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Abstract

Grammar deployment is the process of turning a given grammar specification into a working parser. The Grammar
Deployment Kit (for short, GDK) provides tool support in this process based on grammar engineering methods.
We are mainly interested in the deployment of grammars for software renovation tools, that is, tools for software
re- and reverse engineering. The current version of GDK is optimized for Cobol. We assume that grammar
deployment starts from an initial grammar specification which is maybe still ambiguous or even incomplete. In
practice, grammar deployment binds unaffordable human resources because of the unavailability of suitable gram-
mar specifications, the diversity of parsing technology as well as the limitations of the technology, integration
problems regarding the development of software renovation functionality, and the lack of tools and adherence to
firm methods for grammar engineering. GDK helps to largely automate grammar deployment because tool support
for grammar adaptation and parser generation is provided. We support different parsing technologies, among them
btyacc, that is, yacc with backtracking. GDK is free software.



Chapter 1

Structure of GDK

The Grammar Deployment Kit (GDK) is a lightweight ANSI-C-based kit for getting from a grammar specification
to a parser suitable for automated software renovation. Developing renovation parsers for Cobol or any other
complex real-world language, is not trivial because of complicated syntax rules, the variety of existing dialects and
embedded languages, or pre- and post-processing issues [1]. GDK is based on a few principles and assumptions: (i)
recovery of base-line grammars from resources like language references or compilers [3], (ii) grammar adaptation by
automated transformations to enable grammar manipulation in a traceable manner [2], (iii) parser generation for
various parsing technologies, (iv) selection of a suitable grammar format for grammar engineers, (v) focus on the
grammar part of a renovation parser as opposed to idiosyncratic scanners, pre- and post-processors. The current
version of GDK is optimized for the deployment of Cobol grammars.

GDK components
e LLL: a simple EBNF-based grammar format.
e LLLIMPORT: a tool to import grammars.
e LLLEXPORT: a tool to export grammars.
e F'ST: a tool to transform grammars.
e TT: a library for parsing, transformation, and unparsing.

e VS CoBoL II: deployment of a Cobol grammar for software renovation.

We will discuss all these components accordingly. In the VS CoOBOL II section, we will also sketch an illustrative
renovation tool EXPAND dealing with data expansion. This sort of software renovation task is similar to problems
a la Y2K or Euro conversion.

YACC =(_import export > YACC

SDF

Y

SDF

LLL LLL

Y

Trafos




Chapter 2

Getting and Installing GDK

The GDK distribution can be obtained from http://gdk.sourceforge.net. The distribution can be unpack and
installed using the following commands:

gzip -d gdk-1.1.tar.gz
tar -xf gdk-1.1.tar

cd gdk-1.1

./configure

make

make check

make install

The configure command can be given options to guide the installation, the most useful options are:
e ——prefix=<dir> The directory where to install GDK .
e —-enable-bison Enable bison support.

e ——enable-sglr Enable sglr support.



Chapter 3

The LLL grammar format

LLL should be read as “L-Cube”. The name hints on Lightweight LL parsing which is the built-in parsing
technology of GDK. The LLL grammar format crosscuts all components in GDK in that it is used as (i) the
primary format to import recovered grammar specifications for deployment, (ii) to develop new grammars, (iii) to
transform grammars in the course of deployment, and (iv) to generate parsers for various technologies.

EBNF of LLL grammar format in LLL notation

specification : rule+;

rule : ident ":" disjunction ";";
disjunction : {conjunction "|"};
conjunction : term+;
term : basis repetition?;
basis : ident

| literal

| "Yepsilon"

| alternation

| group

5
repet ltiOIl . ll+|| | n * n | ll? n ;
alternation : "{" basis basis "}" repetition;
group : "(" disjunction ")" ;

The top rule’s identifier is called specification and consists of a list of rules. A rule has an identifier which is
unique to this rule and a disjunction. Not all identifiers need to have a rule however, if an identifier does not have
a rule it is called a bottom identifier, which can be either a lexical token or a part of the grammar defined outside
the current grammar (see the section on namespaces). The disjunction is a list of conjunctions separated with
“]”. A conjunction is a list of terms. A term consist of a basis and an optional repetition symbol: “4” for
lists containing one or more elements, “*” for lists containing zero or more elements and “?” for optionals. The
basis can be an identifier, a literal (i.e. keyword or symbol), %epsilon, alternation (also called separator lists)
or group. The alternation denotes an alternation between two basis. A typical example of an alternation is a
paramter lists, e.g.:

params: {param ","}+;

Finaly, the group allows for nesting disjunctions. The presence or absence of groups is an important concept
in GDK , if there are no groups the grammar is considered simple. A simple grammar makes it easy to generate
sensible parsers with meaningful names for parsing systems that do not support nesting. Mapping a nested grammar
to a system that does not support nesting involves generating dummy names for the nested constructs, this means
either generating very long names (e.g. flattening a conjunction of idents by concatenating all the names) or
inventing names that have no relation to the original construct (e.g. phrasel, phrase2, etc.). Either way the
generated parser will be easier to debug if every construct has a sensible name.

TODO: need some general format to present examples. Should all examples speak for themselves ? Should they
be figures with some caption ? Some box around them maybe 7
A VS CoBoL II sample: the MOVE-statement



move-statement
: move-statement-1
| move-statement-2

B

move-statement-1: "MOVE" cobword-lit "TO" identifier+;
move-statement-2: "MOVE" corresponding identifier "T0" identifier+;

A suitable grammar format is crucial for grammar deployment. There are three major problems with commonly
used grammar formats. (i) A too restrictive format such as the simple BNF format underlying yacc requires
encoding of lists and optionals. (ii) On the other hand, use of a too liberal format, e.g., non-trivially nested phrases
makes the grammar less suitable for matters of abstract syntax, debugging, and adaptation. (iii) Using the input
language of a specific parser generator for grammar recovery, development, maintenance, and others enforces one to
deal with the idiosyncrasies of the format all the time. LLL supports EBNF to enable reqular expression operators
in the view of (i), but it restricts them to rule out (ii). This is achieved by simply disallowing the operator group.
The reason for having this operator at all is to be able to import grammars from different formats. In the first
FST transformation script all groups will have to be removed because at the end of each script left over group
operators are reported as errors. Furthermore, LLL is a pure EBNF notation to remedy (iii), that is, LLL does
not directly deal with conflict resolution, disambiguation, lexical syntax, and others. Our experience with many
grammar recovery, development, and deployment projects resulted in a simple and sound grammar notation that
is particularly suited for developing renovation parsers.



Chapter 4

LLLimport

WORK IN PROGRESS.

The LLLIMPORT tool is used to transform an external grammar to an LLL grammar.

command is:

YACC

SDF

LLL

1llimport -f <external-format> < <external-grammar> > <lll-grammar>

For example:

11limport -f sdf < COBOL.sdf > COBOL.111

4.1 YACC
4.2 SDF

The format of the



Chapter 5

LLLexport

YACC

Y

Y

SDF

Y

The LLLEXPORT tool is used to transform an LLL grammar to an external grammar. The format of the
command is:

1lllexport [options] < <1lll-grammar> > <external-grammar>

Usage: 1lllexport [options] <spec.1ll> ...

Options:
-h Show usage
-c <ident> Place a BTYACC cut (YYVALID) on <ident>
-s <ident> Skeleton grammar start symbol
-r <ident> Identifier for rejects

-f <format> Output Format: use -f help to get a list
-p <prefix> Prefix for generated names, default: FOO
-q <module> Default module name, default: Junk

-e <module> External module

-y <option> Yacc option, e.g. -y "%glr-parser"

-m Generate multiple SDF files

For example:

1llexport -f sdf COBOL.111 > COBOL.sdf

For some formats, such as sdf (without -m), one file will be generated. For other formats, such as ¢ multiple files
will be generated, so the output redirection is not used and the prefix specified with —p will be used to make sure
there are no filename conflicts.

To simplify Makefile writing, each call to LLLEXPORT will generate exactly one file. The exception is SDF, the -m
option can be used to generate multiple files which can be used with the ASD+SDF meta environment, this is an
interactive enviroment so correct Makefile dependencies are not an issue.

Because the LLL format says nothing about lexical constructs the user has to supply a lexer. Because writing
a lexer for a large language such as COBOL is a lot of work, LLLEXPORT provides some support to make the
job easier. The main gain is achieved by generation of code having to do with keywords, either recognition of
keywords in the case of a scannerful approach or keyword follow restrictions and identifier rejections in the case of
the scannerless aproach. Perhaps more subtle is the gain achieved by the generation of a template, although the
user is expected to be familiar with the parsing system code is being exported to, it is still useful to have a full
template rather than a list of lexicals that have to be implemented.



5.1 YACC

Support for YACC based tools, at the moment only BTYACC works reliably. Standard Bison is not sufficient since
it only supports LALR(1), although the GLR mode works to some extend it doesn’t parse as much as BTYACC
for unknown reasons. The -f yacc option of LLLEXPORT can be used to generate all the relevant files.

5.2 SDF

SDF is a scannerless grammar format and requires the user to specify which identifiers have to be rejected when a
keyword is recognized, this can be done with the option -r <ident>.
TODO: more intro, show SDF code, add references etc.

5.3 C Based Combinator Parsing

For example, for the move statement the following code would be generated:

TTterm
TTparseVSC_stat_move_statement_1( void )
{

fparse fs[4];

fs[0] = TTparset_MOVE;

fs[1] = TTparseVSC_stat_id_or_lit;

fs[2] = TTparset_TO;

fs[3] = TTparseVSC_data_ref_identifier_plus;

return TTparseVSC_CONJUNCTION(TTfunVSC_stat_move_statement_1, fs);

5.4 Haskell Based Combinator Parsing

With -f haskell a Haskell combinator parser based on ParseLib will be generated as well as a datatype repre-
senting the AST. After this Gmap can be used to transform or analyze the parsetree, it is expected that Gmap
will soon be part of the GHC distribution.

5.5 Term Matching and Construction

Three different kind of functions will be generated:

e TTis followed by the name of the term that is going to be typechecked. The typechecking is shallow, for
example for a list of statements, it will only be checked wether it is a list and weather the head of the list is
a statement.

e TTbuild followed by the name of the term that is created and n term arguments, where n is the arity of the
term. A typecheck is performed on the arguments before the term is created.

e TTmatch followed by the name of the term that is going to be match upon, the first argument of the function
will be the term being matched upon followed by n arguments where n is the arity of the term.

For example, for the move statement the following code would be generated:

BOOL
TTisVSC_stat_move_statement_1(TTterm t)
{
return t->fun == TTfunVSC_stat_move_statement_1;
}



TTterm
TTbuildVSC_stat_move_statement_1(TTterm t1, TTterm t2, TTterm t3, TTterm t4)
{

assert (TTist_MOVE(t1));

assert (TTisVSC_stat_id_or_lit(t2));

assert(TTist_T0(t3));

assert (TTisVSC_data_ref_identifier_plus(t4));

args[0] = t1;

args[1] = t2;

args[2] = t3;

args[3] = t4;

return TTbuild_term(TTfunVSC_stat_move_statement_1, args);
}
BOOL

TTmatchVSC_stat_move_statement_1(TTterm t,
TTterm *t1, TTterm *t2, TTterm *t3, TTterm *t4)

{
if (t->fun == TTfunVSC_stat_move_statement_1)
{
*tl = t->u.args[0];
*t2 = t->u.args[1];
*t3 = t->u.args[2];
*t4d = t->u.args[3];
return TRUE;
}
return FALSE;
}



Chapter 6

GDKconfig

The GDKCONFIG tool is used to aquire information about the installment of GDKThe format of the command is:
gdk-config [options]
Legal options are:

e ——version The version of GDK that is installed.

e ——cflags The C compiler flags needed when building C based applications.

e —-1ibs The linker flags needed when linking C based applications. The tt library will always be linked,
other possible libraries are: 111, sdf, fst etc.

The idea is to use these flags in a Makefile to make it independend on where GDK is installed. For example:

INC=‘gdk-config --cflags®
LIB=‘gdk-config --1libs*¢

foo.o:foo.c
gcc —c foo.c $(INC)

foo:foo.0
gcc -o foo foo.o $(LIB) -1sdf

This will compile and link foo.c against the bison based VS COBOL II parser.



Chapter 7

FST

LLL LLL

Trafos

The FST tool is used to transform grammars. The format of the command is:

fst <script.trafo> <spec.lll> > <grammar-out>

For example:

fst naming.trafo Spec.111l > Named.1lll

Would take the grammar Spec.111 and a transformation script naming. trafo and generate the grammar Named . 111.

7.1 FST Operators

There are 16 operations available to transform grammars:

J%delete ident
%eliminate ident
fhreject ident
Jirename ident %to ident
%unify ident %to ident

%separate  ident Yto ident
%introduce rule

%include rule
%exclude rule
Jresolve rule

fpreserve  rule
%restrict  rule
%generalize rule

%fold rule

J%unfold ident
%redefine rule %to rule
furite literal

Y%delete ident

Delete the identifier ident from all rules, i.e. substitute ident with %epsilon. A simplifier will get rid of any
redundant epsilons. For example doing %delete c in:

a : b cx d;

10



will give the intermediate result:

a : b %epsilonk d;

which will be simplified to:

a: b d;

Not all epsilons can be removed however. For example doing %delete c in:
a:b|lcld;

will result in:

a: b | Y%epsilon | d;

This will not be simplified further. If the wanted result is:

a: bl d;

the user will have to explicitly obtain this by adding a second transformation:

%exclude a : Y%epsilon;

Y%eliminate ident‘

Eliminate the rule identified by ident. After elimination ident should be fresh.

%hreject ident‘

Reject the rule identified by ident. If ident still exists somewhere after the reject operation it will be a bottom
identifier now.

Yirename identl %to ident2

Rename the identifier ident1 to ident2. The identifier ident1 should exists and the identifier ident2 should not
exist prior to the renaming.

%unify identl %to identQ‘

Unify the bottom identifier ident1 to the existing identifier ident2.

%separate identl %to identQ‘

Separate the rule ident1 from the grammar by replacing ident1 to ident2 in the right hand sides of every rule.

%introduce rule‘

Introduce a new rule.

%include rule ‘

Add the disjunction of rule to the existing one.

Y%exclude rule‘

Subtract the disjunction of rule from the existing one.

11



Yiresolve rule‘

Provide a definition for a bottom identifier.

fpreserve rule‘

Redefine an existing rule with a syntactically equivalent definition.

Yrestrict rule‘

Redefine an existing rule with a definition that is a syntactical restriction.

%generalize rule ‘

Redefine an existing rule with a definition that is a syntactical generalization.

Yiredefine rule %to rule‘

Give a new definition for a rule. This is a dangerous operation and should only be used in cases where gradual
grammar changes would get too complex. To at least provide some safety, the original rule has to be provided.

%fold rule

Fold nested constructs to identifiers. For example,
qualified-name : data (("IN"|"OF") library)x*;
%fold in-library : ("IN" | "OF") library;

qualified-name : data in-libraryx;
in-library : ("IN" | "OF") library;

This is useful for making the grammar more readable, especially if there are many deeply nested constructs.

%unfold rule %to rule

Unfold identifiers to nested constructs. One example would be to undo the fold above, but a more realistic example
is to convert BNF constructs to EBNF constructs:

func: id "(" params ")";

params
: param
| param "," params
5

fpreserve params: {param ","}+;

%unfold params

func: id u(n {param n,||}+ u)n;

12



7.2 FST and Namespaces

Namespacing is achieved by explicitly qualifying every identifier. This means that to put something in a certain
namespace is nothing more than a \%rename. What a namespace means exactly is dependend on the system code
is generated for. Some targets like ANSI C do not have namespacing, in wich case names will become long. Others
have a module system, like Haskell. There are some conventions that can be used however, for example:

Jirename move-statement %to VSC/stat/move-statement

This will place the add-statement in the package VSC and the module stat. Using modules for namespaces as in
the example below is not a good idea.

Jrename add-statement %to VSC/stat/add

Some module systems will not report name conflicts. Rather they will merge different definitions of the same
name in different modules.

13



Chapter 8

Transformation Technology

GDK is a self-contained kit for grammar deployment. This means one is not required to employ any third-party
components to develop simple software renovation tools. In fact, the C-based TT offers lightweight functionality
for parsing, parse-tree construction, rewriting, traversal, unparsing, and pretty printing. Hence, there is no need to
install additional software to assess the suitability of the other components of GDK, especially the VS CoBoL 11
grammar which was deployed with GDK. As an aside, T'T is also used for the implementation of FST, LLLEXPORT
and LLLIMPORT.

Modules in GDK V1.0 (2059 LOC in total)

Module | Intention | LOC
ttterm.c Term construction and inspection 229
ttutils.c | Traversal, container, unparsing functionality | 1019
ttstrat.c | Strategies 300
ttparse.c | Combinator parsing 286
ttscan.c Simple scanner for combinator parsing 98
pretty.c Pretty printing (TODO: port this)

tttoken.c | Tokenization 78
ttstack.c | Generic stacks 49

The T'T functionality can be used for the implementation of simple renovation tools. That is, T'T is complementary
to more sophisticated technologies such as ASF4+SDF, DMS, or REFINE. To give examples of current limitations
of TT, the term format MTerm provided by the T'T does not support garbage collection, and the C-encodings of
rewrite rules and traversals are not type-checked whereas this is suported, e.g., by ASF4+SDF. On the other hand,
for T'T it is not necessary to learn a new language, which is the case for more sophisticated tools. The performance
of TT-based combinator parsers is only outperformed by btyacc. Here, we take advantage of grammar class
restrictions for combinator parsing. These restrictions are not necessarily appropriate for all languages.

In the rest of this chapter the most interesting parts of the transformation library will be discussed in more
detail.

8.1 Terms

A term consists of a function symbol and arguments. The function symbol contains all kinds information about the
arguments: the type of the arguments (term, string or integer), in case the type of arguments is term the function
symbol also says how many arguments the term has (also called the arity). There is a special kind of term called
a strategy, in this case the function symbol also contains a pointer to the strategy application function.

The term structure

struct TTterm_struct {
TTfun fun;
union {
int val;
TTterm args[1];

14



char str[1];
}u;
};

The function symbol fun determines which part of the union is chosen. Terms can be leafs: int and str or nodes:
args. The array declarations args[1] and str[1] are fake, they are in fact arrays of arbitrary length, this is a
well known trick in C programming.

Example term, a list containing two elements: the integer “42” and the string “Hello World”

Cons

Int 42 Cons

String | Hello World | | Nil

Construction of example term

TTbuild_nil();
TTbuild_cons(TTbuild_string("Hello World"), xs);
TTbuild_cons(TTbuild_int(42), xs);

Xs
Xs
Xs

The rest of this section will present the signature of each function in the term library followed by an explanation
and an example of its use.

TTterm TTbuild term(TTfun fun, const TTterm * args)

This function creates a term with function symbol fun and arguments args. The function symbol contains the
number of arguments. The argument array is usually a static variable that is reused for more several builds.

static TTterm args[1000];

TTterm TTbuild_cons(TTterm hd, TTterm tl)

{

args[0] = hd;

args[1] = t1;

return TTbuild_term(TTfun_cons, args);
}

TTterm TTalloc(TTfun fun) ‘

This function creates a term with function sumbol fun but the arguments are not filled and the term is not yet
given to the term library. In many cases TTbuild_term is sufficient, but sometimes allocation of memory for a
term and giving the term to the term library has to be separated. For example, when doing a type preserving
transformation the arguments of the to be created term are gradually filled in a recursive function, this makes
using a static array for the arguments to TTbuild_term impossible. To avoid the user having to resort to using
an explicit malloc, it is more convenient to provide support for separate allocation and the actual creation of the
term inside the term library.

15



TTterm TTtransform(TTterm t, TTrewrite_f f)

{
TTterm result;
TTfun fun;
size_t 1i;
result = f(t);
if (result) {
return result;
} else if (TTis_node(t)) {
fun = t->fun;
result = TTalloc(fun);
for (i = 0; i < fun->arity; i++) {
result->u.args[i] = TTtransform(t->u.args[i], f);
}
if (equal(result, t)) {
TTfree(result);
return t;
}
return TTfinish(result);
}
return t;
}

void TTfree(TTterm t)

This function will free the memory allocated by a call to TTalloc. This is useful when halfway during the creation
of a term it turns out that the result is not needed, or in the case of a type preserving transformation if the term
is exactly the same as the original term.

See TTalloc for an example.

TTterm TTfinish(TTterm t)

This function will give the term to the term library and return the finished term to the user. In the current
implementation this function just does a return t, but if the term library implemented sharing for example, that
would be done inside this function. See TTalloc for an example.

TTfun TTbuild fun(const char *name, size_t arity) ‘

This function builds a function symbol with a certain name (useful for debugging) and a certain arrity.

void TTutils_init(void)

{

TTfun_nil = TTbuild_fun("nil", 0);
TTfun_cons = TTbuild_fun("cons", 2);

TTfun TTbuild_sfun(const char *name, size_t arity, TTapply-f apply)

This function builds a function symbol with a certain name and arity like TTbuild_fun, but also a strategy
application function. See the see section on strategies for more details.
static TTterm apply_succeed(const TTstrat * s,

TTterm t,

const TTstrat_env env)

if (env) return env->empty;
return t;

16



void TTstrat_init(void)

{

TTfun_succeed = TTbuild_sfun("succeed", O, apply_succeed);

BOOL TTequal(TTterm t1, TTterm t2)

This function tests two terms for deep equality.

if (TTequal(tl, t2)) {

}

TTterm TTbuild int(int n) |

This function builds a term with the integer function symbol and the integer value n as its argument.

t = TTbuild_int(123);

BOOL TTmatch_int(TTterm t, int *x)

This function tries to match an integer: if the term t has a function symbol of type integer the variable x is set to
its value and TRUE is returned, otherwise FALSE is returned and x is unchanged.

if (TTmatch_int(t, &n)) {
printf ("The number is %d\n", n);
}

TTtype_string TTbuild_string(const char * str)

This function builds a term with the string function symbol and the string str as its argument.

t = TTbuild_string("Hello");

BOOL TTmatch_string(TTtype_string t, const char *x x)

This function tries to match a string: if the term t has a function symbol of type string the variable x is set to
point to the argument string and TRUE is returned, otherwise FALSE is returned and x is unchanged.

const char * str;
if (TTmatch_string(t, &str)) {

printf ("The string is: %s\n", str);
}

17



TTtermTTalloc_string(int len)

This function allocates a term with room to contain a string of length len, but does not fill the string yet. This
looks similar to TTalloc and the reason for having this function is similar too. When creating strings often the
length of the resulting string is not known at compile time, this means that the user would have to use malloc and
then pass the malloced string to TTbuild_string which would then do another malloc. It is better to support the
malloc in the term library to avoid this double allocation.

TTterm TTto_upper(TTterm t)
{
int i;
int len = TTstrlen(t);
TTterm result = TTalloc_string(len);

for (i = 0; i < len; i++) {
result->u.str[i] = toupper(t->u.str[il);
}

return TTfinish_string(result);

void TTfree_string(TTterm t)

This function frees the term t which was allocated using TTalloc_string. Although there does not seem to be
much use for this function it has been included for completeness.

TTterm TTfinish string(TTterm t)

This function will give the term to the term library and return the finished term to the user. In the current
implementation this function just does a return t. See TTalloc_string for an example.

8.2 Scannerless Combinator Parsing

The main asset of GDK is that it is self contained, this is why there is a simple parsing technology included in the
distribution called Scannerless Combinator Parsing.

True combinator parsing as in for example Haskell is not so easy to achieve in a low level language like C, the
main problem is that C does not allow functions as a return argument. But it is quite straightforward to have one
level combinators that take parsing functions and produce a parsetree. This way a small but complex part of the
code dealing with the actual parsing can be contained in a small library while the bulk of the parsing code can be
generated (from the LLL format). This generated code will be easy to debug and maintain simply because all the
complex logic has been taken out and put in the small library. For example the move statement would look like
this:

TTterm
TTparseVSC_stat_move_1( void )
{
fparse fs[4];
fs[0] = TTparset_MOVE;
fs[1] = TTparseVSC_stat_id_or_lit;
fs[2] = TTparset_TO;
fs[3] = TTparseVSC_data_ref_identifier_plus;

return TTparseVSC_CONJUNCTION(TTfunVSC_stat_move_1, fs);
}

There is no complex logic in this code, no if statements, no loops, just plain filling of arrays and calling the
appropriate combinator: disjunction or conjunction. The nice thing about this is that the generated code is still
readable as opposed to for example C code generated by YACC.

18



The TTparseVSC_CONJUNCTION takes a function symbol and a list of parsers to parse the terms in the conjunction
and it results in a term with that function symbol on a succesful parse or 0 to denote failure.

As can be seen in the full list of all the combinators below, each construct in the LLL grammar has a corresponding
combinator.

TTterm TTparse_disjunction(TTfun fun, size_t n, TTterm(**parsers) (void));
TTterm TTparse_conjunction(TTfun fun, TTterm (**parsers)(void));

TTterm TTparse_plus(TTterm (*parser)(void));

TTterm TTparse_star(TTterm (*parser)(void));

TTterm TTparse_optional (TTterm (*parser) (void));

TTterm TTparse_alternation(TTterm (*pl)(void), TTterm (*p2) (void));

TTterm TTparse_disjunction(TTfun fun, size_t n, TTterm(**parsers) (void))

This function tries to parse a disjunction. Each parser in the parsers array is applied till one is succesful. If none
of the parsers is succesful the result will be failure. If there is a succesful parse, a term with function symbol fun
is constructed, the arity of this function symbol is 1.

TTterm
TTparse_statement ( void )
{
fparse fs[3];
fs[0] = TTparse_move_statement;
fs[1] = TTparse_if_statement;
fs[2] = TTparse_perform_statement;
return TTparse_disjunction(TTfun_statement, 3, fs);

TTterm TTparse_conjunction(TTfun fun, TTterm (**parsers) (void))

This function tries to parse a conjunction. The parsers in the parsers array are applied in sequence, each parser
consuming part of the input stream. If one of the parsers fails, the result is failure. If all parsers succeed a term
with the function symbol fun will be constructed, the arity of the function symbol is the same as the number
of parsers in the conjunction. The idea is that no information is lost, keywords (and layout) will appear in the
parsetree.

TTterm
TTparse_move_statement ( void )
{

fparse fs[4];

fs[0] TTparse_MOVE;

fs[1] = TTparse_id;

fs[2] = TTparse_TO;

fs[3] = TTparse_id_plus;

return TTparse_conjunction(TTfun_move_statement, fs);

TTterm TTparse plus(TTterm (*parser) (void))

This function tries to parse a list of one or more elements. If no element can be parsed the result is failure, otherwise
the result is a list of as many parsed terms as possible.

static TTterm
TTparse_id_plus( void )
{
return TTparse_plus(TTparse_id) ;
}
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TTterm TTparse_star(TTterm (*parser) (void))

This function parses a list of zero or more elements. It will always succeed: if there are no elements to be parsed
it will return the empty list.

static TTterm
TTparse_id_star( void )
{
return TTparse_star(TTparse_id);

}

TTterm TTparse_optional (TTterm (*parser)(void))

This function parses an optional. It will always succeed: if the supplied parser fails it will return the empty list. If
it succeeds it will return a singleton containing the parsed term.

static TTterm
TTparse_id_opt( void )
{
return TTparse_opt(TTparse_id);
}

TTterm TTparse_alternation(TTterm (*pl) (void), TTterm (*p2) (void))

This function parses an alternation. First p1 is tried, if it fails the result is failure. Then sequences of p2 followed
by p1 are tried as much as possible. This construction is useful for encoding things like comma separated lists.

static TTterm
TTparse_params( void )
{
return TTparse_alternation(TTparse_id, TTparse_COMMA) ;
}

The thing that is still missing from this picture is the actual scanning, i.e. how to recognize bottom identifiers and
keywords. On the one hand it is trivial because they are parsing functions like everything else:

TTterm TTparseVSC_KEYWORD(const char * name);
TTterm TTparseVSC_lex_cobword( void );

On the other hand there are some subtle issues with the scannerless approach. For example, when doing:

TTparseVSC_KEYWORD ("MOVE")

it is not just a matter of scanning through the buffer for the characters “M”, “O”, “V”, “E” and then stop.
There also needs to be a check wether at the current position in the buffer an identifier can be parsed in which
case the parsing of the keyword will return false. When recognizing cobol words the opposite applies, for example
if the identifier at the current point is identical to “MOVE” it should not be recognized as an identifier. Another
issue is that although one can write down any kind of complex lexical recognizer in C it is not very convenient for
writing down simple regular expressions. However, having a complete parser in C without dependencies on tools
such as flex has definite advantages.

8.3 Strategies

One of the side goals in GDK is to be a showcase for all kinds of transformation technology, to allow users to try
out different approaches to program transformation without having to download and install a large ammount of
packages.

Strategies were first introduced in (TODO: need reference). TODO: Need some strategies intro.

One thing to bear in mind for the next subsections is that strategies do not do anything by themselves, they
are just graphs. The strategy application is what sets the actual traversal in motion, traversing the strategy graph
and the input term (see the section on strategy application).
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8.3.1 Basic Strategies

TTstrat TTbuild_adhoc(TTstrat s, TTrewrite_f r);
TTstrat TTbuild_succeed( void );

TTstrat TTbuild_fail( void );

TTstrat TTbuild_both(TTstrat sl1, TTstrat s2);
TTstrat TTbuild_choice(TTstrat s1, TTstrat s2);
TTstrat TTbuild_all(TTstrat s);

TTstrat TTbuild_one(TTstrat s);

‘TTstrat TTbuild_adhoc(TTstrat s, TTrewrite f r)

Lift the rewrite function r to the strategy level. If the rewrite function gets applied to a term (when TTstrat_apply
is called) and fails, the default strategy s will be applied instead.

‘TTstrat TTbuild_succeed( void ) ‘

This function creates a strategy that, when applied to a term, will return the term itself in the type preserving
case and empty in the type unifying case.

‘TTstrat TTbuild_fail( void )‘

This function creates a strategy that will always fail (produce NULL) when applied to a term.

‘TTstrat TTbuild both(TTstrat si, TTstrat s2)‘

This function creates a strategy that, when applied to a term, will apply the two strategies in sequence in the type
preserving case and concatenate the application of the two strategies to the term in the type unifying case.

TTstrat TTbuild_choice(TTstrat s1, TTstrat s2)

This function creates a strategy that, when applied to a term, will try to apply strategy s1 to a term, if this fails
it will apply strategy s2 to a term.

TTstrat TTbuild all(TTstrat s) |

This function creates a strategy that, when applied to a term, will apply s to all children of the term, if it fails for
one of the children the result will be failure (NULL). In the type preserving case a new term will be created with
the same function symbol as the old term and the new children. In the type unifying case the new children will be
concatenated.

TTstrat TTbuild_one(TTstrat s)‘

This function creates a strategy that, when applied to a term, will try to apply s to one of the children, progressing
from left to right. If s cannot be applied to any of the children, the result will be failure.

8.3.2 Advanced Strategies

The basic strategies in themselves are not very useful, the real power comes when combining them. Below are
various types of traversal ranging from simple top down traversal to more exotic things like stop bottom up.

totaltd(s) = both(s, all(this))
totalbu(s) = both(all(this), s)
oncetd(s) = choice(s, one(this))
oncebu(s) = choice(one(this), s)
stoptd(s) = choice(s, all(this))
stopbu(s) = choice(all(this), s)
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The this stands for the current strategy being defined. To implement such a cyclic structure means that the term
library has to support cycles. At the moment it does, but it might be hard to keep supporting cycles when for
example reference counting garbage collection is added. The picture below shows what the advanced strategies
currently look like internally, i.e. they have cycles.

totaltd totalbu
\
both | s = all both S all
A A
pathtd pathbu
\
both | s = one both S one
A A
stoptd stopbu
\
choice| s = all choice S all
A A
oncetd oncebu
\
choice| s = one choice S one
A A

A way to avoid running into problems with cyclic structures is to have two term libraries: one for normal terms
and one for strategic terms. Of course this results in code duplication. A way to avoid using cycles altogether is to
mix strategy construction with strategy application, but this is less efficient in both space and time usage. Another
issue to consider is that having cycles in a term library is useful for other things, e.g. lazy functional languages
allow cyclic terms as well. In short, this is still an open issue.

8.3.3 Strategy Application

Creating strategies is fine, but they don’t do anything until they are applied to a term. There are two types of
application: type preserving and type unifying. When a basic strategy is applied to a term, two different actions
can be taken based on wether the application is type unifying or type preserving. Sometimes the behavior is the
same in both cases, e.g. fail. The advanced strategies can be seen as macros, i.e. they are translated to basic
strategies.

TTterm TTstrat_applytp(TTstrat s, TTterm t);
TTterm TTstrat_applytu(TTstrat s, TTterm t, TTcomb_f comb, TTterm empty);

TTterm TTstrat_applytp(TTstrat s, TTterm t)

The strategy s is applied to the term t, the result will either be failure (NULL) or a transformed term with the
same function symbol as t.
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TTterm TTstrat_applytu(TTstrat s, TTterm t, TTcomb f comb, TTterm empty)‘

The strategy s is applied to the term t using comb as the concatenation function to combine results (for example
list concatenation) and empty as the empty result (for example, the empty list).

8.4 Efficient Traversals

Although strategies are very powerful, they are not very efficient. A less powerful, but more efficient way of doing
traversals is provided as part of the utility library ttutils.c. This section will discuss each traversal and give
examples of their use.

TTterm TTtransform(TTterm t, TTtrafo_f f)

This function performs a type preserving traversal, it applies £ top down recursively on each term in the tree, if
f returns NULL it will recurse further, otherwise the result of f is used to construct the result tree. The example
below will expand the string 99 to 9999 in all leafs of the tree.

static TTterm
expand_t (TTterm t)

{
if (TTequal_string(t, "99")) {
return TTbuild_string("9999");
}
return O;
}
TTterm
expand(TTterm t)
{
return TTtransform(t, expand_t);
}

TTterm TTtransform nonstop(TTterm t, TTrewrite f f)

This function performs a type preserving traversal like TTtransform. The difference is that it does not stop, it will
first apply the rewrite function to the term t and then recursively transform this new term. The example below
will perform some kind of simplification on the expressions in an if statement. Because nonstop is used, nested
if statements will also be simplified.

static TTterm
simplify_t(TTterm t)

{
TTerm iff, expr, then, stats;
if (TTmatch_if(t, &iff, &expr, &then, &stats)) {
return TTbuild_if (iff, simplify(expr), then, stats);
}
return t;
}
TTterm
simplify(TTterm t)
{
return TTtransform_nonstop(t, simplify_t);
}

TTterm TTanalyze(TTterm t, TTtrafo_f f, TTcomb_f comb, TTterm empty)

This function performs a type unifying traversal, it collects information from the parsetree in for example a list or
a set.
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static TTterm
collect_move_a(TTterm t)

{
if (t->fun == TTfun_move) {
return TTbuild_singleton(t);
}
return O;
}
TTterm
collect_moves(TTterm t)
{
return TTanalyze(t, collect_move_a, TTconcat, TTbuild_nil());
}

void TTtraverse(TTterm t, TTtrav_f f)

This function only does a traversal, the function f can return either FALSE to continue to recursively traverse the
term or TRUE to stop, so this is purely for sideffecting traversals, e.g. writing to a file or collecting some result in
a static variable. The function TTtransform can be used to achieve the same effect and ignoring the constructed
result, but TTtraverse is more effiicent.

static FILE * st_file;

static BOOL
dump_string_t(TTterm t)

{
const char * str;
if (TTmatch_string(t, &str)) {
fprintf(st_file, "Ys\n", str);
return TRUE;
}
return FALSE;
}
TTterm
dump_strings(FILE * f, TTterm t)
{
st_file = £;
return TTtraverse(t, dump_string_t);
}

void TTtraverse_line(TTterm t, TTtrav_line f f, int line, int col)

This function really shows off the power off traversals. Line and column number information is threaded through
the traversal. The advantage compared to storing this information in the parsetree is that the parsetree remains
lightweight. The disadvantage is that it is less efficient. Decreasing memory consumption seems more important
however, especially in the case of COBOL where sources can be anything up to 100K LOC. In case the term library
supports maximal sharing, like the ATerm library, the difference in memory consumption becomes even greater:
having line and column number information inside the parsetree prevents sharing to a large extend.

static void report_move_t(TTterm t, int line, int col)

{
if (t->fun == TTfun_move) {
fprintf (stderr, "Move on line %d, col %d.\n", line, col);
}
}
void report_moves(const char * filename, TTterm t)
{
TTtraverse_line(t, report_move_t, 1, 1);
}
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TTterm TTselect(TTterm t, TTtrafo_f f)
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Chapter 9

VS COBOL 11

The distribution of GDK comes with the initial VS CoBOL II grammar specification as delivered in [3], with all the
transformation scripts to further disambiguate and refactor the grammar, and to prepare it for use with different
parsing technologies. To illustrate the usefulness of the deployed grammar, a software renovation tool EXPAND is
included in the distribution of GDK. In the present section, we briefly indicate the renovation task addressed by
EXPAND, we describe the process to derive the underlying renovation parser, and finally we sketch the internal
structure of EXPAND. This tool demonstrates how to use a generated renovation parser for a re-engineering task.

A VS CoBoL II program before and after adaptation by EXPAND

IDENTIFICATION DIVISION.
PROGRAM-ID. LITTLE-Y2K-TEST.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SEEK-NAME PIC 99.
01 OTHER-NAME-1 PIC 99.

01 OTHER-NAME-2 PIC 99999.

01 OTHER-NAME-3 PIC 99.
PROCEDURE DIVISION.

MOVE SEEK-NAME TO OTHER-NAME-1.
MOVE SEEK-NAME TO OTHER-NAME-2.

IDENTIFICATION DIVISION.
PROGRAM-ID. LITTLE-Y2K-TEST.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 SEEK-NAME PIC 999.
01 OTHER-NAME-1 PIC 999.
01 OTHER-NAME-2 PIC 99999.
01 OTHER-NAME-3 PIC 99.
PROCEDURE DIVISION.

MOVE SEEK-NAME TO OTHER-NAME-1.
MOVE SEEK-NAME TO OTHER-NAME-2.

IF OTHER-NAME-2 > 99 IF OTHER-NAME-2 > 299

The sample illustrates that we want to expand certain two-digits fields to three digits, that is, PIC 99 becomes PIC
999. This range expansion also triggers the adaptation of literals, namely the replacement of a maximum value 99
by the new value 299. The affected fields are determined by a seed-and-propagate algorithm. The identification of
seed-set elements is based on name heuristics. The propagation relies on a type-of-usage analysis.

Derivation of a Cobol parser

Finalized.lll libvscoboliiparser.a

Transformations other .cfiles

The initial grammar specification Spec.111 is transformed by a number of FST scripts resulting in a grammar
Finalized.111l. This grammar is passed to LLLEXPORT to issue parser generation. The rest of the figure is specific
to C-based parsers. The output of LLLEXPORT (maybe after processing by a “parser generator”) is compiled by
gcc. This process is captured in a Makefile. To make it straightforward to switch between technologies, all parsers
are provided as a library with one top-level function VSCparse file for reading in a file and producing a parse
tree.

The main function of the EXPAND tool

#include <stdio.h>
#include "ttterm.h"
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#include "ttutils.h"
#include "parsevsc.h"
#include "expand.h"

int
main(int argc, char **argv)
{
TTterm pt;
pt = VSCparse_file("stdin", stdin);
pt = expand(pt);
TTunparse (stdout, pt);
return O;
}

That is, the library function parseCbl is invoked resulting in a parse tree pt. The renovation task is encoded in the
function expand which is structured as follows. (i) The seed set is determined. (ii) The propagation is performed.
(iii) The picture mask of affected fields is expanded. (iv) Affected literals are adapted. These steps basically amount
to traversals which are specific only for a few Cobol patterns. We use generic traversal functionality supplied by
TT. The transformed program is finally pretty-printed with COBPPdump. The complete C code for the EXPAND
tool amounts to 241 LOC.
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