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Classification of holonomies.
Berger’s list

Holonomy Geometry

SO(n) acting on Rn Riemannian manifolds

U(n) acting on R2n Kähler manifolds

SU(n) acting on R2n, n > 2 Calabi-Yau manifolds

Sp(n) acting on R4n hyperkähler manifolds

Sp(n)× Sp(1)/{±1} quaternionic-Kähler

acting on R4n, n > 1 manifolds

G2 acting on R7 G2-manifolds

Spin(7) acting on R8 Spin(7)-manifolds

“Hodge theory on manifolds with special holonomy”

1. Λ∗(M) = ⊕Λ∗ε(M) (ε - weights of representations
of holonomy). Then H∗(M) = ⊕H∗ε(M) (Chern).

2. ddc-lemma, implying restrictions on topology
(“formality”: Deligne-Griffiths-Morgan-Sullivan).

3. Solutions of Maurer-Cartan equation ∂γ = 1
2{γ, γ}

(Kodaira-Spencer, Bogomolov-Tian-Todorov).
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Holonomy of Riemannian cones

Definition 1.1: Let (M, g) be a Riemannian mani-
fold. The Riemannian cone of M is

C(M) := (M × R>0, t2g + dt2),

where t denotes the coordinate on the half-line R>0.

Conical singularities of manifolds with special holon-
omy give special holonomy on Riemannian cones.

Suppose C(M) has special holonomy. What can we
say about geometry of M?

Riemannian cones with special holonomy

Holonomy of C(M) Geometry of C(M) Geometry of M

SO(n) Riemannian —

U(n) Kähler Sasakian

SU(n) Calabi-Yau Sasaki-Einstein

Sp(n) hyperkähler 3-Sasakian

Sp(n)Sp(1) quaternionic-Kähler —

G2 G2-manifolds nearly Kähler

Spin(7) Spin(7)-manifolds nearly G2-manifolds
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Killing spinors on Riemannian cones

Not essential for understanding of today’s talk, because the

spinor interpretation will not be used

Recall that we have a “Clifford multiplication map”

TM⊗S−→S, where TM is a bundle of tangent vec-

tors on a manifold M , and S the bundle of spinors.

“Killing spinor” on M is Ψ ∈ S which satisfies

∇X(Ψ) = λXΨ

for all tangent fields X ∈ TM .

Fact 1: Killing spinors on M correspong uniquely

to parallel spinors on C(M).

Fact 2: Killing spinors on M exist only if M is an

Einstein manifold, with Einstein constant |λ|2 > 0.
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Remark: Similarly, if M admits a parallel spinor, M

is Ricci-Flat (follows from Weitzenböck formula).

Remark: In Berger’s list, the following holonomies

correspond to Ricci-flat manifolds: SU(n), Sp(n),

G2, Spin(7).

Fact 3: SU(n), Sp(n), G2, Spin(7) admit parallel

spinors.

COROLLARY: Sasaki-Einstein, 3-Sasakian, nearly

Kähler and nearly G2-manifolds admit Killing spinors;

hence Einstein.

Proof: Their cones admit a parallel spinor.
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Nearly Kähler manifolds

The name is confusing.

The original definition: (Alfred Gray). Let (M, g, I)

be a Hermitian almost complex manifold, ω ∈ Λ1,1(M)

its Hermitian form, ∇ the Levi-Civita connection.

Then ∇ω lies in Λ1(M) ⊗ Λ2(M). Gray defined

“nearly Kähler manifolds” as those that satisfy

∇ω ∈ Λ3(M) ⊂ Λ1(M)⊗ Λ2(M)

(∇ω is skew-symmetric).

Trivial remark: In this case dω = ∇ω, because ∇
is torsion-free.
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“Strictly nearly Kähler” means that the 3-form ρ =

dω is non-degenerate, that is, the map

TM
ρ−→ Λ2M,

defined as X −→ ρ(X, ·, ·), is injective. It is much

more restrictive condition than the Kähler condition

dω = 0. There is a “splitting theorem” in nearly

Kähler geometry (due to P.-A. Nagy). It follows

that strictly nearly Kähler manifolds are products of

Einstein ones, hence they are real analytic and have

finite-dimensional moduli, if compact.

Some examples

1. 6-manifolds with parallel G2 cones.

2. Twistor spaces of positive quaternionic-Kähler

manifolds with non-standard complex structure due

to Eels and Salamon.
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Connections with totally antisymmetric
torsion

Let ∇0 : Λ1(M)−→ Λ1(M) ⊗ Λ1(M) be an orthog-

onal connection on a Riemannian manifold. Its tor-

sion T lies in

T ∈ Λ1(M)∗ ⊗ so(M) = Λ1(M)∗ ⊗ Λ2(M).

Using the metric, we identify Λ1(M)∗ with Λ1(M)

and consider T as a 3-form.

Definition: ∇0 is a connection with totally anti-

symmetric torsion if T is totaly anti-symmetric.
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Connection with totally antisymmetric
torsion on a nearly Kähler manifold

Let M be a nearly Kähler manifold (in the sense

of Gray), ρ = dω = ∇ω the corresponding 3-form.

Consider the operator

θ : Λ1(M)−→ Λ2(M) ⊂ Λ1(M)⊗ Λ1(M).

mapping ξ to ρ(ξ], ·, ·), where ξ] is the dual vector

field. Let ∇T be a new connection.

∇T := ∇+
1

2
θ : Λ1(M)−→ Λ1(M)⊗ Λ1(M).

A trivial observation.

∇T preserves the Hermitian structure.

Another trivial observation.

The torsion of ∇T is ρ.

This gives...
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A simple theorem: Let M be a nearly Kähler man-

ifold (in the sense of Gray). Then ∇T is a Hermitian

connection with totally antisymmetric torsion.

A difficult theorem (V. Kirichenko).

On nearly Kähler manifolds,

∇T (T ) = 0.

The torsion is parallel.

This is used to obtain a splitting theorem.
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Manifolds with parallel

antisymmetric torsion.

Let M be a Riemannian manifold, ∇T a connec-

tion with totally antisymmetric parallel torsion T .

Assume its local holonomy is irreducible.

THEOREM: (R. Cleyton and A. Swann, 2002)

Any such manifold is either locally homogeneous,

has vanishing torsion, is nearly G2 (in dimension 7)

or nearly Kähler (in dimension 6).

Remark: The last two cases are ones we have seen

in the classification of cones with special holonomy.

This is an antisymmetric torsion analogue of Berger’s theorem

on irreducible holonomies.
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This is used to obtain splitting for nearly Kähler

manifolds.

COROLLARY: (P.-A. Nagy, 2002)

Let M be a nearly Kähler manifold, in the sense of

Gray. Then M is locally a product of the following

nearly Kähler types.

1. Homogeneous (classified by J.B. Butruille in 2004)

2. Twistor spaces of positive quaternionic-Kähler manifolds

3. 6-dimensional nearly Kähler

Remark: The positive quaternionic-Kähler mani-

folds and their twistors are (conjecturally) symmet-

ric. Hence the only interesting example of “nearly

Kähler” is 6-dimensional nearly Kähler manifolds.

In modern literature, “nearly Kähler” usually denotes a 6-

dimensional Hermitian manifold with ∇ω antisymmetric. We

shall always assume “6-dimensional”.
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Nearly Kähler manifolds
The many definitions of NK-manifolds

“A well-known theorem:”

Let (M, I, ω) be a Hermitian almost complex 6-manifold.

Then the following conditions are equivalent.

1. The form ∇ω ∈ Λ1(M) ⊗ Λ2(M) is non-zero and totally
skew-symmetric (that is, ∇ω is a 3-form).

2. The structure group of M admits a reduction to SU(3),
that is, there is (3,0)-form Ω with |Ω| = 1, and

dω = 3λReΩ, d ImΩ = −2λω2

where λ is a non-zero real constant.

Another well-known theorem:

Let M be a Riemannian 6-manifold. Then the fol-

lowing conditions are equivalent.

1. M admits a nearly Kähler Hermitian structure.

2. M admits a Killing spinor.

3. The Riemannian cone C(M) has holonomy G2.
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Remark: Let M be nearly Kähler. Unless C(M) is
flat, and M is S6, the almost complex structure is
uniquely determined by the metric (Friedrich). Con-
versely, the metric is uniquely determined by the
almost complex structure.

Examples of nearly Kähler manifolds
(all four of them)

1. The sphere S6. Its cone is R7.

2 and 3.
CP3 and the flag variety F (2,1). These are twistor
spaces for self-dual Einstein manifolds S4 and CP2,
we take the Eels-Salamon almost complex struc-
ture.

4. S3 × S3.

No non-homogeneous compact examples (so far).
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Geometry of NK-manifolds

A trivial remark: An NK-manifold is never inte-
grable. Indeed, dω1,1 = 3λReΩ3,0. In fact, the
Nijenhuis tensor

N : Λ0,1(M)−→ Λ2,0(M)

is invertible (unless λ = 0).

Another trivial remark: If λ = 0, the NK-equations
degenerate to equations defining Calabi-Yau.

Let

d = d2,−1 + d1,0 + d0,1 + d−1,2,

be the Hodge decomposition of de Rham differen-
tial. Clearly, d2,0 is the Nijenhuis tensor.

Notation: We use

d2,−1 =: N, d−1,2 =: N, d1,0 =: ∂, d0,1 =: ∂.
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Kähler identities on NK-manifolds

The usual Kähler identities take a form “a com-

mutator of some Hodge component of de Rham

differential with the Hodge operator Λ is propor-

tional to a Hermitian adjoint of some other Hodge

component of de Rham differential”.

On nearly Kähler, we have the same set of identities,

[Λω, ∂] =
√
−1 ∂

∗
, [Λω, ∂] = −

√
−1 ∂∗

plus

[Λω, N ] =
√
−1 2N

∗
, [Λω, N ] = −

√
−1 2N∗

In addition, we have

[LΩ,Λω] = λN.

The proof is similar to the one used to obtain the usual Kähler

identities.
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Laplacian operators on NK-manifolds

Notation: For an operator v on a Hermitian space,
let ∆v denote vv∗ + v∗v.

THEOREM:

On a nearly Kähler manifold, we have

∆∂ −∆∂ = R

where R is a scalar operator, acting on (p, q)-forms
as a multiplication with λ2(p− q)(3− p− q).

THEOREM:

On a nearly Kähler manifold, we have

∆d −∆∂−∂ = ∆N + ∆N = ∆N+N

Compare: On a Kähler manifold

2∆∂ = 2∆∂ = ∆d = ∆∂−∂

The relations between Laplacians follow from the Kähler iden-

tities in a standard way.
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Hodge theory on NK-manifolds

Use the comparison formulas for Laplacians to obtain a Hodge

decomposition theorem.

THEOREM: Let M be a compact nearly Kähler

manifold, and η = ⊕ηp,q a differential form. Then η

is harmonic if and only if all its Hodge components

ηp,q are harmonic and primitive.

Proof: Let η ∈ ker∆v (for some v). Then

0 = (∆vη, η) = (vv∗η+v∗vη, η) = (vη, vη)+(v∗η, v∗η).

In other words, η ∈ ker∆v if and only if η ∈ ker v ∩
ker v∗, and (∆vη, η) > 0 otherwise.

From the second comparison formula, the same

positivity argument gives

0 = (∆dη, η) = (∆∂−∂η, η)+(∆Nη, η)+(∆Nη, η) > 0
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hence

η ∈ ker N, η ∈ ker N, η ∈ ker(∂ − ∂).

Then

0 = dη = (N + ∂ + ∂ + N)η = (∂ + ∂)η = 0

Adding (∂ − ∂)η = 0, obtain ∂η = 0. Then all

Hodge components of d vanish on η:

d2,−1η = d1,0η = d0,1η = d−1,2η = 0.

However, the (p + i, q + j)-th component of di,jη is

di,jηp,q, hence

di,jηp,q = 0

for all i, j, p, q. Then dηp,q = 0. The same argument

is used to show d∗ηp,q = 0.
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Possible applications

“Algebraic geometry of nearly Kähler manifolds.”

0. Hitchin’s functional on the moduli of almost

complex manifolds.

1. Yang-Mills bundles (Hermitian bundles with cur-

vature two-form which satisfies ΛΘ = 0).

2. The space of pseudoholomorphic curves in NK-

manifold. Its connected components are compact.

3. Finding solutions of Maurer-Cartan equation

with applications to the moduli of nearly Kähler

manifolds.
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