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Abstract
Bugs in programs are unavoidable. Programs developed using C and C++ are especially in
danger. If bugs cannot be avoided the next best thing is to limit the damage. This article will
show improvements in Red Hat Enterprise Linux which achieve just that.

1 Introduction

Security problems are one of the biggest concerns in the
industry today. Providing services on networked comput-
ers which are accessible through the intranet and/or Inter-
net potentially to untrusted individuals puts the installa-
tion at risk. A number of changes have been made to the
Linux OS1 which help a lot to mitigate the risks. Up-
coming Red Hat Enterprise Linux versions will feature
the SELinux extensions, originally developed by the Na-
tional Security Agency (NSA), with whom Red Hat now
collaborates to productize the developed code. SELinux
means a major change in Linux and is a completely sep-
arate topic by itself.

Here, we are going to concentrate on extensions Red Hat
made to the OS which increase security but are not part
of, and do not require SELinux. The goal for these exten-
sions was to have no negative impact on existing code,
if possible, to work without recreating binaries, and to
require minimal changes to the process of building ap-
plications. The remainder of this paper introduces three
separate extensions Red Hat made. It is not meant to be
a complete list but rather should serve individuals who
want to increase security of the Red Hat Enterprise Linux
based systems as a guideline to adjust their code and in-
stallation to take advantage of the new development. Be-
fore we start with this, some words about exploiting se-
curity problems.

2 Exploiting Security Problems

When attempting to categorize security problems, one
should first distinguish between remotely and locally ex-
ploitable problems. The latter can only be exploited if the
attacker already can execute code on the target machine.

1“OS” as in the whole system, not just the kernel.
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These problems are harder to protect against since nor-
mally2 all of the OS’s functionality is available and the
attacker might even be able to use self-compiled code.

Remotely exploitable problems are more serious since
the attacker can be anywhere if the machine is available
through the Internet. On the plus side, only applications
accessible through the network services provided by the
machine can be exploited, which limits the range of ex-
ploits. Further limitations are the attack vectors. Usually
remote attackers can influence applications only by pro-
viding specially designed input. This often means cre-
ating buffer overflows, i.e., situations where the data is
written beyond the designated memory area and over-
writing other data.

One way to avoid buffer overflow problems is to use con-
trolled runtimes where memory access is first checked
for validity. This is not part of the standard C and C++
runtime, which means many applications are in danger
of these problems. Intruders can misuse these bugs in a
number of ways:

• if the overwritten buffer on the stack is carefully
crafted, overflow can cause a naturally occurring
jump to a place the intruder selected by overwrit-
ing the original return address. The target of the
return might also be in the data written onto the
stack by the overflow;

• a pointer variable might be overwritten. Such a
variable, if located in memory in front of the over-
flowed buffer, could then be referenced and maybe
written to. This could allow the intruder to write
a value, which might also be controlled by the in-
truder, into a specific address;

• a normal variable might be overwritten, altering
the state of the program. This might result in per-
mission escalation, wrong results (think transfer of
money to wrong accounts), etc.

2SELinux changes this.
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Although these possible effects of an overflow might seem
nothing but a good way to crash the application, attackers
often find ingenious ways in which the application does
not crash, but instead does something to the attacker’s
liking. This is aided by the fact that identical binaries are
widely available and used in many places. This allows
the attacker to study the binary locally before the attacks.
Randomness in the binaries would be beneficial but for
various reasons it is unpractical that end users recreate
the binaries which differ sufficiently. For one, vendors
will violently protest since it throws attempts to provide
service and maintenance completely off the track.

3 The Plan

The best protection against these problems is, of course,
auditing the code and fixing the problems. Given suffi-
cient resources these will have some positive effect, but
being human, programmers will always miss one or an-
other problem. And there is always new code written.
Besides, the investment to audit all relevant code is pro-
hibiting. Finally, this will not at all protect against prob-
lems in 3rd party programs.

A second line of defense is needed. The worst intruders
can achieve is circumventing the security of the system.
If this happens, all guards of the system have no effect.
Achieving this is very difficult with SELinux properly set
up. Each application has been assigned a domain which
gives it limited capabilities. Changing domains can only
be done under the control of the kernel and only in ways
the system adminstrator allows. Ideally, there is no all-
powerful super user anymore. As stated before, we will
not discuss SELinux here.

One notch down the list of dangers is the possibility for
the intruder to take over the process or thread. This re-
quires that the intruder inject code of his own choosing
into the running process and cause this code to be exe-
cuted.

The next level down would be an intruder changing the
behavior of an application, not to enable further security
escalation, but instead to cause havoc by changing the
outcome of the computation (for instance, the aforemen-
tioned transfer to a wrong account).

Since C and C++ applications are usually not written to
cope gracefully with bugs, the best one can hope for is
to end the infected run of the application. This is the
best to do if the state of the program must be assumed
to be contaminated. If the application provides mecha-
nisms to shut down only one thread or perhaps drop only
the client connection which caused the problem, this can
be done as well. But this requires highly sophisticated
programming which is found only in applications with
extreme uptime or security requirements. If the applica-
tion is shut down, the worst possible outcome is that the
intruder attacks again and again, causing one shutdown
after the other. This can be prevented with higher-level
security, by configuring the firewall or protocol analyz-

ers.

The mechanisms developed by Red Hat automatically
cause many of the common exploits to fall only in the
last, and least dangerous category.

4 Exec-Shield

We start with an concrete example of some broken code
which in one form or another far too often appears in
deployed programs:

int
match (const char *passwd)
{
char tmp[MAXPASSWD];
if (gets (tmp) == NULL)
return 1;

return strcmp (passwd, tmp);
}

There are two factors which make this code especially
dangerous. First, the use of gets which is always wrong.
The function does not allow specification of the size of
the buffer, so uncontrolled input can overflow the buffer.
This is exactly what happens here, but what is it that is
overflown? The answer is of course the array tmp, but
there is more to it. The second point is that the array
is allocated on the stack. On machines where the stack
grows downward in the address space (for all common
architectures other than HP/PA) the array tmp is located
below the data generated for the function call and data the
callers put on the stack. For many architectures, the data
generated for the function includes the return address.
Now all together this means that the input on stdin, read
by gets, can be used to overwrite the return address of
the function call and even set up the frame for the code
to which the fake return address points. In other words,
this code allows an attacker to redirect the execution of
the code to an arbitrary place.

It varies where this code is that the attacker wants to ex-
ecute. It could be a known address in the address space.
We will handle this case in the next section. The more
dangerous case is where the code comes along with the
buffer overflow. Note that the standard I/O functions of
the C runtime work equally well for arbitrary binary data.
Often only the byte values representing newline (’\n’,
0x0a) and NUL (0x00) are special. All other values can
be used freely. So an attacker could fill the array tmp

with arbitrary data.

low high

tmp return
address
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We could find ourselves in a situation as in this figure. It
represents the stack memory when the example function
match is called. The green area, the array tmp, is filled
with data (e.g., program code) by the attacker and the
return address of the function is redirected to an address
inside the array tmp. If this return to the wrong address
succeeds the intruder’s code is executed. It takes less
than a few dozen bytes of code to create a socket, listen
on it, and redirect input and output to a shell. Voilà, a
remotely accessible shell with the same privileges as the
application which has been “cracked”.

For this exploit to be successful a number of conditions
must be met. First, the return address which will be used
is an absolute address. That means if the code in the ar-
ray tmp is to be executed, the intruder has to know the
absolute address of array. The attacker can get the ad-
dress wrong by a certain margin: the inserted code has to
provide “landing area” which is filled with no-op opera-
tions which then permits the fake return address to be the
address of any one of no-op instructions.

The second condition is that the processor has to allow
execution of the code. This might seem obviously the
case but it is not. Processors with virtual memory han-
dling at some level implement a bit which determines
whether the content of a memory range can be executed
or not. For most architectures supported by Linux the
stack has always been executable, so the exploits sketched
above would work.

Removing the Conditions

The Exec-Shield extension Red Hat developed and intro-
duced in the Fedora Core 1 release addresses these points
and more. Similar and even stronger extensions existed
before ([3], [4]), but neither has an effect on the execu-
tion environment low enough to be included in a general,
as opposed to a high-security, Linux distribution. For in-
stance, any restriction on the size of the available address
space is completely unacceptable since there are appli-
cations which need every bit that is available. As stated
before, the solutions which can be used in Red Hat En-
terprise Linux must have no negative impact on existing
applications. This does indeed rule out a number of dras-
tic security measures which undeniably increase security.

The first small change Exec-Shield introduces is that the
stack location is different for every process. The kernel
automatically adjusts the stack address downward by a
random amount of bytes. This does “waste” some mem-
ory and address space, but the possible range of the down-
ward adjustment is chosen so that this is not a problem.
This approach works since nothing in the process itself
ever must depend on the exact stack address. Such a
property of a process has never been guaranteed. With
the stack randomization in place it is harder to create an
exploit where the code loaded into memory as part of the
exploit is executed.

To address the code written to the stack, the address of
the stack has to be known. An attacker could potentially
try several times and hope to get some kind of feedback
allowing him to determine the actual address. The prob-
lem with this approach is that once the address is wrong,
a jump using the address will cause execution of some
arbitrary region of memory which much more often than
not causes the process to crash since the memory or the
code is invalid (e.g., because it is actually data). And
even if the exploit can be repeated, since the process is
automatically restarted, at every restart the stack address
is different, so no information from the previous run can
be used.

Every normally configured Linux system provides the
/proc filesystem which exposes information about the
running system. Among the information is information
about each process, which in turn contains information
about the memory regions in use. The file maps in each
process’ /proc entry shows the memory regions for the
current process. This file makes locating the stack easy
since the permissions allow every process to read every
other process’ file. The Exec-Shield therefore changes
this: the maps file is only readable for the owner. This
leaves our attacker without the necessary privileges to
read this file only with the hope that due to some pro-
gramming error or stupidity on the programmer’s side
pointer values are exposed. This should never happen
and usually does not, since there is not much value. Point-
ers are of no use to other processes.

Removing the second factor required for the exploit re-
quires marking the memory regions the attacker can ac-
cess for writing as non-executable. In fact, the goal should
be to mark as much of the address space as possible not-
executable. This goal hits some problems if we do not
want to change the application binary interface (ABI) or
limit the user in how code can be written or what pro-
grams can be executed. On some architectures, notably
IA-32, the stack is executable for a good reason: for some
source code constructs the GNU C compiler (gcc) ac-
tually generates code which is written to the stack and
executed there. The details are quite complicated and
the feature requiring this (nested functions) is a rarely
used extension gcc supports. To not prevent existing 3rd

party binaries and those requiring executable stacks from
running it is necessary to change the permission of the
stack dynamically. The Exec-Shield extension does this
by respecting information contained in the binary. The
compilers and the linker were extended to keep track
of whether the compiled and linked code needs an ex-
ecutable stack. The result is recorded in a new ELF pro-
gram header entry, PT GNU STACK. The kernel uses this
information to determine the initial permission. If the
program, and if necessary the dynamic linker, are happy
with a not-executable stack, the kernel will disallow ex-
ecution on the stack. Otherwise the stack is set up for
executable code. For the kernel the story ends here. But
since each Dynamic Shared Object (DSO, “shared library”)
can bring in its own requirements, the dynamic linker
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has to keep track whether there is any code loaded which
needs an executable stack. When a DSO with the re-
quirement is loaded, the permission for all stacks in use
must be changed. This is plural, stacks, since the pro-
cess at this point might already have created threads. The
dynamic linker does all this automatically and transpar-
ently, with some help from a new kernel feature which
allows to easily change the permissions of main stack.
Appendix A has some more technical details on how to
create binaries correctly.

Beyond the Stack

With these extensions the ability to misuse the stack is
drastically reduced. But there are other parts of the ad-
dress space into which the intruder could write the ex-
ploiting code and execute it. There are again two parts to
this: locating the memory and executing the code. The
Exec-Shield extensions try to address both.

To prevent easily locating the writable data memory, they
should be placed at different addresses for every run of
the process, just as it happens for the stack. The writable
data memory is usually not alone, though, its position
relative to the accompanying code is usually fixed. This
means the entire binary must be loaded at different ad-
dresses every time. Doing this provides no problems for
DSOs which are by definition freely relocatable. The
kernel randomizes the addresses for requests from user-
level when a mapping of a file is requested without fixed
requirement on the address (i.e., the first parameter for
mmap is NULL). The dynamic linker never insists on a
specific load address but it can suggest addresses if the
application is prelinked.3 This means prelinking and load
address randomization exclude each other.

One possibility opened by the load address randomiza-
tion is that the kernel can choose to map binaries in the
first 16MiB of the address space. The noteworthy aspect
of this is that all addresses in this range contain a NUL
byte. As mentioned above, NUL is one of the two spe-
cial characters in standard I/O handling. More concrete,
it is special in string handling. It is not possible to han-
dle a copy of a string with strcpy or similar functions
beyond the NUL byte. For the attacker, who has to in-
sert addresses of the code which is called for the exploit,
this poses a big problem if the representation of that ad-
dress contains a NUL byte. This part of the address space
is rightly referred to as the ASCII-armor area. By mov-
ing as much code to the first 16MiB of address space,
a lot of code is out of reach for this type of attack. If
there is room in the memory region, the kernel will map
all memory there for which the protection bits include
PROT EXEC. The dynamic linker always set this bit for
the first mmap call to load a DSO, so things happen au-
tomagically.

3See the prelink package. Prelinking is a way to speed-up pro-
gram startup.

By doing all this, only one fixed rock is left in the address
space: the executable itself. An executable, as opposed
to DSOs, is linked for a specific address which must be
adhered to, otherwise the code cannot run. Red Hat de-
veloped a solution for this problem as well, which will
be addressed in the next section. The executable itself
is a bit special though. for it not only consists of the
usual code and data parts, but it also has the brk area
attached to it. The brk area (aka heap) is a region of
the address space in which the process can allocate new
memory for interfaces like malloc. This area started
traditionally right after the BSS data of the executable
(BSS data is the part of the data segment which holds the
uninitialized data or the data explicitly initialized with
zero). But there never has been any formal specification
for this. And in fact, since almost no program (for good
reasons) uses the brk interfaces directly, user programs
are never exposed to the exact placement of the heap.
Which brings us back to randomization: the Exec-Shield
patch randomizes the heap address as well. A random
sized gap is left between the end of the BSS data and the
start of the heap. This means that objects allocated on
the heap do not have the same address in two runs of the
same program. The change has remarkably little negative
effects. The only known problem is that while building
emacs (not running the final program) the dumping rou-
tines depend on the heap directly following the BSS data.
The workaround is to disable Exec-Shield temporarily.

Implementation Details

In the discussion of Exec-Shield so far, we glossed over
the implementation details. Exec-Shield is a kernel patch
and all the changes happen transparently for the user. But
one detail of the implementation is worth noticing.

The developers of the 80386, the first implementation of
the IA-32 architecture with protected mode, saved some
precious chip real estate by not implementing the flag
governing execution permission for each memory page
in the virtual address space. Instead, the permission for
‘read’ and ‘execution’ are collapsed into one bit. With-
out making data unreadable, it is not possible to control
execution this way.

There is a way to control execution, though, but it is con-
voluted. The segmentation mechanism of the processor
provides a coarse mechanism to control execution. With-
out the Exec-Shield patch, the segment used for program
execution (selected with the %cs register) stretches the
whole 4GiB and therefore contains the stack and all data.
The Exec-Shield patch changes this. The kernel now
keeps track of the highest address which has been re-
quested to be executable. All addresses from zero to the
highest required address are kept executable. Requests
for executable memory are made exclusively by calls to
mmap or mprotect and the implicitly added mappings
of the program itself and the dynamic linker. This means
the stack is usually not executable. Since new mappings
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with the PROT EXEC bit set are mapped into the ASCII-
armor area, but pure data mapping are mapped high up,
this means the range of executable code is kept minimal
and data usually is not executable. If an intruder has con-
trol over the application this protection can easily be de-
feated by calling mprotect with a PROT EXEC parame-
ter for an object high up in the address space. But the
Exec-Shield patch is about preventing the intruder to get
such control, not to contain him afterward.

5 Position Independent Executables

In the previous section it has been described how the
Exec-Shield patch makes an attacker’s life harder by ran-
domizing the addresses where various parts of the run-
ning program are located. With one exception: the ex-
ecutable itself. There is nothing the kernel can do to
change this. But the programmer can.

To load an executable at different addresses every time it
must be built relocatable. This sounds familiar: a DSO
is relocatable. Therefore, Red Hat modified the compiler
and linker to create a special kind of executable: Position
Independent Executables (PIEs). PIEs are a merger be-
tween executables and DSOs. From the kernel’s point of
view PIEs are nothing but DSOs. The Linux kernel for
a long time supports executing DSOs just as if they were
executables so no kernel changes are needed.

The tools had to be extended, though. Normal DSOs do
not contain all the information an executable has and,
equally important, are compiled in a more general way
which makes the code slower than necessary. But one
step at a time.

To create a PIE, the compiler and linker need to be told
about this. The compiler has two new options, -fpie
and -fPIE which are analogous to the already present
-fpic and -fPIC options. Just like the counterparts, the
two new options instruct the compiler to generate posi-
tion independent code. But on top of this, the compiler
can assume that all symbols defined locally are also re-
solved locally. A detailed explanation of this is long and
complicated. The interested reader is referred to [1].

When generating PIEs it is important to ensure all object
files linked into the application are position-independent.
For the application itself it means that all files should be
compiled with the -fpie option (or -fpic, though less
optimal). The more dangerous part are files linked in
from archives, especially when they come from archives
which are not part of the program’s package itself. The
files in the archive must also be position independent
which might require coordination with another package.
Additionally, if the archive is also used for other pur-
poses, compiling the contained files with -fpie might
actually be wrong. If the code ends up in a DSO the
symbol resolution rules would be violated.

Once all the files are compiled, the linker has to be told
that a PIE has to be created. This works by adding the

-pie option to the command line. The gcc driver pro-
gram then makes sure the correct crt files are linked in
etc. Needless to say that the -fpie option as well as
-pie are not supported if an old version of gcc or a non-
gcc compiler is used.

It is easy to miss a position-dependent file linked into
a PIE. Therefore, developers should always check after-
ward whether the PIE is free of text relocations. Text re-
locations are the result of such position-dependent code
being used. The linker will detect the problems, though,
and add a flag to the PIE’s dynamic section. One can
check for the flag with this:

$ eu-readelf -d BINARY | fgrep TEXTREL

If this pipeline produces any output, the program con-
tains text relocations and should be fixed. It is not nec-
essary for correct execution, but running a program with
text relocation means the memory pages affected by the
relocations are not sharable (increasing resource usage)
and that startup times can be significantly higher. Text
relocations also can create security problems since other-
wise write-protected memory briefly becomes writable.
The script in appendix B will flag PIEs with text reloca-
tions, among other things.

Many applications which are directly exposed to the In-
ternet and some other security relevant programs are con-
verted to PIE in Red Hat Enterprise Linux and Fedora
Core. It does not, in general, make sense to convert all
binaries. Running PIEs is excluding them from taking
advantage of prelinking. The kernel and dynamic linker
will randomize load addresses of all the loaded objects
for PIEs with the consequence that the PIEs start up a bit
slower. If startup times are not an issue (and we are talk-
ing about differences usually in the sub-second range, of-
ten much lower) PIE can be used freely. All long-running
daemons are good candidates and certainly all daemons
accepting input from networks. But also applications like
Mozilla, which can be scripted from the outside, should
be converted.

6 ELF Data Hardening

With Exec-Shield and PIEs we have done work on the
big building blocks of a running application. After this
it was time to look at the individual blocks in detail to
see what can be done to increase security at that level.
The individual files are all ELF files which, looked at in
more detail, present themselves as a sequence of sections
which each have a certain purpose. The following list
shows the various sections in a normal IA-32 application
in the order a linker would create so far.

[ 1] .interp PROGBITS
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[ 2] .note.ABI-tag NOTE
[ 3] .hash HASH
[ 4] .dynsym DYNSYM
[ 5] .dynstr STRTAB
[ 6] .gnu.version GNU_versym
[ 7] .gnu.version_r GNU_verneed
[ 8] .rel.dyn REL
[ 9] .rel.plt REL
[10] .init PROGBITS
[11] .plt PROGBITS
[12] .text PROGBITS
[13] .fini PROGBITS
[14] .rodata PROGBITS
[15] .eh_frame PROGBITS
[16] .data PROGBITS
[17] .dynamic DYNAMIC
[18] .ctors PROGBITS
[19] .dtors PROGBITS
[20] .jcr PROGBITS
[21] .got PROGBITS
[22] .bss PROGBITS
[23] .shstrtab STRTAB

The first 15 sections do not have to be modified at run-
time and can be mapped into memory to not allow write
access. The remaining section, except number 23 which
is not needed at runtime at all, are data sections and need
to be modified. This is the part of the program which
is putting the program in danger. Any place which is
writable is a possible target for an attacker.
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.bss overflow

.data overflow
.bssELF data.dataread−only/exec

This graphic shows the different parts of the ELF file.
The hatching indicates the memory is write-protected.
The red bars indicate which areas a potential buffer over-
run in the .data and .bss section respectively can eas-
ily affect.

For instance take the .got section. This section (part of
the violet colored area) contains internal ELF data which
is used at runtime to find the various symbols the pro-
gram needs. The section contains pointers and the point-
ers are simply loaded from that section and then derefer-
enced or even jumped to. An attacker who could write
a value to this section would be able to redirect the data
accesses or function calls done using the entries of the
.got section. Other sections fall into the same category.
There are actually only two real data sections the pro-
gram uses: .data and .bss. Note that the .rodata

section containing truly read-only data, like constants or
strings, falls into the aforementioned 15 sections. And
even this is not the entire story. Consider the following
code:

const char *const msgs[] = {

"message one", "message two"
};

The array msgs is declared const but in a position inde-
pendent binary, the addresses of the strings that the ele-
ments of the array point to are not known at link-time.
Therefore, the dynamic linker has to complete the re-
location by making adjustments which take the actual
load address into account. Making adjustments means
the content of the array msgs has to be writable. This is
why in the section layout above the array msgs would be
placed in the .data section.

Even though this is what the linker does, this is not the
optimal result. The compiler actually does better. It emits
the array in a separate section named .data.rel.ro

which contains data that needs to be modified by relo-
cations, but is otherwise read-only. Unfortunately there
is no match for this in the current section layout.

This is not the worst problem, though. The order in
which the writable sections are currently lined up has
only historic reasons, not technical ones. Unfortunately,
not much thought went into the layout so far. If an array
in the .data section is overflown, it is possible to mod-
ify all of the following section, especially including the
.dynamic and .got sections. This is something which
in many situations can be avoided by simply reordering
the sections so that the sections with ELF data structures
precede the program’s data sections. This does not mean
that overwriting the program’s data is not harmful and
cannot be exploited, but protecting the ELF data struc-
tures removes yet another weapon from the arsenal of the
attackers. The IA-32 binutils package available in Fedora
Core 2 and later releases by Red Hat would produce the
following section layout:

[ 1] .interp PROGBITS
[ 2] .note.ABI-tag NOTE
[ 3] .hash HASH
[ 4] .dynsym DYNSYM
[ 5] .dynstr STRTAB
[ 6] .gnu.version GNU_versym
[ 7] .gnu.version_r GNU_verneed
[ 8] .rel.dyn REL
[ 9] .rel.plt REL
[10] .init PROGBITS
[11] .plt PROGBITS
[12] .text PROGBITS
[13] .fini PROGBITS
[14] .rodata PROGBITS
[15] .eh_frame PROGBITS
[16] .ctors PROGBITS
[17] .dtors PROGBITS
[18] .jcr PROGBITS
[19] .dynamic DYNAMIC
[20] .got PROGBITS
[21] .got.plt PROGBITS
[22] .data PROGBITS
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[23] .bss NOBITS
[24] .shstrtab STRTAB

The first 15 sections have not changed and we can ig-
nore the last section since it is not used at runtime. The
data sections have changed drastically. Now all the sec-
tions with ELF internal data precede the program’s data
sections .data and .bss. And what is more, there is
a new section .got.plt whose function is not immedi-
ately apparent. To take advantage of this additional sec-
tion one has to pass -z relro to the linker (i.e., add
-Wl,-z,relro to the compiler command line). If this
is done the ELF program header gets a new entry:

eu-readelf -l BINARY | fgrep RELRO
GNU_RELRO ...

This entry specifies what part of the data segment is only
written to during the relocation of the object. The intent
is that the dynamic linker marks the memory region as
read-only after it is done with the relocations. The dy-
namic linker in glibc 2.3.4 and later does just that. We
get the following changed picture:
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.bss overflow

.data overflow
.bssread−only/exec ELF data .data

We see the enlarged write-protected area and the buffer
overruns can ‘only’ affect the .data and .bss sections
easily.

To enable changing the permission in the data, the linker
has to add some padding on the file. Memory page per-
mission can only be changed with page granularity. This
means that if a page contains just one byte which needs
to be written to, it cannot be marked as read-only. The
linker therefore aligns the data so that the data which
is read-only after relocation is on a separate page after
loading the data. This is why we now have the separate
.got.plt section: the first part of the Global Offset Ta-
ble (GOT) is modified only during the relocation. The
second part, associated with the Procedure Linkage Ta-
ble (PLT), is modified later as well. It is therefore kept
along with the program’s data in the part of the data seg-
ment for which the protection is not changed.

One tiny detail: it is not entirely true that the .got.plt
section is always modified after relocation. In case no
runtime relocation happens this is not the case. And
the programmer can enforce this by adding the -z now

linker option. If this option is used, the linker sets a flag
in the generated binary which causes the dynamic linker
to perform all relocations at startup time. This slows
down the startup, in some cases significantly, and might

in some very rare cases even alter the behavior of the
application. But the benefit is that the linker can move
the .got.plt section also in the region, which is read-
only after the relocation. This is good protection, since
known attacks do target this part of the GOT. Daemons
which are long-running and especially endangered net-
worked application should be linked with -z now to add
the extra protection.

Upcoming Red Hat Enterprise Linux releases will have
all applications created with the new linker which orders
the sections correctly. In addition, each program is ex-
amined whether it is a candidate for the addition of the
-z relro and -z now option. After all this protection
is applied, the only memory an attacker can write to is
the stack, the heap, and the data sections of the various
loaded objects. And unless there are good reasons, none
of these memory regions is executable.

7 Conclusion

These security enhancements described in this paper make
noticeable impact on known exploits. They do not, how-
ever, prevent the exploitable program bugs in the first
place. These are still present and attacker can take advan-
tage of them. The changes do often radically reduce the
consequence. Instead of being remote root shell attacks
program bugs often are mere Denial of Service (DoS) at-
tacks. These are not nice and disturb a systems operation
but they do not necessarily mean security problems and
they are easier to handle. System monitoring software
can detect a program crashing and it can keep track of
this. If crashes are suddenly frequent system administra-
tor can be alerted to the fact.

Together with the SELinux integration into the Linux
kernel these changes make the life of intruders harder.
No program is disrupted, if a program is not adjusted for
the security enhancements it will continue to work as be-
fore. There are no restriction of the use of the virtual ad-
dress space which together means that the resistance to
introduce these features is minimal. Disruptions are still
possible, but the severity of the attacks is significantly
reduce which will make system administrators and legal
departments very happy.
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A Using Exec-Shield
The GNU C compiler and the linker usually determine whether the code needs an executable stack correctly. To see
what is recorded one can run commands like these:

$ eu-readelf -l /bin/ls | fgrep STACK
GNU_STACK 0x000000 0x00000000 0x00000000 0x000000 0x000000 RW 0x4

The second to last column of the output shows that the stack for ls need not be executable, only read-writable (RW).
If the output is RWX the binary is marked to need an executable stack and the kernel or dynamic linker will make the
necessary adjustments. In any case, this is a sign that one should examine the binary since it might be unintentional.

Unintentional execution permission can be granted if any files linked into the binary were compiled with a compiler
which does not add the necessary attribution of the object files, or the file was written in assembler. In the former case
one must update to more recent versions (in case the compiler is a GNU compiler) or demand from the vendor that the
necessary instrumentation is done. The linker always defaults to the safe side: if any input file does not indicate that a
not-executable stack is OK, the resulting binary will be marked as requiring an executable stack.

The case of assembler files is more interesting since it happens even with an up-to-date GNU compiler set installed.
There is simply no way the assembler can determine the executability requirement by itself. The programmer must
help by adding a sequence like the following to every assembler file:

.section .note.GNU-stack,"",@progbits

Alternatively, the GNU assembler can be told to just add this section, regardless of the content of the file. This
is possible by adding -Wa,--execstack to the compiler command line. Note this will not work if an alternative
assembler like nasm is used. For nasm, add the following line to the input file (probably as the last line in the file):

section .note.GNU-stack progbits noalloc noexec nowrite align=1

Once the binary is created, the information needed to make a decision is usually lost. If a user knows for sure that no
executable stack is needed, it is often possible to mark the finished binary appropriately. This is especially useful for
binaries, executables and DSOs, which are not available in source form. The tool to use is called execstack and it is
part of the prelink package. Running

$ execstack -s /usr/java/*/bin/java

adds a PT GNU STACK entry in the program’s program header. Adding this entry might sometimes fail for executables.
Adding something in the middle of the executable cannot work if not all the interdependencies between the different
pieces of the executable are known. Those interdependencies are lost at link-time unless the -q option for the linker is
used.4

There is one more way to influence the stack handling. The kernel allows the system administrator to select a global
setting influencing the use of Exec-Shield. One of three variants can be selected by writing one of the strings 0, 1, or 2
into the file /proc/sys/kernel/exec-shield:

0 Exec-Shield is completely disabled. None of the described protections is available in any process started after-
ward.

1 The kernel follows what the PT GNU STACK program header entry says when it comes to selecting the permissions
for the stack. For any binary which does not have a PT GNU STACK entry, the stack is created executable.

4This option is rarely used and chances are it does not work.
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2 This option is similar to 1, but all binaries which do not have a PT GNU STACK entry are executed without
executable stack. This option is useful to prevent introducing problems by importing binaries. Every unmarked
binary which does need an executable stack would have to be treated with execstack to add the program header
entry.

For debugging purposes it might be useful to not have the load address of binaries, DSOs, and the address of the stack
at a different place every time the process is restarted. It would be harder to track variables in the stack. To disable just
the stack randomization the system administrator can write 0 into /proc/sys/kernel/exec-shield-randomize.

Ulrich Drepper Version 1.6 9



B Script to Test for Safe Programs
It is nice to have all these security improvements available. But how can one be sure they are used? Red Hat uses the
following script internally which checks currently running processes. Output can be selected in three different ways.
For each process, the script prints out whether the program is a PIE and whether the stack is writable or not. Especially
the later output is useful since no static test can be as thorough. At runtime, the permissions can change and this would
not be recorded in the static flags. Every process marked to have Exec-Shield disabled is a possible problem. If the
stack is executable just because the flag is missing, use the execstack tool (see previous section). If a program is
shown to not be a PIE this does not necessarily mean this is a problem. One has to judge the situation: if the process is
a high-risk case since it is accessible through the network or is a SUID/SGID application, it might be worth converting
the application into a PIE.

#!/bin/bash
# Copyright (C) 2003, 2004 Red Hat, Inc.
# Written by Ingo Molnar and Ulrich Drepper
if [ "$#" != "1" ]; then
echo "usage: lsexec [ <PID> | process name | --all ]"
exit 1

fi
if ! test -f /etc/redhat-release; then
echo "this script is written for RHEL or Fedora Core"
exit 1

fi

cd /proc

printit() {
if [ -r $1/maps ]; then
echo -n $(basename $(readlink $1/exe))
printf ", PID %6d: " $1
if [ -r $1/exe ]; then
if eu-readelf -h $1/exe|egrep -q ’Type:[[:space:]]*EXEC’; then
echo -n -e ’\033[31mno PIE\033[m, ’

else
if eu-readelf -d $1/exe|egrep -q ’ DEBUG[[:space:]]*$’; then
echo -n -e ’\033[32mPIE\033[m, ’
if eu-readelf -d $1/exe|fgrep -q TEXTREL; then
echo -n -e ’\033[31mTEXTREL\033[m, ’

fi
else
echo -n -e ’\033[33mDSO\033[m, ’
fi

fi
if eu-readelf -l $1/exe|fgrep -q ’GNU_RELRO’; then
if eu-readelf -d $1/exe|fgrep -q ’BIND_NOW’; then
if eu-readelf -l $1/exe|fgrep -q ’ .got] .data .bss’; then
echo -n -e ’\033[32mfull RELRO\033[m, ’

else
echo -n -e ’\033[31mincorrect RELRO\033[m, ’

fi
else
echo -n -e ’\033[33mpartial RELRO\033[m, ’

fi
else
echo -n -e ’\033[31mno RELRO\033[m, ’

fi
fi
lastpg=$(sed -n ’/ˆ[[:xdigit:]]*-[[:xdigit:]]* rw.. \

\([[:xdigit:]]*\) 00:00 0$/p’ $1/maps |
tail -n 1)
if echo "$lastpg" | egrep -v -q ’ rwx. ’; then
lastpg=""

fi
if [ -z "$lastpg" ] || [ -z "$(echo $lastpg||cut -d ’ ’ -f3|tr -d 0)" ]; then
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echo -e ’\033[32mexecshield enabled\033[m’
else
echo -e ’\033[31mexecshield disabled\033[m’
for N in $(awk ’{print $6}’ $1/maps | egrep ’\.so|bin/’ | grep ’ˆ/’ \

| sort -u); do
NE=$(eu-readelf -l $N | fgrep STACK | fgrep ’RW ’)
if [ "$NE" = "" ]; then
echo " => $N disables exec-shield!"

fi
done
fi
fi

}

if [ -d $1 ]; then
printit $1
exit 0

fi

if [ "$1" = "--all" ]; then
for N in [1-9]*; do
if [ $N != $$ ] && readlink -q $N/exe > /dev/null; then
printit $N

fi
done
exit 0

fi

for N in $(/sbin/pidof $1); do
if [ -d $N ]; then
printit $N
fi

done
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