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...la traduction en langage formalisé ne serait plus qu'un exercise de patience

(sans doutes fort pénible).
—Nicolas Bourbaki

Hanc marginis exiguitas non caperet.
—Pierre de Fermat

We feel that this context has now changed. For a long time, “mathemat-
ics” and “computer science” have designated widely separated disciplines,
overlapping only in areas which were considered “fringe” on either side.
This was not really a historical view since Von Neumann, Turing and oth-
ers were mathematicians who set off into the world of computers. We are
now entering a time of reconvergence which has all kinds of implications.
A prominent one is the increasing reality of computer proof verification as
applied to standard mathematical work. This has been under development
for quite a while, but just now it is becoming realistic to imagine applying
it to a wide array of mathematical situations.

The idea is to write mathematical documents in a language such that the
mathematical accuracy is then verified by a computer program. This should
be compared with other different but related utilisations of the computer:
—typesetting: we are looking at having the computer understand the argu-
ment, not just the visual expression on the page, nevertheless on a sociolog-
ical level there are many similarities with the TEXproject;

—computer algebra and other calculation systems: we are looking at the
logical or “proof” aspect of mathematics, including also the problem of
introducing, defining and manipulating new abstract concepts, which is dif-
ferent from just having the computer do a specific calculation, but of course
calculation is one primordial aspect of mathematical proof and one of the
big problems is how to integrate the two into a coherent whole;
—computer proof search: we are not, as a basic requirement, asking the
computer to find the proof of something, only to verify the proof that the
mathematician gives. One of our favorite reactions from a colleague (who
shall remain nameless) was:

so, how is your project of trivializing mathematics going?

But we are not talking about trivializing mathematics: the mathematician



has to supply the proof, because automation can perhaps deal with what
we regard as small details but will never (?) replace the human work of
concieving the outline of a complicated argument.

A favorite analogy is with the construction trade. At first, everything
was constructed by laying stone or other material by hand. If you wanted to
be in the construction trade you had to know how to lay a stone wall that
was straight (not easy). Nowdays we have new materials and new tools. If
you want to be in the construction trade, you should know how to drive a
tractor and how to use a circular saw, but you don’t really need to know how
to build a stone wall unless you specialize in that sort of thing. When we
look back at the pyramids we say “Wow! I can’t believe they actually built
those things without a crane!”. In a few hundred years, people will look
back at Fermat’s last theorem and say “Wow! I can’t believe they actually
proved that thing by hand!”.

Just as the advent of new techniques in the construction industry radi-
cally altered the landscape of buildings we build, so the advent of new tools
for doing mathematics will radically alter the type of mathematics we find,
and in ways we can only barely imagine right now. It seems important that
mathematicians join the fray so as to open up our understanding of what
the future might hold.

Currently many different systems are under experimentation: a “system”
is a program which verifies proofs written in a specified language, plus all
of the necessary support material including documentation for the language
and how to prove things in it; a library of results on which users can build;
active support in the sense of continually improving the program to take into
account problems which may be encountered or implement new functional-
ities, together with maintenance of backward-compatibility for the library
(this all requires a non-negligable amount of computer science); and a group
of users extending beyond the immediate circle of those who concieved and
maintained the program.

This subject has recently made the news in several different venues, even
an article in the New York Times [Cha04]. One of the more notable efforts
at getting the mathematical community involved in the subject is Thomas
Hales” “flyspeck project” [Hal].

We will look at the current state of the art with respect to a few of the
main systems which are currently available: ACL2, Coq, Isabelle, Mizar,
NuPRL, ...and also briefly consider some other projects which are newer
or present original aspects such as PVS, Phox, MetaMath-Ghilbert, IMPS,
... together with some transversal web sites such as MKMnet, HELM, Omega,
MathWeb/OMDoc. We will also briefly discuss what this might bring for



the future, including web-based approaches to mathematical education.

We restrict our attention mostly to open systems. This is partly because
it is much more difficult to obtain information about proprietary ones (in
particular you have to pay for them!), and also this information may not
be all that relevant other than to users of the particular system. Nonethe-
less we should mention one major proprietary system Mathematica which
apparently has latent theorem-verification possibilities.

Most of the information here has been gained by searching the internet
with standard tools. The interested reader may readily continue that path
and find much fuller and deeper information than we could cover. That hav-
ing been said, we will not always include the proper references for sources
because (1) there would be too many, and (2) it is all available on the web
(we try to avoid refering to things you would have to pay for). All told, this
represents another information-technology phenomenon which has an enor-
mous impact on mathematics, which we could discuss at length but that
would depass the scope of a short article. (A third phenomenon, the pos-
sibility of doing mathematical communication by visioconference, doesn’t
seem to work well enough yet that we could do more than mention it par-
enthetically.)

1 “I would like to certify my latest theorem”

We expect that the formalization of a non trivial theorem may require several
years. To give the idea, we can cite Thomas Hales who plans to certify his
proof of the Kepler Conjecture in twenty years.

Moreover, not all subjects of mathematics have an equal probability
of success in formalization with today’s technology: we may expect that
a geometrical argument of, say, knot theory would be intrinsically more
difficult to formalize than a result of algebra or combinatorial logic.

Aside from this, a “classical” mathematician would probably need to
enrich his mathematical background with a variety of topics from other
domains such as logic and computer-science in order to be effective in the
production of a formal document readable by a computer. The training
may require a non negligible time (choosing a system, understanding its
logic and becoming proficient in its use, learning which results are already
made available for that system, etc).

On the other hand, this effort can be repaid in several ways. First of
all, to reach a complete formalization of a theorem can be a very interesting
experience, both for young and for senior researchers, that can be rarely



done without the aid of a computer, if we exclude trivial examples in toy
theories. The passage from “formalizable” to “formal” mathematics can
frequently lead to discovery of a deeper structure in the reasoning and reveal
unexpected aspects of the mathematical constructions that can stimulate
endless related investigations, subject for other researches and links with
other disciplines. Finally, we predict that more and more in the future,
there will be disciplines that will be easier to approach with the aid of a
computer than without it. This is already the case for several topics of logic
and algebra strictly related to the subject: the best way for a beginner to
learn type theory is to start to play with a computer assistant with a typeful
specification language (more or less as for a young algebraic geometer it can
be a good thing to play with a program which computes Groebner bases).

The newcomer trying to find his way in this subject (as we have been) is
faced with a number of difficult problems, not the least of which is deciding
which system to use and how to use it. We feel it would be harmful to
suggest one system or another, since progress can only be made if many
people experiment with many different things. However it seems essential
to have some sort of guidance.

In trying to understand what is going on with one or many systems, sev-
eral aspects should be taken into account: the presentation, the underlying
logic, the architecture, tactical language and the available decision tactics,
the proof manager, the user interface, the documentation and the user com-
munity. Let us discuss briefly each of these aspects (see [GH98] in the
context of a comparison of PVS and Isabelle/HOL along these lines).
Presentation A proof assistant is typically a program which can be run on
an input file (usually text), and which certifies that (1) the file adheres to
a specified syntax; (2) according to specified inference rules, the document
contains the proofs (and constructions) that it purports to; and (3) any
errors are located.

Additional functionalities can include: a top level command loop into
which commands can be entered one at a time; a goal window display
whereby each command which is entered provokes the display of additional
information to show the user what the state of the proof is at that point
(generally showing the goal to be proven and the known hypotheses); display
of process information saying what the prover tried (Boyer-Moore style); and
possibly an integrated user-interface which interpolates between the top level
loop and the file-compilation mode. More advanced interfaces can include
non-textual commands such as “proof by pointing” [?].

Logic Each proof assistant implements a different logic. The vast majority
of contemporary mathematics is expressed using the language of set theory



(like ZF) and most mathematicians can do their work without too much
concern about the very basics of mathematics. Doing mathematics formally
implies a change of perspective — at least at the present stage — and the
choice of the formal system can be a crucial one. Many theorem provers
implement logical systems common in theoretical computer science.

The logics which are used range from first-order or higher-order logic with
ZF semantics (ACL2, Mizar, Metamath), to classical higher-order logic in
the framework of a simple type theory (HOL/Isabelle), to a full constructive
type theory of Martin-Lof including dependent types and universes (Coq,
Nuprl).

One basic question about the logic implemented in a system is whether
you are allowed to quantify over predicates: this is the distinction between
first order and higher orderlogic. Actually this distinction can be more
nuanced, depending on exactly what kinds of higher-order objects can be
manipulated, and how. For example, Coq, Lego and NuPRL are even more
higher-order than HOL because they use dependent types [Den00]. This is
related to the use of the Curry-Howard principle representing proofs as ob-
jects in a propositional type, with the same status as any other mathematical
objects. Unfortunately dependent types create other problems which are not
currently adequately solved.

Another major question is how the system deals with the problem of
Grothendieck universes or other ways of getting around Russell’s paradox.
Common mathematical practice is at its fuzziest on this point, and maybe for
that reason no system has presented a solution which seems adequate. The
approach of Mizar might be the best one (at the expense of starting with an
axiom which implies the existence of infinitely many inaccessible cardinals).
In fact mathematicians would prefer to ignore the problem completely, and
system designers try to aim for allowing the user to ignore the problem too.
But it doesn’t want to go away! Consequently this remains an open research
problem, as well as a potential stumbler for neophytes.

In general, a proof assistant is designed for a specific goal in mind. For
instance, many systems are directed toward application in hardware and
software verification. In some cases, the choice of restricting the support to
first order logic can be reasonable. However, we feel that for mathematics in
general, it is hard to develop non trivial theories in a specification language
that does not allow us to quantify over predicates. (One can even note
that HOL, one of the first systems available for higher order logic, was born
exactly with the problem of hardware verification in mind).

The logic of the system is strictly related to another important aspect:
the specification language. Put in simple terms, it is not useful to have



a proof of a theorem if it is hard to understand what the theorem really
says. When we introduce a new concept (say the definition of group), it is
important that everybody agree that the formal definition coincide with the
one of diffused practice. An expressive specification language is an important
premise for a formalized theory to be useful. In turn, a “rich” logic is one
important ingredient to build an expressive specification language.

Higher order logic allows us to use the so called declarative style, that
is, introduce new concepts by definitions. This has an important practical
advantage over the other methodology of using axioms to model new con-
cept, called aziomatic style: each time a new axiom is introduced we risk
breaking the soundness of the theory (if the axiom it is not well thought or
even by a simple misspelling). If you introduce new concepts by definitions,
you can be lead to prove unuseful theorems but you do not compromise the
soundness of the whole environment.

On the other hand, a restriction to first-order logic (at least in part of
a system) can increase the number of decidable algorithmic problems and
generally open up more possibilities for automation of proof-search. Otter
and ACL2 are examples of this phenomenon.

Since the logic implemented by the system is so important, some proof
assistants are designed to be generic with respect to the logic. The im-
plements a metalogic in which several object logics can be declared. The
Isabelle proof assistant is perhaps the first system designed with this idea
in mind (see below). Also MetaPRL developed by the PRL group that also
wrote NuRPL is designed as an extension of the OCaml programming lan-
guage to describe and relate several logics. One different, also interesting,
attempt in this direction is the HOL-light proof assistant (see below).
Architecture Not surprisingly, a proof assistant is often quite a complex
piece of software. The design decisions made by the developers can influ-
ence the life of the user in several ways. One important point at this regard
is about the size of the so called trusted kernel of the system, that is, the
part of the code on which the soundness of the system depends. Some proof
assistants are designed to have a reasonably small kernel. This means that
developers and users are free to add other functionalities to the system with-
out to worry about the correctness of their code. Since the most popular
proof assistants are in constant development, a small trusted kernel can
dramatically improve both reliability and usability. However, a small kernel
comes with price: all tactics should produce proofs that expand the reason-
ing to small steps simple enough to be checked by the kernel. This can be
a computational cost. It is somehow surprising that the technology permits
to write a system with small kernel which also shows good performances.



At this point an historical note about the remarkable work of Milner on
the LCF proof assistant at the beginning of seventies is unavoidable. The
design of LCF had a direct influence on many successful provers like HOL,
Isabelle, Nurpl and Coq which can be all considered direct descendants of
LCEF. One of the most important ideas of Milner was to use a strictly typed
sound programming language to ensure the soundness of the system. To
this end Milner designed an ad hoc programming language, called ML (Meta
Language), to develop one of the versions of LCF. Today development of ML
is under active research and it is utilized for a wide range of applications.

Another point that could be considered pertinent is the availability of

a good system of “modules” (otherwise known as "books” or ”locales”) for
organizing the argument, partitioning the namespace, and re-using defini-
tions and arguments. Unfortunately this is a newer concept in computer
science and it doesn’t seem that any one system has completely succeeded
on this point yet. Similar considerations are the syntax, together with all
sorts of possible syntax facilities to reduce the volume of what is written
in the file: implicitization of arguments, overloading of symbols, coercions,
notation, etc. One good criterion is to what extent the user has control over
his syntactical environment.
Tactical language A library of computer formalized mathematics can
hardly be reduced to a collection of definitions and theorems. As in usual
mathematics, definitions and theorems are coupled with techniques or strate-
gies about how a certain theory can be used in other proofs. Tactics pre-
scribe a set of recipes that have to be applied when we try to solve a certain
goal. The tactical language is a kind of specialized programming language
to specify these recipes.

A related aspect is the collection of decision tactics, that is, tactics pro-
vided by the system that are able to automatically solve a certain class
of problems like tautologies, linear arithmetics, first order logic, algebraic
identities, etc. A rich set of decision tactics may ease a lot the life of the
user.

Decision tactics are the point at which the theorem-verification problem
meets up with the research in finding proofs by computer. This other field
is very rich, with many annual contests to award programs which are the
most successful at finding proofs 777refs 777. Whereas the problems that can
be solved entirely automatically are pretty limited in a mathematical sense,
this technology should be important as it is imported into the theorem-
verification problem by way of automation of larger and larger chunks of
reasoning.

Meta-proof or reflection One of the most powerful methods for increasing



the reach of a theorem prover (in particular by creating decision tactics) is
to incorporate the idea of reflection [Bou97] [Har95]. This means that a
separate logical system is set up and implemented inside the ambient logic,
and results from the inner logic are exported into the outer one. This requires
capabilities such as Coq’s quote tactic which allow the computer to recognize
and transform expressions in the ambient logic which come from expressions
written in the inner logic. This might be known as “skolemization” 777. It is
the basis of the ring tactic in Coq: expressions in a ring are transformed into
formal expressions on which computation is then performed: the theorem
that the computations are justified yields a proof of the computational result
which is then exported back to the original setting.

Many people have mentionned projects (“skeptical systems” or “ora-
cles”) [HT98] to contract out this process to other computer programs, en-
visioning for example a connection between symbolic math programs and
theorem-proving programs. It is clear that this kind of symbiosis will be a
necessary and important ingredient in important future systems.

David Delahaye and Micaela Mayero have implemented a “Maple mode”
for Coq, which is an interface combining Maple computation with Coq [DM].
It uses Maple to simplify a goal and then uses the field tactic of Coq
to prove the equivalence between the simplified goal and the original one.
Another example is “Ivy” [MS00] where (quoting from the resumé) “the
study shows how non-ACL2 programs can be combined with ACL2 functions
in such a way that useful properties can be proved about the composite
programs” .

One question which seems legitimate is whether it is better to do this
by interfacing with external programs or by reconstituting the external pro-
grams in the theorem-proving environment.

User interface A good interface that lets the user prove a theorem with
a sequence of clicks on sensitive parts of a formula is more attractive than a
command line interface where you have to type extensively each command.
However, as a matter of facts, our experience is that we never get accustomed
to use a highly evolved interface. This might be due to our laziness. However
some comments on this aspect are in order. The main point seems the fact
that it is a difficult task to keep in sync a sophisticated user interface with
the underlying proof engine. As a consequence, you are often forced to
choose between a good interface with an old system and a command line
interface with the new version of the software. For us, this dilemma has
always been resolved in favor of the first option. Proof assistants evolve
rapidly, and at each new release you can find decisive improvements like the
“feature X that you badly needed”: more expressiveness, improved syntax,



fixes in the logic, etc.

Related to the user interface is the proof manager, that is, the way in
which the system lets you organize the tree of the proof and navigate in it.
A very commonly used generic interface is Proof General [PG], an emacs
package that lets you combine edition of the text file with running the proof
engine on it and viewing the output. Various attempts have been made to
integrate some type of proof by pointing on top of this type of interface
[BKT94]. This is very related to the notion of web-based interfaces that we
will consider separately below.

Documentation As for any kind of software, documentation is an impor-
tant point for the usability of a system. For proof assistants, a reference
manual is definitively not enough. In order to learn to use a proof assis-
tant a new user need to learn not only various commands and functionality
but also several patterns of utilization and commonly useful tricks. A good
tutorial can make a big difference in the first months of utilization.

User community The size of the group of users of a system influences how
the system develops: a small group leads to a more homogeneous environ-
ment, but leads to an uncertain long-term stability whereas a larger group
insures that more long-term effort is made to insure continuity, but leads
to a widening of the range of style and logic which are used which makes
it more difficult to enter the subject. An important aspect for increasing
homogeneity as well as long-term stability is to have a good standard for
diffusion of user contributions.

A lively user’s group with discussion on the mailing lists is generally very
helpful for new users.

2 Specific systems

We would like to consider in more detail a small number of systems. The
comparison between various theorem-proving systems has become a verita-
ble literary genre (comparison of PVS and HOL [GH98|, Mizar and Isar
[MWO02], Coq and HOL [Zam97], ...). There is a very thorough and well
done “road test” of 15 theorem provers [Wie03], which among other things
discusses in detail the proof of v/2 ¢ Q in each of these systems. We will try
to synthesize and complete this information with respect to a small number.

We start with ACL2, exemplary of the Boyer-Moore family of provers
that have been under developpement for decades. The logic is resolutely
first-order [KM98]. The user types in the definitions and statements of
theorems, and the computer takes care of the rest: adding in appropriate



statements as complements to definitions, searching for the proof of each
new theorem, and telling the user what it is doing along the way. The user
just has to set up the right sequence of lemmas (which is still a nontrivial
task). This is very cool, and it would be great if the algorithms for doing
that could be imported into other systems.

It is difficult to invent how to apply ACL2 to higher-order reasoning,
for example the library contains books about finite sets but it is harder to
find how to treat arbitrary sets. Even quantifiers are handled in a somewhat
external fashion (at one point in the documentation, with probably exagger-
ated pessimism, they say: “Don’t expect too much automatic support from
ACL2 for reasoning about quantified notions”). This makes it difficult to
imagine directly applying ACL2 to highly abstract mathematical reasoning.
Of course it is possible, by altering the approach to the specification lan-
guage, to reduce higher-order systems to first-order systems by moving up
a level: any system is in the end implemented as a deterministic program,
so it is possible, in principle, to give a first-order axiomatization for what
the system does. Thus instead of proving a higher-order statement P, you
would prove the first-order statement “my higher-order system allows me to
prove the statement written as P”. This isn’t very convenient at least to
start with, and it seems to nullify the advantage of having somebody else
write the computer program since you end up having to codify some sort of
program again. Beyond these remarks, we are not sure whether this possi-
bility has been systematically explored, so in spite of what look like obvious
disadvantages, there might be some hidden advantages to this approach that
we don’t yet know about.

We next consider Mi1zAR. This implements a classical mathematical
set theory with infinitely many Tarski-Grothendieck universes. Proof doc-
uments are written in something approaching natural language; and there
is a huge library of results which is very well integrated into the system.
The library results are included in the Journal of Formalized Mathemat-
1cs which even prints a paper version. The library includes very advanced
results on combinatorial mathematics, and also results which are actually
quite complete in a wide array of mathematical domains.

Two things that make it difficult to get started are that Mizar doesn’t
provide the user with a “goal window” showing what is to be proven at
any step in the proof; and there is no documentation manual. Indeed, in
777Freek???, Wiedjik says that the best way to learn the system is to spend
three weeks with the Mizar group in Poland.

One might say that using interactive theorem provers dulls the mind, in
that we get into a habit of floating around in the middle of a proof having
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forgotten entirely what it is we are trying to prove, but still manage to get
out anyway. An habitual user of interactive provers may find it difficult to
go back to the mental rigor required of writing a proof in Mizar where you
have to keep in mind at each stage what the current goal is.

This may be intentional on the part of the system designers: there is
a case to be made for the idea that lists of proof tactics don’t give a very
good idea of how a proof works, and that if the author is forced to follow
his own proof as he is writing it, then the writing will be understandable to
other readers. We don’t actually think this is true. For example, the Mizar
library contains a rather interesting theorem in its foundational material:
starting from an axiom of Tarski which more or less says that every set is
contained in a Grothendieck-type universe, they deduce the axiom of choice.
It turns out that this depends a lot on the precise form of the Tarski axiom.
We were not able, by looking at the Mizar articles where this happens, to
understand how it worked. Basically what was missing was any distinction
between important and unimportant steps in the proofs. It is certainly also
possible that important steps get hidden inside tactic scripts. However, it
seems that the most common situation is that important steps correspond
in some way to tactics which look a bit out of the ordinary, and which would
stand out under a rapid examination of the tactic script. Or alternatively,
much as would be the case for an ACL2 proof, the basic outlines of the proof
would come out of the structure of the set of prior lemmas which had to be
proven.

Irrespective of the functional question of which form best enables readers
to read a proof, there is also a basic question of emphasis: are we most
interested in creating proofs which are readable by the human reader? or are
we most interested in creating, as quickly and easily as possible, true proofs
that are verified by the computer and which we don’t subsequently care
about? The first approach has the long-term advantage that the existence
of the document doesn’t rely on the existence of a computer available to
read it. Nonetheless, we feel that the greatest benefits will come from the
second approach.

Next we come to “HOL”. On one side, HOL is a proof assistant, direct
successor of LCF. Its name comes from the logic that it implements: a Higher
Order Logic @ la Church. The last version is HOL4 [hol]. However, HOL
is also a family of proof assistants that share to some extent the same logic
and architecture. Members include also Isabelle/HOL and HOL-light (see
below). For an historical account of the HOL system and its relatives we
suggest the paper of Gordon et al [Gor00]. The kernel of HOL guarantees
the soundness of the system by accepting new theorems only if they are
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introduced with a set of fixed inference rules. Tactics are programs that find
the good sequence of inference rules accepted by the kernel to prove a goal.
This is different from the design of other proof assistants like Coq or NuPRL
that implement logic which is a variant of the Martin-Lof type theory and
have a kernel that is basically a typechecker (thanks to the Curry-Howard
isomorphism). A form of the axiom of choice is built-in as inference rule in
the kernel of HOL.

It is perhaps remarkable that, according to Gordon, one of the main
applications in mind, during the design of HOL, was hardware verification.
The first order logic of LCF was extended to higher order logic in HOL to
this practical end, more than for other general/mathematical/foundational
reasons.

Isabelle is one of the main implementations of HOL, although a distin-
guishing characteristic of Isabelle is its genericity with respect to the logic
in the sense that its architecture is based on a kernel for a meta-logic in
which several object-logics can be implemented by declaring their inference
rules. Isabelle is distributed with a library of several logics including HOL
but also ZF (Set theory), FOL (first order logic), and Cube (Barendregt’s
Lambda Cube [Bar91]). The proof manager supports both goal-directed and,
recently, a Mizar-like style.

The HOL logic seems to be the most utilized and developed and the
one which is most tightly integrated with the kernel. Isabelle/HOL has
a rich specification language that features polymorphism, overloading, an
advanced system for syntax and useful libraries for a (typed) set theory. A
relatively large and complete library of results for Isabelle/HOL is available
from the web site.

Isabelle has an advanced mechanism for notation. The user has the
ability to fine tune the syntax used in definitions and proofs. TEX symbols
can be used to have a good looking typesetted documents.

Proof General is the preferred interface for Isabelle. The system provide
some powerful general tactics (e.g., simp for rewriting, blast for finishing
the proof automatically). The user needs to understand quite in depth how
these tactics work internally to be able to give appropriate hints about the
intended usage of newly proved results in subsequent proofs.

An ample tutorial [NPWO02] is available which not limited to showing
the basic commands and examples but also tries to give some general hints
on how to prove a theorem by showing several examples of successful and
failing strategies in different contexts.

It is unfortunate that the different object logics do not interface each
other. This creates a separation between results proved in different logics
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(HOL versus ZF). Also, there are no dependent types or other manipulation
of the sort “Type” such as in Coq or Nuprl, which in the long run could
prove to be a handicap.

The tactical language is SML itself, that is, a powerful typed higher order
programming language. However, to write a tactic for Isabelle in plain ML
seems to be a quite technical task. Fortunately, this seems rarely needed
(unless one wants to program new object logics) thanks to the availability
of powerful general tactics.

The only format of all Isabelle documentation is ps/pdf which is not the
best for reading on a terminal. An hyper-textual/html version of the same
documentation would certainly be more practical for searching and on-line
reading.

HOL-LIGHT is a reengineering of HOL written by John Harrison [Har(00].
It is not comparable with other HOL-like systems due to its much smaller
user community (note however that this is the system of choice for the
long term project of Thomas Hales cite [Hal]). Its very clean and concise
source code (less than 800 kbytes) gives you the pleasant impression that
the system is in your hands. There is no real proof manager other than
the read-eval-loop of Caml-Light (the dialect of ML in which the system
is written) and the tactical language is nothing more that Caml-Light as
well. Its simplicity makes the system a possible candidate for experiments
and informal (and, perhaps, formal) considerations about variants of the
logic and the architecture of HOL-like systems. Denney has a project of
importing in Coq the proof of the fundamental theorem of calculus written
by Harrison in HOL-Light [Den00]. There is also a “Mizar Light” mode for
HOL-Light [Wie01].

We now come to the assistants which implement a logic with dependent
sorts. NUPRL and CoQ use a heirarchy of universes Type; which appear
as ordinary objects, in that we can do manipulations such as considering
arrows I’ : B — Type; and taking the product of the (Fb) over b € B. The
NuPRL manual has a good discussion about the logic they are using, the
relationship with set theory and so forth. In NuPRL the tactic language is
to write tactics directly in ML. This is an attractive idea since tactics don’t
need to be rigorously verified (they have for goal just to provide a proof of
the theorem in question; the fact that the provided term is a proof is of
course to be rigorously checked by the theorem-prover, but you are free to
write tactic programs which have bugs in them). Unfortunately the manual
dates from 1995 so it isn’t clear what type of current support is maintained
for NuPRL. There is a more modern variant NuPRL4, and a global project
known as MetaPRL, so development of the system might be picking up after
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a hiatus. The lack of continuity in the development of the system shows up
as sparsity of the mathematical subjects in the library [NuPb] [Paua].

The CoQ system is the primary one used by the authors. It lies in the
class of very-high-order logics, implementing a typed lambda calculus with
sorts and dependent types, as well as inductive objects. But it is much more
heavily maintained and has a very wide group of users.

The reference manual is complete and it is available both in ps and
html form. We find that there is room for improving the tutorial adding
more examples and hints about common techniques and coding style. A
good, more advanced, tutorial “on recursive types” written by Gimenez is
available [Gim98]. A book of Bertot and Castéran, that could be a good
introduction and a guide to several advanced topics about Coq, has been
recently published [BC04]. Recently with the release of version 8.0, a revised,
much more human-readable syntax, together with a powerful system for
notation, has been introduced.

Coq has a module system modeled on the module system of OCaml.
Modules can be parametrized on other modules (so called functors). This
still has some obscure points, like the management of metalogical data (hints,
coercions) within modules. Also it is not completely clear that the precise
choices in syntax and implementation of modules were happy ones for the
mathematical user; from afar at least, the modules of Phox and the locales
of Isabelle look like they might be more useful.

Proofs are done by tactics which modify the “goal window” telling us
what we want to prove and with which hypotheses. This leads to a fast
interaction between the user and the computer. One must be aware that
proofs by tactics end up yielding proof scripts which may well be incom-
prehensible at least without following step-by-step the goal window output
(although as mentionned regarding Mizar, this might in the end be prefer-
able for understanding global proof strategy). Emphasis on backward logic,
and also on decidability of proof algorithms, means that a lot of obvious
chances for automation are missed. For example the “auto” tactic isn’t able
to prove “forall a b ¢, a=b -; b=c-j a = ¢”.

Perhaps most problematic is the lack of any good consensus on logical
foundations and implementation of set-like objects. There are many different
ways to look at a set: it can be a type; or a type with an equivalence relation
(or even a partial equivalence relation defined only on the “valid” elements);
or an element of a given type said to represent the class of all sets (and
this type could either be axiomatized or else constructed as in Aczel and
Werner). Different user’s contributions use different versions of the notion
of a set, as well as inhabiting different logical worlds with differing levels of
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intuitionism or contrarily classical logic being supposed. This means that
the different contributions cannot a priori be made to work together, so in
principle new contributions tend to start from scratch. It is often difficult
even just to download, install and use other contributions. It is possible that
this difficulty could be overcome with further work, both on a foundational
and a practical level. But it makes for a situation which, to a newcomer, is
bound to be bewildering at best.

In the above discussion we have restricted to what could be considered
as the major systems at the current time. These will probably evolve or
be supplanted in the future, and there are any number of young systems
proposing differing points of view: the reader should look up ALF, Phox,
Plastic, Metamath, Epigram, ....

3 Available results

The mathematics which has already been formalized in various systems goes
way past the standard undergraduate curriculum (although not necessarily
subsuming all of it), and makes serious inroads into the graduate curriculum.
There is not yet quite enough material available to be able to start research
work in a large number of fields, but this is not far away; and in a small
number of fields specially those more closely related to computer-science and
logic themselves, it is currently possible to do new research mathematics
using theorem provers. In a few years this will extend much further, and in
some fields it may well be impossible to do new research without making use
of theorem provers.

We now try to give a more detailed list of mathematical topics that
have been mechanized, being well conscious that we cannot aim for exhaus-
tiveness. Note that some contributions have a particular emphasis torward
intuitionism and constructive mathematics, so they can be used in con-
structive and non constructive mathematics. We avoid giving an endless
list of citations by omitting all references to formalized documents that
are accessible by the standard means (i.e., by a simple search in the web
site of one of the cited provers ACI2 [ACL|, Alpha [Alp], Coq [Coq], ELF
[ELF], EQP [EQP]. Ghilbert [Ghi], HOL4 [hol], Lego [LEG], Isabelle [AFP],
IMPS [IMP], MetaPRL [Metb], Metamat [Meta|, Mizar [Miz] [JEM], NuPRL
[NuPb], Otter [Ott], Phox [Raf], PVS [PVS], Theorema [The], TPS [TPS]
Yarrow [Yar| Z/Eves [Z/E]).

e Axiomatic Set Theory [Far0l] [PG96] [Gor| [AG95] [Ale]. Exam-
ples: cardinals and ordinals, the Cantor-Schroeder-Bernstein theorem [Hug],
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relative consistence of the axiom of choice [Pau03], formalization of para-
doxes [BCW];

e Groups: Zassenhaus theorem, the Jordan-Hélder theorem [KP99;

e Rings, ideals, fields [Sai98] (often including specialized decision tac-
tics for these structures [Bou97] [GWZ00a] [Har01]). Sometimes using the
approch of universal algebra [Cap];

e Linear algebra: vector spaces and modules over rings, the Nakayama
lemma, tensor products;

e The fundamental theorem of algebra: in particular, see [GHW™]
[GWZ00b] for a constructive proof;

e Buchberger’s algorithm for computing Grobner bases in polyno-
mial ideals [Thé01], and more generally;

e The Knuth-Bendix critical pair theorem [RAHMO00] [RAHMOO];

e Homological algebra [ABRO3], [HRO03];

e number theory: chinese remainder theorem, quadratic reciprocity;
[Jer];

e Basic classical real and complex analysis with inequalities, sums
and limits, continuity and derivatives, integrals [GN02] [Har01] [Jut77] and

e The fundamental theorem of integral calculus;

e in fact all of Landau’s analysis book was formalized long ago [?];

e Nonstandard real analysis including the ultrapower construction
of the hyperreals [FP0O];

e The Bolzano-Weierstrass Theorem:;

Metric and normed spaces [FT91];

Newton’s Principia Mathematica [Fle01] [FP99];

Basic general topology [Fri04] [FT91];

basic euclidian geometry and non-euclidian geometry [CK86];
algebraic topology [Ken];

The Church-Rosser theorem;

Unsolvability of Turing’s halting problem:;

Godel’s first incompleteness theorem (ex:[O’C] 777other);

e Basic definitions in algebraic geometry: the notions of locally ringed
space, the Zariski topology on Spec(A) and the notion of affine scheme
[Chi03];

e Basic category theory [HS00] [O’K04];

We don’t include any discussion of applications to formal reasoning about
computation, which (unfortunately, from our point of view) are far more
widespread than the above types of applications to mathematics.
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On the other hand there is a fascinating class of applications which are
between the two fields, where computer proof is used to make progress on
mathematical problems which we might otherwise have remained untouched.
These include:

e the proof that XCB is a single axiom for equivalential logic [WUF02];

e uniqueness of the 5-ary Steiner Law on a cubic curve [PM96]

e “a cancellative semigroup operation on a cubic curve must
be commutative”;

¢ Robinson algebras are boolean [McC97] [Kol96].

4 Mathematical theory-sharing projects

One of the basic facts of life in this domain is that the quantity of mathe-
matics which is currently known and which it would be good to formalize in
some system, is overwhelming. As a result, it is quite impractical for a single
person to do it all-—some mode of human interaction is required. The organ-
isation of this interaction, which is first and foremost a problem of sharing
theories among many users, is almost as difficult a problem as the organisa-
tion of the human-computer interaction at the heart of the theorem-proving
process. The high sociological component means that choices of mode of
interaction have a significant effect on the resulting output.

Perhaps the oldest and most impressive theory-sharing project is the
Mizar mathematical library recorded in the JFM. We suggest that readers
scan those web pages (for example the MML identifier index page) to get
an idea of the extent of mathematics which has been formalized within this
project. The interaction between different users passes through a centralized
“library committee” which validates new contributions to the library; and
all entries in the MML have equal standing as far as being referenced in
future contributions. The uniformity of logic and notation guaranteed by
the library committee permits the uniformity of conditions of utilisation.

This system is not very agile on the other hand. Among other things it
has prevented significant updating of the specification language to incorpo-
rate more modern type-theoretic notions as well as goal-oriented and tactical
proof presentation such as appear in other systems we have discussed above.

Isabelle also has good criteria for leading to contributions which can be
reutilised, and is just starting a “journal”. The Coq user-contributions are
a much more freewheeling affair, which is in a certain sense less stiffling but
also could become problematic for the notion of building new contributions
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on top of prior ones from other groups.

One can imagine a whole spectrum of possible modes of mathematical
interaction. A lot of interest is currently given to the notion of web-based
mathematical knowledge databases, with the HELM, MKMnet, MetaPRL
and Omega projects. It should be possible in the not-to-distant future to
set up a system whereby mathematicians work directly in an interface to
a common database, with each lemma going into the database when it is
proven, where it could then be used by others. In this way it might be
possible to maintain projects with significant numbers of people working on
the same thing at the same time. This would represent a big velocity gain
with respect to the present situation where people must essentially work
independently. Even in projects where different people contribute, it is still
necessary for each one to pretty well understand the whole project.

Some readers will have said, “wait a minute, are you saying that it would
be better if lots of people worked on the same project but nobody had a
global understanding of it?” It is true that this seems a bit shocking. Ac-
tually when you think about it, the modern world is organized to a great
extent in exactly this way. We are becoming less like a hologram and more
like an ant colony. We are not claiming that the world is necessarily going to
be any better (indeed that would depend on your definition of better), just
that it is going to be different. Just as often the most charming architec-
tural device to this day remains the dry-laid stone wall, the rugged die-hard
individualist of a mathematician who still sticks to pencil and paper in spite
of the ambient electronic or even quantum revolution, undoubtably will oc-
cupy a valued niche. Nonetheless, other great things will be accomplished
by those who push the available tools to their utmost limits.

So if we assume that it is desireable to organize a distributed approach to
theory development, there still remains the question of how to do it. This
is currently under experimentation, notably in the HELM (Hypertextual
Electronic Library of Mathematics) project, but also in somewhat similar
projects MathWeb and Open Math Doc, MetaPRL and Omega (most of
which can be found within the umbrella Mathematical Knowledge Manage-
ment Consortium web pages—but also individual systems such as Mizar but
also Isabelle and Coq have to deal with this problem just within their own
libraries). In all cases the idea is to organize a database with essentially
automatic tools (as distinguished from the Mizar library committee which
is human-based), such that the fundamental operations of searching for a
given result or result relevant to a given topic, importing that result into the
user’s local theorem-proving environment, and adding a new result to the
database, are as easy and natural as possible. Given the enormous diversity
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of notations, this is a nontrivial task.

The HELM project is a good example. They decompose the proof doc-
uments into a large number of small bits that are managed with the aid of
XML technology and make the theories available for searching and browsing
through an html browser (with a fast Internet connection!).

The search strategy of the Helm server makes several assumptions on
the coding style. This makes the system effective for finding a theorem in
the standard library but not useful for all users. It should be stressed that
one of the main points is to have good search tools: a formalized theory is
often composed of an impressive number of small lemmas. Each lemma is
stored with a corresponding name that will be used to recall the result in the
subsequent proofs. Sometimes is easy to find a good name, e.g., plus_assoc
for the associativity of the addition, but this is the minority of the cases.
More often you have to give name to a statement like Vn m,n < Sm —n <
m (a random example from the Coq library, S is the successor of a natural
number) and you end by using names like 1t n_Sm le. An efficient search
tool would solve the problem by giving, at each step of a proof a collection of
pertinent results already available in the library. (Actually, high-level Coq
tactics like auto, omega, ring, may solve certain goals without the need of
explicitly specify which lemma are needed in order to build the proof).

Apart from the problem of retrieving results from the library, there is
a more difficult problem of knowing how to let users post results into the
library. For the moment the HELM library has automatically integrated
user contributions from Coq and NuPRL (so users don’t have to do anything
particular). In the future it will probably be desireable to have a specific
interface for placing results in the library. The Omega project seems to be
working on this, and originating in a more educational venue the COQWEB
project within WIMS provides an example of the type of web interface which
might be good.

5 The future

As mathematics expands and becomes more diverse, we are increasingly
reliant on the refereeing system to validate techniques and results; but at
the same time with the quantity of mathematics now being produced, the
refereeing system is becoming incapable of assuming this responsability. The
notion of computer-verified proofs and other mathematical documents will
play a role in rapid and accurate validation of our work.

It is reasonable to expect that more and more journals for certified math-
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ematics will come into being. The oldest is Mizar’s JFM, but recently Is-
abelle system has also started organizing its user-contributions with a jour-
nal.

It is interesting to note that the Cornell math preprint “ArXiV” now
accepts Mathematica notebook files as a contribution format. Regretting
that this concerns a system you have to pay for, we can hope that this
program could be extended to other file formats—but one can note that the
systems we have discussed above don’t agree on any type of common format.

This is not to say that the role of refereeing will disappear. It would be
good not to pretend that certified proofs say all that much about the actual
content of the theorems which are being certified; the refereeing or other
peer-review processes will be helped by verification of the basic mathemat-
ical details of arguments, and can more serenely consider the fundamental
questions of content.

The field of computer proof is under continual development. Reflection,
oracles/skeptical systems (i.e. the interface with other types of computer
calculation) will play a big role. Each area of mathematics presents special
difficulties for construction of the tools which are adapted to it. Once this
will be done, mathematicians will have at their disposal a wide array of
powerful possibilities for doing math interactively with the computer. We
noticed on the Isabelle projects page a particularly interesting project by J.
Aransay, C. Ballarin and J. Rubio on formalized algebraic topology. They
propose to verify proofs of the computer algebra systems EAT and Kenzo
for doing calculations in algebraic topology [HRO03].

This type of environment will lead to a big increase in the speed and
efficiency of development of large and complicated theories, but also an
increase in the ease of access to these theories. It will probably also lead to
fascinating cases in which proofs found interactively with a lot of help from
the computer, will be so new and strange that we will find it very hard to
fully grasp them [?] [?].

There will probably also be lots more mathematical theories available for
people to play around with. It becomes practical to try out a set of axioms
for a theory to see what it produces, without needing a large group of people
who have to understand the motivation for the axioms (there might not be
any), just in order to verify the results. Thus, at the same time as group-
projects are enabled by theorem-proving systems, also isolated individual
projects are enabled too.

The notion of computer-verified proof also represents a profound change
for mathematical education. Mathematics has traditionally been the subject
where students come into the closest contact with the notion of rigour.
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Even if the subject matter has evolved, the basic techniques of definitions,
statements and proofs, haven’t changed much for several thousand years. It
can perhaps be summed up by saying that the educational process was a
way of transforming what started out as dialogue between the student and
the teacher, into a dialogue between the student and him- or herself. Now
a third entity comes into the game: dialogue between the student and the
computer.

C. Raffalli reports on a project to use his Phox theorem prover as the
focus of study groups in upper undergraduate mathematics [RD02]. In his
project the students learn to develop a proof of a relatively advanced theorem
within the context of the system. The tactics are reparametrizable along
the way (this would be a good thing for other systems to implement) which
makes it so that the teacher can prepare a setting whereby the students
can concentrate on the problem at hand without having to learn all of the
intricacies of the full theorem-verification problem.

G. Xiao is developping a global mathematics educational system over
the web known as WIMS. It is already being used in coursework here at
the University of Nice, and elsewhere (Orsay ...). Computer verification
of the answers plays an important role in having students meet face to
face the problem of mathematical rigor, and allows for the programming of
intricate and varied exercises. A nascent experimental project by L. Pottier
is to integrate verified theorem proving into the WIMS environment by an
interface COQWEB which allows students to perform interactive proofs in
the Coq system, but guided by a web page where the proof options are
chosen by clicks. This might provide a good style of interface to access
databases such as in the Helm project.

We close by mentionning—by way of example—a diverse collection of
topics which we think it might be interesting and practical to try for.
—look for algebraic cycles which represent some of the known Hodge classes
such as Kunneth projectors, the Lefschetz operator, etc.

—formalize the inductive procedures in the “méthode d’Horace” and other
enumerative techniques (A. Hirschowitz, L. Chicli), or look for alternative
computational methods (F. Schreyer)

—Ilook for non-rigid representations of fundamental groups, or actually any
finitely presented groups (A. Magid).

—formalize Quillen’s closed model categories and other aspects of higher
category theory

—automate the process of doing “diagram-chase” type arguments in cate-
gory theory (J. Lipman); also try doing this for higher category theory.
—verify semantic interpretations for things like lambda calculus, typed
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lambda calculus or other similar systems, in things like the internal logic
of a topos.

—provide seamless computer proofs in places where we now have computer-
assisted proofs (this is an idea of a number of people; we first heard about it
from Benjamin Werner. . .also McKay suggests that a first problem to look
at would be the nonexistence of a projective plane of order 10 ...)

—For the far future: imagine scanning EGA and running a program on the
file, which 2 seconds later says “ok: mostly fixable; ...found error lemma

that lemma was used in ? and ? but this can be fixed as follows ...”. A
shorter term goal would be to try to see how easy it is to formalize some-
thing like EGA directly from text.
—We can finish a pretty obvious project that must have crossed many peo-
ples minds: to verify Taylor-Wiles’ proof of Fermat’s last theorem. If this
could be done it would really represent a new state of affairs in mathematics.
Conclusion: For the future we think it is best to view this subject as
a cooperative venture. If you had a system which combined ACL2, Otter,
Maple or other symbolic computation programs, Isabelle/HOL, Coq, Phox,
and Mizar—and which started from a library containing all of the results
which have been formalized in any one of these systems—it would be really
great! This would cause us to run up against one of the real fundamental
problems: how an average user can get the thing installed and running
correctly (and not crashing or overheating) on his own machine...
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