follows:verifyFor prop ns = sequen
e [ prop n | n <- ns ℄and verify a property by saying for example:Main> verifyFor prop_AdderCommutative_ForSize [1..32℄... 88



5.1 We 
an de�ne evenSoFar as follows:evenSoFar inp = outwhereout = delay high eveneven = xor2 (inp, even)This is almost the same as the edge 
ir
uit.5.2 We 
an de�ne flipFlop as follows:flipFlop (set, reset) = statewherestate' = delay low statestate = and2 (up, inv reset)up = or2 (state', set)5.3 We 
an de�ne delayClk as follows:delayClk init (
lk, inp) = outwhereout = delay init valval = mux (
lk, (out, inp))5.4 The 
ir
uit always 
an be de�ned as follows:always inp = okwheresofar = delay high okok = and2 (inp, sofar)5.5 The 
ir
uits are:pulsSix6 () = outwhereout = puls 6 () -- 000001...pulsSix5 () = outwherea = puls 2 () -- 010101...b = puls 3 () -- 001001...out = and2 (a, b)pulsSix3 () = outwherea = delay low (inv a) -- 010101...b = delay low (xor2 (b, 
)) -- 001001...
 = delay low (nand2 (b, 
)) -- 011011...out = and2 (a, b) 89



5.6 Using a 
ounter, we 
an de�ne puls2 as follows:puls2 k () = outwherenumber = 
ounter k ()out = norl number5.7 We 
an de�ne the 
ir
uit 
ounterUpDown as follows:
ounterUpDown n (up, down) = numberwherenumber' = delay (zeroList n) numbernumber = adder2 (diff, number')diff = one : repli
ate (n-1) restone = or2 (up, down) -- should I 
hange?rest = and2 (inv up, down) -- +1 or -1?5.9 Here is how we 
ould de�ne syn
hronize:syn
hronize (go1, go2) = gowhereboth = and2 (go1, go2)one = xor2 (go1, go2)wait = delay low (xor2 (one, wait))go = or2 (both, and2 (wait, one))5.10 First, we de�ne the following helper 
ir
uit outputDone. It does the sameas output, but takes an extra parameter done, the signal to output at thetime when the list is empty.outputDone [℄ done () = doneoutputDone (sig:sigs) done () = outwhereout = delay sig restrest = outputDone sigs done ()Now, we 
an de�ne the 
ir
uit outputList as follows:outputList sigs () = outwhereout = outputDone sigs out ()6.2 Here is a property that 
he
ks that:90



prop_Edge_vs_Even inp = okwhereout1 = edge inpout2 = evenSoFar inpok = inv (out1 <==> out2)6.3 Here is a property that 
he
ks if they are equivalent:prop_PulsSixEquivalent () = okwhereout3 = pulsSix3 ()out5 = pulsSix5 ()out6 = pulsSix6 ()ok35 = out3 <==> out5ok56 = out5 <==> out6ok = and2 (ok35, ok56)These 
an be veri�ed with indu
tion depth 6 or 7.6.4 Here is a property that 
he
ks if they are equivalent:prop_PulsesEquivalent k () = okwhereout1 = puls (2^k) ()out2 = puls2 k ()ok = out1 <==> out26.5 Here is a property that 
he
ks that:prop_CountingUp n up = okwhereout1 = 
ounterUp n upout2 = 
ounterUpDown n (up, low)ok = out1 <==> out26.6 Here is how we 
ould de�ne the property.prop_ToggleTwi
eStaysSame inp = okwhereout = toggle inpout' = delay low outout'' = delay low out'sameOut = out <==> out''inp' = delay low inpsameInp = inp <==> inp'ok = sameInp ==> sameOut91



First we 
ompute the output from the input. Then, we de�ne the outputsand inputs at several di�erent points in time. And then we 
ompute theimpli
ation.7.1 Here are the properties whi
h state this:prop_ToggleHighLow_SlowedDown () = okwhereload = puls 2 ()out1 = highLow ()out1' = parallelToSerial (load, out1)out2 = toggle highok = out1' <==> out2prop_ToggleHighLow_SpedUp () = okwhereout1 = highLow ()out2 = timeTransform toggle [high,high℄ok = out1 <==> out2Note that we do not need to use a serial to parallel 
onverter in the �rstproperty sin
e highLow does not have any interesting input.7.2 Slowing down a 
ir
uit means that there are only a few important 
lo
k
y
les, and we ignore all unimportant 
lo
k 
y
les. If we do not look atsome outputs, we 
annot say anything about how the 
ir
uit behaves inthese outputs. The slowed down property might be true, but the 
ir
uitsare not equivalent.7.3 Yes, here there is no problem.8.1 No, parallel 
omposition is not asso
iative. (a,(b,
)) and ((a,b),
) arenot the same.8.2 Yes, they are the same.8.3 One possibility to de�ne tri istri 
ir
 [℄ = [℄tri 
ir
 (inp:inps) = inp : outswhereouts = (map 
ir
 ->- tri 
ir
) inpsThere are many other ways of de�ning it. For example, you should tryde�ning tri using 
omposeN.8.6 We give a de�nition that 
losely re
e
ts our informal explanation of howa 
ard sharp shu�es the pa
k. He halves it, zips the two halves together(to get a lot of pairs of 
ards) whi
h he then pats 
arefully on the sides soas to unsti
k the pairs. 92



riffle = halveList ->- zipp ->- unpairWe use the 
ir
uit zipp, whi
h we de�ned in exer
ise 3.5.8.7 This de�nition is exa
tly the inverse of the de�nition of riffle:unriffle = pair ->- unzipp ->- append8.8 We need to verify two properties:{ The output of the sorter is sorted. We 
an verify this by 
he
kingthat the �rst output is smaller than the se
ond, the se
ond output issmaller than the third, et
.{ The bits in the output are the same as the bits in the input, butmaybe in a di�erent order. We 
an verify this by 
ounting the numberof high inputs and high outputs, and 
he
king that they are the same.The details are left to the reader.8.10 On inputs of length 2n, n ri�es in a row gets you ba
k to where youstarted.Main> simulate (
omposeN 4 riffle) (map int [1..(2^4)℄)[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16℄8.13 Here is how we de�ne the butter
y 
ir
uit iteratively:ibfly 0 
ir
 = idibfly n 
ir
 =
ompose [ilvN (n-1-j) (twoN j 
ir
) | j <- [0..(n-1)℄℄9.1 We 
ould make the following 
hange to the lo
al de�nition of 
omponent:
omponent state = (a
tivated, emits)whereinit = state `elem` initial ma
hinea
tivated = a
tivating statea
tive = delay (bool init) a
tivated...The rest of the de�nition stays the same.
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