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Abstract

Accurate detection of objects in 3D point clouds is a

central problem in many applications, such as autonomous

navigation, housekeeping robots, and augmented/virtual re-

ality. To interface a highly sparse LiDAR point cloud with a

region proposal network (RPN), most existing efforts have

focused on hand-crafted feature representations, for exam-

ple, a bird’s eye view projection. In this work, we remove

the need of manual feature engineering for 3D point clouds

and propose VoxelNet, a generic 3D detection network that

unifies feature extraction and bounding box prediction into

a single stage, end-to-end trainable deep network. Specifi-

cally, VoxelNet divides a point cloud into equally spaced 3D

voxels and transforms a group of points within each voxel

into a unified feature representation through the newly in-

troduced voxel feature encoding (VFE) layer. In this way,

the point cloud is encoded as a descriptive volumetric rep-

resentation, which is then connected to a RPN to generate

detections. Experiments on the KITTI car detection bench-

mark show that VoxelNet outperforms the state-of-the-art

LiDAR based 3D detection methods by a large margin. Fur-

thermore, our network learns an effective discriminative

representation of objects with various geometries, leading

to encouraging results in 3D detection of pedestrians and

cyclists, based on only LiDAR.

1. Introduction

Point cloud based 3D object detection is an important

component of a variety of real-world applications, such as

autonomous navigation [11, 14], housekeeping robots [28],

and augmented/virtual reality [29]. Compared to image-

based detection, LiDAR provides reliable depth informa-

tion that can be used to accurately localize objects and

characterize their shapes [21, 5]. However, unlike im-

ages, LiDAR point clouds are sparse and have highly vari-

able point density, due to factors such as non-uniform

sampling of the 3D space, effective range of the sensors,

occlusion, and the relative pose. To handle these chal-

lenges, many approaches manually crafted feature represen-

VoxelNet

Figure 1. VoxelNet directly operates on the raw point cloud (no

need for feature engineering) and produces the 3D detection re-

sults using a single end-to-end trainable network.

tations for point clouds that are tuned for 3D object detec-

tion. Several methods project point clouds into a perspec-

tive view and apply image-based feature extraction tech-

niques [30, 15, 22]. Other approaches rasterize point clouds

into a 3D voxel grid and encode each voxel with hand-

crafted features [43, 9, 39, 40, 21, 5]. However, these man-

ual design choices introduce an information bottleneck that

prevents these approaches from effectively exploiting 3D

shape information and the required invariances for the de-

tection task. A major breakthrough in recognition [20] and

detection [13] tasks on images was due to moving from

hand-crafted features to machine-learned features.

Recently, Qi et al.[31] proposed PointNet, an end-to-

end deep neural network that learns point-wise features di-

rectly from point clouds. This approach demonstrated im-

pressive results on 3D object recognition, 3D object part

segmentation, and point-wise semantic segmentation tasks.

In [32], an improved version of PointNet was introduced

which enabled the network to learn local structures at dif-

ferent scales. To achieve satisfactory results, these two ap-

proaches trained feature transformer networks on all input

points (∼1k points). Since typical point clouds obtained

using LiDARs contain ∼100k points, training the architec-
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Figure 2. VoxelNet architecture. The feature learning network takes a raw point cloud as input, partitions the space into voxels, and

transforms points within each voxel to a vector representation characterizing the shape information. The space is represented as a sparse

4D tensor. The convolutional middle layers processes the 4D tensor to aggregate spatial context. Finally, a RPN generates the 3D detection.

tures as in [31, 32] results in high computational and mem-

ory requirements. Scaling up 3D feature learning networks

to orders of magnitude more points and to 3D detection

tasks are the main challenges that we address in this paper.

Region proposal network (RPN) [34] is a highly opti-

mized algorithm for efficient object detection [17, 5, 33,

24]. However, this approach requires data to be dense and

organized in a tensor structure (e.g. image, video) which

is not the case for typical LiDAR point clouds. In this pa-

per, we close the gap between point set feature learning and

RPN for 3D detection task.

We present VoxelNet, a generic 3D detection framework

that simultaneously learns a discriminative feature represen-

tation from point clouds and predicts accurate 3D bounding

boxes, in an end-to-end fashion, as shown in Figure 2. We

design a novel voxel feature encoding (VFE) layer, which

enables inter-point interaction within a voxel, by combin-

ing point-wise features with a locally aggregated feature.

Stacking multiple VFE layers allows learning complex fea-

tures for characterizing local 3D shape information. Specif-

ically, VoxelNet divides the point cloud into equally spaced

3D voxels, encodes each voxel via stacked VFE layers, and

then 3D convolution further aggregates local voxel features,

transforming the point cloud into a high-dimensional volu-

metric representation. Finally, a RPN consumes the vol-

umetric representation and yields the detection result. This

efficient algorithm benefits both from the sparse point struc-

ture and efficient parallel processing on the voxel grid.

We evaluate VoxelNet on the bird’s eye view detection

and the full 3D detection tasks, provided by the KITTI

benchmark [11]. Experimental results show that VoxelNet

outperforms the state-of-the-art LiDAR based 3D detection

methods by a large margin. We also demonstrate that Voxel-

Net achieves highly encouraging results in detecting pedes-

trians and cyclists from LiDAR point cloud.

1.1. Related Work

Rapid development of 3D sensor technology has moti-

vated researchers to develop efficient representations to de-

tect and localize objects in point clouds. Some of the earlier

methods for feature representation are [41, 8, 7, 19, 42, 35,

6, 27, 1, 36, 2, 25, 26]. These hand-crafted features yield

satisfactory results when rich and detailed 3D shape infor-

mation is available. However their inability to adapt to more

complex shapes and scenes, and learn required invariances

from data resulted in limited success for uncontrolled sce-

narios such as autonomous navigation.

Given that images provide detailed texture information,

many algorithms infered the 3D bounding boxes from 2D

images [4, 3, 44, 45, 46, 38]. However, the accuracy of

image-based 3D detection approaches are bounded by the

accuracy of the depth estimation.

Several LIDAR based 3D object detection techniques

utilize a voxel grid representation. [43, 9] encode each

nonempty voxel with 6 statistical quantities that are de-

rived from all the points contained within the voxel. [39]

fuses multiple local statistics to represent each voxel. [40]

computes the truncated signed distance on the voxel grid.

[21] uses binary encoding for the 3D voxel grid. [5] in-

troduces a multi-view representation for a LiDAR point

cloud by computing a multi-channel feature map in the

bird’s eye view and the cylindral coordinates in the frontal

view. Several other studies project point clouds onto a per-

spective view and then use image-based feature encoding
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schemes [30, 15, 22].

There are also several multi-modal fusion methods that

combine images and LiDAR to improve detection accu-

racy [10, 16, 5]. These methods provide improved perfor-

mance compared to LiDAR-only 3D detection, particularly

for small objects (pedestrians, cyclists) or when the objects

are far, since cameras provide an order of magnitude more

measurements than LiDAR. However the need for an addi-

tional camera that is time synchronized and calibrated with

the LiDAR restricts their use and makes the solution more

sensitive to sensor failure modes. In this work we focus on

LiDAR-only detection.

1.2. Contributions

• We propose a novel end-to-end trainable deep archi-

tecture for point-cloud-based 3D detection, VoxelNet,

that directly operates on sparse 3D points and avoids

information bottlenecks introduced by manual feature

engineering.

• We present an efficient method to implement VoxelNet

which benefits both from the sparse point structure and

efficient parallel processing on the voxel grid.

• We conduct experiments on KITTI benchmark and

show that VoxelNet produces state-of-the-art results

in LiDAR-based car, pedestrian, and cyclist detection

benchmarks.

2. VoxelNet

In this section we explain the architecture of VoxelNet,

the loss function used for training, and an efficient algo-

rithm to implement the network.

2.1. VoxelNet Architecture

The proposed VoxelNet consists of three functional

blocks: (1) Feature learning network, (2) Convolutional

middle layers, and (3) Region proposal network [34], as il-

lustrated in Figure 2. We provide a detailed introduction of

VoxelNet in the following sections.

2.1.1 Feature Learning Network

Voxel Partition Given a point cloud, we subdivide the 3D

space into equally spaced voxels as shown in Figure 2. Sup-

pose the point cloud encompasses 3D space with range D,

H , W along the Z, Y, X axes respectively. We define each

voxel of size vD, vH , and vW accordingly. The resulting

3D voxel grid is of size D′ = D/vD, H ′ = H/vH ,W ′ =
W/vW . Here, for simplicity, we assume D, H , W are a

multiple of vD, vH , vW .

Grouping We group the points according to the voxel they

reside in. Due to factors such as distance, occlusion, ob-

ject’s relative pose, and non-uniform sampling, the LiDAR
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Figure 3. Voxel feature encoding layer.

point cloud is sparse and has highly variable point density

throughout the space. Therefore, after grouping, a voxel

will contain a variable number of points. An illustration is

shown in Figure 2, where Voxel-1 has significantly more

points than Voxel-2 and Voxel-4, while Voxel-3 contains no

point.

Random Sampling Typically a high-definition LiDAR

point cloud is composed of ∼100k points. Directly pro-

cessing all the points not only imposes increased mem-

ory/efficiency burdens on the computing platform, but also

highly variable point density throughout the space might

bias the detection. To this end, we randomly sample a fixed

number, T , of points from those voxels containing more

than T points. This sampling strategy has two purposes,

(1) computational savings (see Section 2.3 for details); and

(2) decreases the imbalance of points between the voxels

which reduces the sampling bias, and adds more variation

to training.

Stacked Voxel Feature Encoding The key innovation is

the chain of VFE layers. For simplicity, Figure 2 illustrates

the hierarchical feature encoding process for one voxel.

Without loss of generality, we use VFE Layer-1 to describe

the details in the following paragraph. Figure 3 shows the

architecture for VFE Layer-1.

Denote V = {pi = [xi, yi, zi, ri]
T ∈ R

4}i=1...t as a

non-empty voxel containing t ≤ T LiDAR points, where

pi contains XYZ coordinates for the i-th point and ri is the

received reflectance. We first compute the local mean as

the centroid of all the points in V, denoted as (vx, vy, vz).
Then we augment each point pi with the relative offset w.r.t.

the centroid and obtain the input feature set Vin = {p̂i =
[xi, yi, zi, ri, xi−vx, yi−vy, zi−vz]

T ∈ R
7}i=1...t. Next,

each p̂i is transformed through the fully connected network

(FCN) into a feature space, where we can aggregate in-

formation from the point features fi ∈ R
m to encode the

shape of the surface contained within the voxel. The FCN

is composed of a linear layer, a batch normalization (BN)

layer, and a rectified linear unit (ReLU) layer. After obtain-

ing point-wise feature representations, we use element-wise

MaxPooling across all fi associated to V to get the locally

aggregated feature f̃ ∈ R
m for V. Finally, we augment
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Figure 4. Region proposal network architecture.

each fi with f̃ to form the point-wise concatenated feature

as fouti = [fTi , f̃T ]T ∈ R
2m. Thus we obtain the output

feature set Vout = {fouti }i...t. All non-empty voxels are

encoded in the same way and they share the same set of

parameters in FCN.

We use VFE-i(cin, cout) to represent the i-th VFE layer

that transforms input features of dimension cin into output

features of dimension cout. The linear layer learns a ma-

trix of size cin×(cout/2), and the point-wise concatenation

yields the output of dimension cout.
Because the output feature combines both point-wise

features and locally aggregated feature, stacking VFE lay-

ers encodes point interactions within a voxel and enables

the final feature representation to learn descriptive shape

information. The voxel-wise feature is obtained by trans-

forming the output of VFE-n into R
C via FCN and apply-

ing element-wise Maxpool where C is the dimension of the

voxel-wise feature, as shown in Figure 2.

Sparse Tensor Representation By processing only the

non-empty voxels, we obtain a list of voxel features, each

uniquely associated to the spatial coordinates of a particu-

lar non-empty voxel. The obtained list of voxel-wise fea-

tures can be represented as a sparse 4D tensor, of size

C × D′ × H ′ × W ′ as shown in Figure 2. Although the

point cloud contains ∼100k points, more than 90% of vox-

els typically are empty. Representing non-empty voxel fea-

tures as a sparse tensor greatly reduces the memory usage

and computation cost during backpropagation, and it is a

critical step in our efficient implementation.

2.1.2 Convolutional Middle Layers

We use ConvMD(cin, cout,k, s,p) to represent an M -

dimensional convolution operator where cin and cout are

the number of input and output channels, k, s, and p are the

M -dimensional vectors corresponding to kernel size, stride

size and padding size respectively. When the size across the

M -dimensions are the same, we use a scalar to represent

the size e.g. k for k = (k, k, k).
Each convolutional middle layer applies 3D convolution,

BN layer, and ReLU layer sequentially. The convolutional

middle layers aggregate voxel-wise features within a pro-

gressively expanding receptive field, adding more context

to the shape description. The detailed sizes of the filters in

the convolutional middle layers are explained in Section 3.

2.1.3 Region Proposal Network

Recently, region proposal networks [34] have become an

important building block of top-performing object detec-

tion frameworks [40, 5, 23]. In this work, we make several

key modifications to the RPN architecture proposed in [34],

and combine it with the feature learning network and con-

volutional middle layers to form an end-to-end trainable

pipeline.

The input to our RPN is the feature map provided by

the convolutional middle layers. The architecture of this

network is illustrated in Figure 4. The network has three

blocks of fully convolutional layers. The first layer of each

block downsamples the feature map by half via a convolu-

tion with a stride size of 2, followed by a sequence of con-

volutions of stride 1 (×q means q applications of the filter).

After each convolution layer, BN and ReLU operations are

applied. We then upsample the output of every block to a

fixed size and concatanate to construct the high resolution

feature map. Finally, this feature map is mapped to the de-

sired learning targets: (1) a probability score map and (2) a

regression map.

2.2. Loss Function

Let {apos
i }i=1...Npos be the set of Npos positive an-

chors and {aneg
j }j=1...Nneg be the set of Nneg negative

anchors. We parameterize a 3D ground truth box as

(xg
c , y

g
c , z

g
c , l

g, wg, hg, θg), where xg
c , y

g
c , z

g
c represent the

center location, lg, wg, hg are length, width, height of the

box, and θg is the yaw rotation around Z-axis. To re-

trieve the ground truth box from a matching positive anchor

parameterized as (xa
c , y

a
c , z

a
c , l

a, wa, ha, θa), we define the

residual vector u∗ ∈ R
7 containing the 7 regression tar-

gets corresponding to center location ∆x,∆y,∆z, three di-
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mensions ∆l,∆w,∆h, and the rotation ∆θ, which are com-

puted as:

∆x =
xg
c − xa

c

da
,∆y =

ygc − yac
da

,∆z =
zgc − zac

ha
,

∆l = log(
lg

la
),∆w = log(

wg

wa
),∆h = log(

hg

ha
), (1)

∆θ = θg − θa

where da =
√

(la)2 + (wa)2 is the diagonal of the base

of the anchor box. Here, we aim to directly estimate the

oriented 3D box and normalize ∆x and ∆y homogeneously

with the diagonal da, which is different from [34, 40, 22, 21,

4, 3, 5]. We define the loss function as follows:

L = α
1

Npos

∑

i

Lcls(p
pos
i , 1) + β

1

Nneg

∑

j

Lcls(p
neg
j , 0)

+
1

Npos

∑

i

Lreg(ui,u
∗

i ) (2)

where ppos
i and pneg

j represent the softmax output for posi-

tive anchor apos
i and negative anchor aneg

j respectively, while

ui ∈ R
7 and u∗

i ∈ R
7 are the regression output and

ground truth for positive anchor apos
i . The first two terms are

the normalized classification loss for {apos
i }i=1...Npos and

{aneg
j }j=1...Nneg , where the Lcls stands for binary cross en-

tropy loss and α, β are postive constants balancing the rel-

ative importance. The last term Lreg is the regression loss,

where we use the SmoothL1 function [12, 34].

2.3. Efficient Implementation

GPUs are optimized for processing dense tensor struc-

tures. The problem with working directly with the point

cloud is that the points are sparsely distributed across space

and each voxel has a variable number of points. We devised

a method that converts the point cloud into a dense tensor

structure where stacked VFE operations can be processed

in parallel across points and voxels.

The method is summarized in Figure 5. We initialize a

K × T × 7 dimensional tensor structure to store the voxel

input feature buffer where K is the maximum number of

non-empty voxels, T is the maximum number of points

per voxel, and 7 is the input encoding dimension for each

point. The points are randomized before processing. For

each point in the point cloud, we check if the corresponding

voxel already exists. This lookup operation is done effi-

ciently in O(1) using a hash table where the voxel coordi-

nate is used as the hash key. If the voxel is already initial-

ized we insert the point to the voxel location if there are less

than T points, otherwise the point is ignored. If the voxel

is not initialized, we initialize a new voxel, store its coordi-

nate in the voxel coordinate buffer, and insert the point to

this voxel location. The voxel input feature and coordinate

buffers can be constructed via a single pass over the point

list, therefore its complexity is O(n). To further improve

the memory/compute efficiency it is possible to only store

a limited number of voxels (K) and ignore points coming

from voxels with few points.

After the voxel input buffer is constructed, the stacked

VFE only involves point level and voxel level dense oper-

ations which can be computed on a GPU in parallel. Note

that, after concatenation operations in VFE, we reset the

features corresponding to empty points to zero such that

they do not affect the computed voxel features. Finally,

using the stored coordinate buffer we reorganize the com-

puted sparse voxel-wise structures to the dense voxel grid.

The following convolutional middle layers and RPN oper-

ations work on a dense voxel grid which can be efficiently

implemented on a GPU.

3. Training Details

In this section, we explain the implementation details of

the VoxelNet and the training procedure.

3.1. Network Details

Our experimental setup is based on the LiDAR specifi-

cations of the KITTI dataset [11].

Car Detection For this task, we consider point clouds

within the range of [−3, 1] × [−40, 40] × [0, 70.4] meters

along Z, Y, X axis respectively. Points that are projected

outside of image boundaries are removed [5]. We choose

a voxel size of vD = 0.4, vH = 0.2, vW = 0.2 meters,

which leads to D′ = 10, H ′ = 400, W ′ = 352. We

set T = 35 as the maximum number of randomly sam-

pled points in each non-empty voxel. We use two VFE

layers VFE-1(7, 32) and VFE-2(32, 128). The final FCN

maps VFE-2 output to R
128. Thus our feature learning net

generates a sparse tensor of shape 128 × 10 × 400 × 352.

To aggregate voxel-wise features, we employ three convo-

lution middle layers sequentially as Conv3D(128, 64, 3,

(2,1,1), (1,1,1)), Conv3D(64, 64, 3, (1,1,1), (0,1,1)), and
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Conv3D(64, 64, 3, (2,1,1), (1,1,1)), which yields a 4D ten-

sor of size 64 × 2 × 400 × 352. After reshaping, the input

to RPN is a feature map of size 128 × 400 × 352, where

the dimensions correspond to channel, height, and width of

the 3D tensor. Figure 4 illustrates the detailed network ar-

chitecture for this task. Unlike [5], we use only one anchor

size, la = 3.9, wa = 1.6, ha = 1.56 meters, centered at

zac = −1.0 meters with two rotations, 0 and 90 degrees.

Our anchor matching criteria is as follows: An anchor is

considered as positive if it has the highest Intersection over

Union (IoU) with a ground truth or its IoU with ground truth

is above 0.6 (in bird’s eye view). An anchor is considered

as negative if the IoU between it and all ground truth boxes

is less than 0.45. We treat anchors as don’t care if they have

0.45 ≤ IoU ≤ 0.6 with any ground truth. We set α = 1.5
and β = 1 in Eqn. 2.

Pedestrian and Cyclist Detection The input range1 is

[−3, 1] × [−20, 20] × [0, 48] meters along Z, Y, X axis re-

spectively. We use the same voxel size as for car detection,

which yields D = 10, H = 200, W = 240. We set T = 45
in order to obtain more LiDAR points for better capturing

shape information. The feature learning network and con-

volutional middle layers are identical to the networks used

in the car detection task. For the RPN, we make one mod-

ification to block 1 in Figure 4 by changing the stride size

in the first 2D convolution from 2 to 1. This allows finer

resolution in anchor matching, which is necessary for de-

tecting pedestrians and cyclists. We use anchor size la =
0.8, wa = 0.6, ha = 1.73 meters centered at zac = −0.6
meters with 0 and 90 degrees rotation for pedestrian detec-

tion and use anchor size la = 1.76, wa = 0.6, ha = 1.73
meters centered at zac = −0.6 with 0 and 90 degrees rota-

tion for cyclist detection. The specific anchor matching cri-

teria is as follows: We assign an anchor as postive if it has

the highest IoU with a ground truth, or its IoU with ground

truth is above 0.5. An anchor is considered as negative if its

IoU with every ground truth is less than 0.35. For anchors

having 0.35 ≤ IoU ≤ 0.5 with any ground truth, we treat

them as don’t care.

During training, we use stochastic gradient descent

(SGD) with learning rate 0.01 for the first 150 epochs and

decrease the learning rate to 0.001 for the last 10 epochs.

We use a batchsize of 16 point clouds.

3.2. Data Augmentation

With less than 4000 training point clouds, training our

network from scratch will inevitably suffer from overfitting.

To reduce this issue, we introduce three different forms of

data augmentation. The augmented training data are gener-

ated on-the-fly without the need to be stored on disk [20].

1Our empirical observation suggests that beyond this range, LiDAR

returns from pedestrians and cyclists become very sparse and therefore

detection results will be unreliable.

Define set M = {pi = [xi, yi, zi, ri]
T ∈ R

4}i=1,...,N as

the whole point cloud, consisting of N points. We parame-

terize a 3D bouding box bi as (xc, yc, zc, l, w, h, θ), where

xc, yc, zc are center locations, l, w, h are length, width,

height, and θ is the yaw rotation around Z-axis. We de-

fine Ωi = {p|x ∈ [xc − l/2, xc + l/2], y ∈ [yc −w/2, yc +
w/2], z ∈ [zc − h/2, zc + h/2],p ∈ M} as the set con-

taining all LiDAR points within bi, where p = [x, y, z, r]
denotes a particular LiDAR point in the whole set M.

The first form of data augmentation applies perturbation

independently to each ground truth 3D bounding box to-

gether with those LiDAR points within the box. Specifi-

cally, around Z-axis we rotate bi and the associated Ωi with

respect to (xc, yc, zc) by a uniformally distributed random

variable ∆θ ∈ [−π/10,+π/10]. Then we add a translation

(∆x,∆y,∆z) to the XYZ components of bi and to each

point in Ωi, where ∆x, ∆y, ∆z are drawn independently

from a Gaussian distribution with mean zero and standard

deviation 1.0. To avoid physically impossible outcomes, we

perform a collision test between any two boxes after the per-

turbation and revert to the original if a collision is detected.

Since the perturbation is applied to each ground truth box

and the associated LiDAR points independently, the net-

work is able to learn from substantially more variations than

from the original training data.

Secondly, we apply global scaling to all ground truth

boxes bi and to the whole point cloud M. Specifically,

we multiply the XYZ coordinates and the three dimen-

sions of each bi, and the XYZ coordinates of all points

in M with a random variable drawn from uniform distri-

bution [0.95, 1.05]. Introducing global scale augmentation

improves robustness of the network for detecting objects

with various sizes and distances as shown in image-based

classification [37, 18] and detection tasks [12, 17].

Finally, we apply global rotation to all ground truth

boxes bi and to the whole point cloud M. The rotation

is applied along Z-axis and around (0, 0, 0). The global ro-

tation offset is determined by sampling from uniform dis-

tribution [−π/4,+π/4]. By rotating the entire point cloud,

we simulate the vehicle making a turn.

4. Experiments

We evaluate VoxelNet on the KITTI 3D object detection

benchmark [11] which contains 7,481 training images/point

clouds and 7,518 test images/point clouds, covering three

categories: Car, Pedestrian, and Cyclist. For each class,

detection outcomes are evaluated based on three difficulty

levels: easy, moderate, and hard, which are determined ac-

cording to the object size, occlusion state, and truncation

level. Since the ground truth for the test set is not avail-

able and the access to the test server is limited, we con-

duct comprehensive evaluation using the protocol described

in [4, 3, 5] and subdivide the training data into a training set
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Method Modality
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Mono3D [3] Mono 5.22 5.19 4.13 N/A N/A N/A N/A N/A N/A

3DOP [4] Stereo 12.63 9.49 7.59 N/A N/A N/A N/A N/A N/A

VeloFCN [22] LiDAR 40.14 32.08 30.47 N/A N/A N/A N/A N/A N/A

MV (BV+FV) [5] LiDAR 86.18 77.32 76.33 N/A N/A N/A N/A N/A N/A

MV (BV+FV+RGB) [5] LiDAR+Mono 86.55 78.10 76.67 N/A N/A N/A N/A N/A N/A

HC-baseline LiDAR 88.26 78.42 77.66 58.96 53.79 51.47 63.63 42.75 41.06

VoxelNet LiDAR 89.60 84.81 78.57 65.95 61.05 56.98 74.41 52.18 50.49

Table 1. Performance comparison in bird’s eye view detection: average precision (in %) on KITTI validation set.

Method Modality
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Mono3D [3] Mono 2.53 2.31 2.31 N/A N/A N/A N/A N/A N/A

3DOP [4] Stereo 6.55 5.07 4.10 N/A N/A N/A N/A N/A N/A

VeloFCN [22] LiDAR 15.20 13.66 15.98 N/A N/A N/A N/A N/A N/A

MV (BV+FV) [5] LiDAR 71.19 56.60 55.30 N/A N/A N/A N/A N/A N/A

MV (BV+FV+RGB) [5] LiDAR+Mono 71.29 62.68 56.56 N/A N/A N/A N/A N/A N/A

HC-baseline LiDAR 71.73 59.75 55.69 43.95 40.18 37.48 55.35 36.07 34.15

VoxelNet LiDAR 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11

Table 2. Performance comparison in 3D detection: average precision (in %) on KITTI validation set.

and a validation set, which results in 3,712 data samples for

training and 3,769 data samples for validation. The split

avoids samples from the same sequence being included in

both the training and the validation set [3]. Finally we also

present the test results using the KITTI server.

For the Car category, we compare the proposed method

with several top-performing algorithms, including image

based approaches: Mono3D [3] and 3DOP [4]; LiDAR

based approaches: VeloFCN [22] and 3D-FCN [21]; and a

multi-modal approach MV [5]. Mono3D [3], 3DOP [4] and

MV [5] use a pre-trained model for initialization whereas

we train VoxelNet from scratch using only the LiDAR data

provided in KITTI.

To analyze the importance of end-to-end learning, we

implement a strong baseline that is derived from the Vox-

elNet architecture but uses hand-crafted features instead of

the proposed feature learning network. We call this model

the hand-crafted baseline (HC-baseline). HC-baseline uses

the bird’s eye view features described in [5] which are

computed at 0.1m resolution. Different from [5], we in-

crease the number of height channels from 4 to 16 to cap-

ture more detailed shape information– further increasing

the number of height channels did not lead to performance

improvement. We replace the convolutional middle lay-

ers of VoxelNet with similar size 2D convolutional layers,

which are Conv2D(16, 32, 3, 1, 1), Conv2D(32, 64, 3, 2,

1), Conv2D(64, 128, 3, 1, 1). Finally RPN is identical in

VoxelNet and HC-baseline. The total number of parame-

ters in HC-baseline and VoxelNet are very similar. We train

the HC-baseline using the same training procedure and data

augmentation described in Section 3.

4.1. Evaluation on KITTI Validation Set

Metrics We follow the official KITTI evaluation protocol,

where the IoU threshold is 0.7 for class Car and is 0.5 for

class Pedestrian and Cyclist. The IoU threshold is the same

for both bird’s eye view and full 3D evaluation. We compare

the methods using the average precision (AP) metric.

Evaluation in Bird’s Eye View The evaluation result is

presented in Table 1. VoxelNet consistently outperforms all

the competing approaches across all three difficulty levels.

HC-baseline also achieves satisfactory performance com-

pared to the state-of-the-art [5], which shows that our base

region proposal network (RPN) is effective. For Pedestrian

and Cyclist detection tasks in bird’s eye view, we compare

the proposed VoxelNet with HC-baseline. VoxelNet yields

substantially higher AP than the HC-baseline for these more

challenging categories, which shows that end-to-end learn-

ing is essential for point-cloud based detection.

We would like to note that [21] reported 88.9%, 77.3%,

and 72.7% for easy, moderate, and hard levels respectively,

but these results are obtained based on a different split of

6,000 training frames and ∼1,500 validation frames, and

they are not directly comparable with algorithms in Table 1.

Therefore, we do not include these results in the table.

Evaluation in 3D Compared to the bird’s eye view de-

tection, which requires only accurate localization of ob-

jects in the 2D plane, 3D detection is a more challeng-

ing task as it requires finer localization of shapes in 3D

space. Table 2 summarizes the comparison. For the

class Car, VoxelNet significantly outperforms all other ap-

proaches in AP across all difficulty levels. Specifically,

using only LiDAR, VoxelNet significantly outperforms the

state-of-the-art method MV (BV+FV+RGB) [5] based on
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Car Pedestrian Cyclist
Figure 6. Qualitative results. For better visualization 3D boxes detected using LiDAR are projected on to the RGB images.

LiDAR+RGB, by 10.68%, 2.78% and 6.29% in easy, mod-

erate, and hard levels respectively. HC-baseline achieves

similar accuracy to the MV [5] method.

As in the bird’s eye view evaluation, we also compare

VoxelNet with HC-baseline on 3D Pedestrian and Cyclist

detection. Due to the high variation in 3D poses and shapes,

successful detection of these two categories requires better

3D shape representation. As shown in Table 2 the improved

performance of VoxelNet is emphasized for more challeng-

ing 3D detection tasks (from ∼8% improvement in bird’s

eye view to ∼12% improvement on 3D detection) which

suggests that VoxelNet is more effective in capturing 3D

shape information than hand-crafted features.

4.2. Evaluation on KITTI Test Set

We evaluated VoxelNet on the KITTI test set by submit-

ting detection results to the official server. The results are

summarized in Table 3. VoxelNet, significantly outperforms

the previously published state-of-the-art [5] in all the tasks

(bird’s eye view and 3D detection) and all difficulties. We

would like to note that many of the other leading methods

listed in KITTI benchmark use both RGB images and Li-

DAR point clouds whereas VoxelNet uses only LiDAR.

We present several 3D detection examples in Figure 6.

For better visualization 3D boxes detected using LiDAR are

projected on to the RGB images. As shown, VoxelNet pro-

vides highly accurate 3D bounding boxes in all categories.

The inference time for VoxelNet is 33ms: the voxel in-

put feature computation takes 5ms, feature learning network

takes 16ms, convolutional middle layers take 1ms, and re-

gion proposal network takes 11ms on a TitanX GPU and

Benchmark Easy Moderate Hard

Car (3D Detection) 77.47 65.11 57.73

Car (Bird’s Eye View) 89.35 79.26 77.39

Pedestrian (3D Detection) 39.48 33.69 31.51

Pedestrian (Bird’s Eye View) 46.13 40.74 38.11

Cyclist (3D Detection) 61.22 48.36 44.37

Cyclist (Bird’s Eye View) 66.70 54.76 50.55

Table 3. Performance evaluation on KITTI test set.

1.7Ghz CPU.

5. Conclusion

Most existing methods in LiDAR-based 3D detection

rely on hand-crafted feature representations, for example,

a bird’s eye view projection. In this paper, we remove the

bottleneck of manual feature engineering and propose Vox-

elNet, a novel end-to-end trainable deep architecture for

point cloud based 3D detection. Our approach can operate

directly on sparse 3D points and capture 3D shape infor-

mation effectively. We also present an efficient implemen-

tation of VoxelNet that benefits from point cloud sparsity

and parallel processing on a voxel grid. Our experiments

on the KITTI car detection task show that VoxelNet outper-

forms state-of-the-art LiDAR based 3D detection methods

by a large margin. On more challenging tasks, such as 3D

detection of pedestrians and cyclists, VoxelNet also demon-

strates encouraging results showing that it provides a better

3D representation. Future work includes extending Voxel-

Net for joint LiDAR and image based end-to-end 3D detec-

tion to further improve detection and localization accuracy.
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