Foundations and Trends® in
Databases
Vol. 1, No. 2 (2007) 141-259

© 2007 J. M. Hellerstein, M. Stonebraker n‘w

and J. Hamilton
DOI: 10.1561/1900000002 the essence of knowledge

Architecture of a Database System

Joseph M. Hellerstein', Michael Stonebraker?
and James Hamilton?

1 University of California, Berkeley, USA, hellerstein@cs.berkeley.edu
2 Massachusetts Institute of Technology, USA
3 Microsoft Research, USA

Abstract

Database Management Systems (DBMSs) are a ubiquitous and critical
component of modern computing, and the result of decades of research
and development in both academia and industry. Historically, DBMSs
were among the earliest multi-user server systems to be developed, and
thus pioneered many systems design techniques for scalability and relia-
bility now in use in many other contexts. While many of the algorithms
and abstractions used by a DBMS are textbook material, there has been
relatively sparse coverage in the literature of the systems design issues
that make a DBMS work. This paper presents an architectural dis-
cussion of DBMS design principles, including process models, parallel
architecture, storage system design, transaction system implementa-
tion, query processor and optimizer architectures, and typical shared
components and utilities. Successful commercial and open-source sys-
tems are used as points of reference, particularly when multiple alter-
native designs have been adopted by different groups.

1

Introduction

Database Management Systems (DBMSs) are complex, mission-critical
software systems. Today’s DBMSs embody decades of academic
and industrial research and intense corporate software development.
Database systems were among the earliest widely deployed online server
systems and, as such, have pioneered design solutions spanning not only
data management, but also applications, operating systems, and net-
worked services. The early DBMSs are among the most influential soft-
ware systems in computer science, and the ideas and implementation
issues pioneered for DBMSs are widely copied and reinvented.

For a number of reasons, the lessons of database systems architec-
ture are not as broadly known as they should be. First, the applied
database systems community is fairly small. Since market forces only
support a few competitors at the high end, only a handful of successful
DBMS implementations exist. The community of people involved in
designing and implementing database systems is tight: many attended
the same schools, worked on the same influential research projects, and
collaborated on the same commercial products. Second, academic treat-
ment of database systems often ignores architectural issues. Textbook
presentations of database systems traditionally focus on algorithmic

142

1.1 Relational Systems: The Life of a Query 143

and theoretical issues — which are natural to teach, study, and test —
without a holistic discussion of system architecture in full implementa-
tions. In sum, much conventional wisdom about how to build database
systems is available, but little of it has been written down or commu-
nicated broadly.

In this paper, we attempt to capture the main architectural aspects
of modern database systems, with a discussion of advanced topics. Some
of these appear in the literature, and we provide references where appro-
priate. Other issues are buried in product manuals, and some are simply
part of the oral tradition of the community. Where applicable, we use
commercial and open-source systems as examples of the various archi-
tectural forms discussed. Space prevents, however, the enumeration of
the exceptions and finer nuances that have found their way into these
multi-million line code bases, most of which are well over a decade old.
Our goal here is to focus on overall system design and stress issues
not typically discussed in textbooks, providing useful context for more
widely known algorithms and concepts. We assume that the reader
is familiar with textbook database systems material (e.g., [72] or [83])
and with the basic facilities of modern operating systems such as UNIX,
Linux, or Windows. After introducing the high-level architecture of a
DBMS in the next section, we provide a number of references to back-
ground reading on each of the components in Section 1.2.

1.1 Relational Systems: The Life of a Query

The most mature and widely used database systems in production
today are relational database management systems (RDBMSs). These
systems can be found at the core of much of the world’s application
infrastructure including e-commerce, medical records, billing, human
resources, payroll, customer relationship management and supply chain
management, to name a few. The advent of web-based commerce and
community-oriented sites has only increased the volume and breadth of
their use. Relational systems serve as the repositories of record behind
nearly all online transactions and most online content management sys-
tems (blogs, wikis, social networks, and the like). In addition to being
important software infrastructure, relational database systems serve as

144 Introduction

Local Client
Protocols

Remote Client
Protocols

Catalog

Manager

Admission Client Communications Manager

Control

Memory

Query Parsing and Authorization Manager

Administration,
Monitoring &
Utilities

| DDL and Utility

Query Optimizer Processing

Dispatch
and
Scheduling

|
| Query Rewrite |
|
|

Plan Executor |

Replication and
Loading
Services

Relational Query Processor (Section 4)

Access Methods Buffer Manager

Batch Utilities

Shared
Components and
Utilities (Section 7)

Process Lock Manager Log Manager

Manager
(Section 2)

Transactional Storage Manager (Sections 5 & 6)

Fig. 1.1 Main components of a DBMS.

a well-understood point of reference for new extensions and revolutions
in database systems that may arise in the future. As a result, we focus
on relational database systems throughout this paper.

At heart, a typical RDBMS has five main components, as illustrated
in Figure 1.1. As an introduction to each of these components and the
way they fit together, we step through the life of a query in a database
system. This also serves as an overview of the remaining sections of the
paper.

Consider a simple but typical database interaction at an airport, in
which a gate agent clicks on a form to request the passenger list for a
flight. This button click results in a single-query transaction that works
roughly as follows:

1. The personal computer at the airport gate (the “client”) calls
an API that in turn communicates over a network to estab-
lish a connection with the Client Communications Manager
of a DBMS (top of Figure 1.1). In some cases, this connection

1.1 Relational Systems: The Life of a Query 145

is established between the client and the database server
directly, e.g., via the ODBC or JDBC connectivity protocol.
This arrangement is termed a “two-tier” or “client-server”
system. In other cases, the client may communicate with
a “middle-tier server” (a web server, transaction process-
ing monitor, or the like), which in turn uses a protocol to
proxy the communication between the client and the DBMS.
This is usually called a “three-tier” system. In many web-
based scenarios there is yet another “application server” tier
between the web server and the DBMS, resulting in four
tiers. Given these various options, a typical DBMS needs
to be compatible with many different connectivity protocols
used by various client drivers and middleware systems. At
base, however, the responsibility of the DBMS’ client com-
munications manager in all these protocols is roughly the
same: to establish and remember the connection state for
the caller (be it a client or a middleware server), to respond
to SQL commands from the caller, and to return both data
and control messages (result codes, errors, etc.) as appro-
priate. In our simple example, the communications manager
would establish the security credentials of the client, set up
state to remember the details of the new connection and the
current SQL command across calls, and forward the client’s
first request deeper into the DBMS to be processed.

. Upon receiving the client’s first SQL command, the DBMS
must assign a “thread of computation” to the command. It
must also make sure that the thread’s data and control out-
puts are connected via the communications manager to the
client. These tasks are the job of the DBMS Process Man-
ager (left side of Figure 1.1). The most important decision
that the DBMS needs to make at this stage in the query
regards admission control: whether the system should begin
processing the query immediately, or defer execution until a
time when enough system resources are available to devote
to this query. We discuss Process Management in detail in
Section 2.

146 Introduction

3. Once admitted and allocated as a thread of control, the gate
agent’s query can begin to execute. It does so by invoking the
code in the Relational Query Processor (center, Figure 1.1).
This set of modules checks that the user is authorized to run
the query, and compiles the user’s SQL query text into an
internal query plan. Once compiled, the resulting query plan
is handled via the plan executor. The plan executor consists
of a suite of “operators” (relational algorithm implementa-
tions) for executing any query. Typical operators implement
relational query processing tasks including joins, selection,
projection, aggregation, sorting and so on, as well as calls
to request data records from lower layers of the system. In
our example query, a small subset of these operators — as
assembled by the query optimization process — is invoked to
satisfy the gate agent’s query. We discuss the query processor
in Section 4.

4. At the base of the gate agent’s query plan, one or more
operators exist to request data from the database. These
operators make calls to fetch data from the DBMS’ Trans-
actional Storage Manager (Figure 1.1, bottom), which man-
ages all data access (read) and manipulation (create, update,
delete) calls. The storage system includes algorithms and
data structures for organizing and accessing data on disk
(“access methods”), including basic structures like tables
and indexes. It also includes a buffer management mod-
ule that decides when and what data to transfer between
disk and memory buffers. Returning to our example, in the
course of accessing data in the access methods, the gate
agent’s query must invoke the transaction management code
to ensure the well-known “ACID” properties of transactions
[30] (discussed in more detail in Section 5.1). Before access-
ing data, locks are acquired from a lock manager to ensure
correct execution in the face of other concurrent queries. If
the gate agent’s query involved updates to the database, it
would interact with the log manager to ensure that the trans-
action was durable if committed, and fully undone if aborted.

1.1 Relational Systems: The Life of a Query 147

In Section 5, we discuss storage and buffer management in
more detail; Section 6 covers the transactional consistency
architecture.

5. At this point in the example query’s life, it has begun to
access data records, and is ready to use them to compute
results for the client. This is done by “unwinding the stack”
of activities we described up to this point. The access meth-
ods return control to the query executor’s operators, which
orchestrate the computation of result tuples from database
data; as result tuples are generated, they are placed in a
buffer for the client communications manager, which ships
the results back to the caller. For large result sets, the
client typically will make additional calls to fetch more data
incrementally from the query, resulting in multiple itera-
tions through the communications manager, query execu-
tor, and storage manager. In our simple example, at the end
of the query the transaction is completed and the connec-
tion closed; this results in the transaction manager cleaning
up state for the transaction, the process manager freeing
any control structures for the query, and the communi-
cations manager cleaning up communication state for the
connection.

Our discussion of this example query touches on many of the key
components in an RDBMS, but not all of them. The right-hand side
of Figure 1.1 depicts a number of shared components and utilities
that are vital to the operation of a full-function DBMS. The catalog
and memory managers are invoked as utilities during any transaction,
including our example query. The catalog is used by the query proces-
sor during authentication, parsing, and query optimization. The mem-
ory manager is used throughout the DBMS whenever memory needs
to be dynamically allocated or deallocated. The remaining modules
listed in the rightmost box of Figure 1.1 are utilities that run indepen-
dently of any particular query, keeping the database as a whole well-
tuned and reliable. We discuss these shared components and utilities in
Section 7.

148 Introduction

1.2 Scope and Overview

In most of this paper, our focus is on architectural fundamentals sup-
porting core database functionality. We do not attempt to provide a
comprehensive review of database algorithmics that have been exten-
sively documented in the literature. We also provide only minimal dis-
cussion of many extensions present in modern DBMSs, most of which
provide features beyond core data management but do not significantly
alter the system architecture. However, within the various sections of
this paper we note topics of interest that are beyond the scope of the
paper, and where possible we provide pointers to additional reading.

We begin our discussion with an investigation of the overall archi-
tecture of database systems. The first topic in any server system archi-
tecture is its overall process structure, and we explore a variety of viable
alternatives on this front, first for uniprocessor machines and then for
the variety of parallel architectures available today. This discussion of
core server system architecture is applicable to a variety of systems,
but was to a large degree pioneered in DBMS design. Following this,
we begin on the more domain-specific components of a DBMS. We start
with a single query’s view of the system, focusing on the relational query
processor. Following that, we move into the storage architecture and
transactional storage management design. Finally, we present some of
the shared components and utilities that exist in most DBMSs, but are
rarely discussed in textbooks.

2

Process Models

When designing any multi-user server, early decisions need to be made
regarding the execution of concurrent user requests and how these are
mapped to operating system processes or threads. These decisions have
a profound influence on the software architecture of the system, and on
its performance, scalability, and portability across operating systems.!
In this section, we survey a number of options for DBMS process mod-
els, which serve as a template for many other highly concurrent server
systems. We begin with a simplified framework, assuming the availabil-
ity of good operating system support for threads, and we initially target
only a uniprocessor system. We then expand on this simplified discus-
sion to deal with the realities of how modern DBMSs implement their
process models. In Section 3, we discuss techniques to exploit clusters
of computers, as well as multi-processor and multi-core systems.
The discussion that follows relies on these definitions:

® An Operating System Process combines an operating system
(OS) program execution unit (a thread of control) with an

1 Many but not all DBMSs are designed to be portable across a wide variety of host operating
systems. Notable examples of OS-specific DBMSs are DB2 for zSeries and Microsoft SQL
Server. Rather than using only widely available OS facilities, these products are free to
exploit the unique facilities of their single host.

149

150 Process Models

address space private to the process. Included in the state
maintained for a process are OS resource handles and the
security context. This single unit of program execution is
scheduled by the OS kernel and each process has its own
unique address space.

® An Operating System Thread is an OS program execution
unit without additional private OS context and without a
private address space. Each OS thread has full access to the
memory of other threads executing within the same multi-
threaded OS Process. Thread execution is scheduled by the
operating system kernel scheduler and these threads are often
called “kernel threads” or k-threads.

o A Lightweight Thread Package is an application-level con-
struct that supports multiple threads within a single OS
process. Unlike OS threads scheduled by the OS, lightweight
threads are scheduled by an application-level thread sched-
uler. The difference between a lightweight thread and a
kernel thread is that a lightweight thread is scheduled in
user-space without kernel scheduler involvement or knowl-
edge. The combination of the user-space scheduler and all of
its lightweight threads run within a single OS process and
appears to the OS scheduler as a single thread of execution.

Lightweight threads have the advantage of faster thread
switches when compared to OS threads since there is no
need to do an OS kernel mode switch to schedule the next
thread. Lightweight threads have the disadvantage, how-
ever, that any blocking operation such as a synchronous
I/O by any thread will block all threads in the process.
This prevents any of the other threads from making progress
while one thread is blocked waiting for an OS resource.
Lightweight thread packages avoid this by (1) issuing only
asynchronous (non-blocking) I/O requests and (2) not
invoking any OS operations that could block. Generally,
lightweight threads offer a more difficult programming model
than writing software based on either OS processes or OS
threads.

151

e Some DBMSs implement their own lightweight thread
(LWT) packages. These are a special case of general LWT
packages. We refer to these threads as DBMS threads
and simply threads when the distinction between DBMS,
general LWT, and OS threads are unimportant to the
discussion.

e A DBMS Client is the software component that implements
the API used by application programs to communicate with
a DBMS. Some example database access APIs are JDBC,
ODBC, and OLE/DB. In addition, there are a wide vari-
ety of proprietary database access API sets. Some programs
are written using embedded SQL, a technique of mixing pro-
gramming language statements with database access state-
ments. This was first delivered in IBM COBOL and PL/I
and, much later, in SQL/J which implements embedded
SQL for Java. Embedded SQL is processed by preproces-
sors that translate the embedded SQL statements into direct
calls to data access APIs. Whatever the syntax used in
the client program, the end result is a sequence of calls
to the DBMS data access APIs. Calls made to these APIs
are marshaled by the DBMS client component and sent to
the DBMS over some communications protocol. The proto-
cols are usually proprietary and often undocumented. In the
past, there have been several efforts to standardize client-to-
database communication protocols, with Open Group DRDA
being perhaps the best known, but none have achieved broad
adoption.

e A DBMS Worker is the thread of execution in the DBMS
that does work on behalf of a DBMS Client. A 1:1 map-
ping exists between a DBMS worker and a DBMS Client:
the DBMS worker handles all SQL requests from a single
DBMS Client. The DBMS client sends SQL requests to the
DBMS server. The worker executes each request and returns
the result to the client. In what follows, we investigate the
different approaches commercial DBMSs use to map DBMS
workers onto OS threads or processes. When the distinction is

152 Process Models

significant, we will refer to them as worker threads or worker
processes. Otherwise, we refer to them simply as workers or
DBMS workers.

2.1 Uniprocessors and Lightweight Threads

In this subsection, we outline a simplified DBMS process model taxon-
omy. Few leading DBMSs are architected exactly as described in this
section, but the material forms the basis from which we will discuss cur-
rent generation production systems in more detail. Each of the leading
database systems today is, at its core, an extension or enhancement of
at least one of the models presented here.

We start by making two simplifying assumptions (which we will
relax in subsequent sections):

1. OS thread support: We assume that the OS provides us with
efficient support for kernel threads and that a process can
have a very large number of threads. We also assume that
the memory overhead of each thread is small and that the
context switches are inexpensive. This is arguably true on
a number of modern OS today, but was certainly not true
when most DBMSs were first designed. Because OS threads
either were not available or scaled poorly on some platforms,
many DBMSs are implemented without using the underlying
OS thread support.

2. Uniprocessor hardware: We will assume that we are design-
ing for a single machine with a single CPU. Given the ubiqg-
uity of multi-core systems, this is an unrealistic assumption
even at the low end. This assumption, however, will simplify
our initial discussion.

In this simplified context, a DBMS has three natural process model
options. From the simplest to the most complex, these are: (1) process
per DBMS worker, (2) thread per DBMS worker, and (3) process pool.
Although these models are simplified, all three are in use by commercial
DBMS systems today.

2.1 Uniprocessors and Lightweight Threads 153

2.1.1 Process per DBMS Worker

The process per DBMS worker model (Figure 2.1) was used by early
DBMS implementations and is still used by many commercial systems
today. This model is relatively easy to implement since DBMS work-
ers are mapped directly onto OS processes. The OS scheduler man-
ages the timesharing of DBMS workers and the DBMS programmer
can rely on OS protection facilities to isolate standard bugs like mem-
ory overruns. Moreover, various programming tools like debuggers and
memory checkers are well-suited to this process model. Complicating
this model are the in-memory data structures that are shared across
DBMS connections, including the lock table and buffer pool (discussed
in more detail in Sections 6.3 and 5.3, respectively). These shared data
structures must be explicitly allocated in OS-supported shared memory
accessible across all DBMS processes. This requires OS support (which
is widely available) and some special DBMS coding. In practice, the

Connected
Clients

Dispatcher
Process

Execution

Processes

Fig. 2.1 Process per DBMS worker model: each DBMS worker is implemented as an OS
process.

154 Process Models

required extensive use of shared memory in this model reduces some of
the advantages of address space separation, given that a good fraction
of “interesting” memory is shared across processes.

In terms of scaling to very large numbers of concurrent connections,
process per DBMS worker is not the most attractive process model. The
scaling issues arise because a process has more state than a thread and
consequently consumes more memory. A process switch requires switch-
ing security context, memory manager state, file and network handle
tables, and other process context. This is not needed with a thread
switch. Nonetheless, the process per DBMS worker model remains pop-
ular and is supported by IBM DB2, PostgreSQL, and Oracle.

2.1.2 Thread per DBMS Worker

In the thread per DBMS worker model (Figure 2.2), a single multi-
threaded process hosts all the DBMS worker activity. A dispatcher

|
Multithreaded

Server

Fig. 2.2 Thread per DBMS worker model: each DBMS worker is implemented as an OS
thread.

2.1 Uniprocessors and Lightweight Threads 155

thread (or a small handful of such threads) listens for new DBMS client
connections. Each connection is allocated a new thread. As each client
submits SQL requests, the request is executed entirely by its corre-
sponding thread running a DBMS worker. This thread runs within the
DBMS process and, once complete, the result is returned to the client
and the thread waits on the connection for the next request from that
same client.

The usual multi-threaded programming challenges arise in this
architecture: the OS does not protect threads from each other’s mem-
ory overruns and stray pointers; debugging is tricky, especially with
race conditions; and the software can be difficult to port across OS due
to differences in threading interfaces and multi-threaded scaling. Many
of the multi-programming challenges of the thread per DBMS worker
model are also found in the process per DBMS worker model due to
the extensive use of shared memory.

Although thread API differences across OSs have been minimized
in recent years, subtle distinctions across platforms still cause hassles in
debugging and tuning. Ignoring these implementation difficulties, the
thread per DBMS worker model scales well to large numbers of con-
current connections and is used in some current-generation production
DBMS systems, including IBM DB2, Microsoft SQL Server, MySQL,
Informix, and Sybase.

2.1.3 Process Pool

This model is a variant of process per DBMS worker. Recall that the
advantage of process per DBMS worker was its implementation sim-
plicity. But the memory overhead of each connection requiring a full
process is a clear disadvantage. With process pool (Figure 2.3), rather
than allocating a full process per DBMS worker, they are hosted by a
pool of processes. A central process holds all DBMS client connections
and, as each SQL request comes in from a client, the request is given to
one of the processes in the process pool. The SQL Statement is executed
through to completion, the result is returned to the database client, and
the process is returned to the pool to be allocated to the next request.
The process pool size is bounded and often fixed. If a request comes in

156 Process Models

Connections Multiplexed
Over Process Pool

—{

Fig. 2.3 Process Pool: each DBMS Worker is allocated to one of a pool of OS processes
as work requests arrive from the Client and the process is returned to the pool once the
request is processed.

and all processes are already servicing other requests, the new request
must wait for a process to become available.

Process pool has all of the advantages of process per DBMS worker
but, since a much smaller number of processes are required, is consid-
erably more memory efficient. Process pool is often implemented with
a dynamically resizable process pool where the pool grows potentially
to some maximum number when a large number of concurrent requests
arrive. When the request load is lighter, the process pool can be reduced
to fewer waiting processes. As with thread per DBMS worker, the pro-
cess pool model is also supported by a several current generation DBMS
in use today.

2.1.4 Shared Data and Process Boundaries

All models described above aim to execute concurrent client requests
as independently as possible. Yet, full DBMS worker independence and
isolation is not possible, since they are operating on the same shared

2.1 Uniprocessors and Lightweight Threads 157

database. In the thread per DBMS worker model, data sharing is easy
with all threads run in the same address space. In other models, shared
memory is used for shared data structures and state. In all three mod-
els, data must be moved from the DBMS to the clients. This implies
that all SQL requests need to be moved into the server processes and
that all results for return to the client need to be moved back out.
How is this done? The short answer is that various buffers are used.
The two major types are disk I/O buffers and client communication
buffers. We describe these buffers here, and briefly discuss policies for
managing them.

Disk 1/0 buffers: The most common cross-worker data dependencies
are reads and writes to the shared data store. Consequently, I/O inter-
actions between DBMS workers are common. There are two sepa-
rate disk I/O scenarios to consider: (1) database requests and (2) log
requests.

e Database I/O Requests: The Buffer Pool. All persistent
database data is staged through the DBMS buffer pool
(Section 5.3). With thread per DBMS worker, the buffer
pool is simply a heap-resident data structure available to
all threads in the shared DBMS address space. In the other
two models, the buffer pool is allocated in shared memory
available to all processes. The end result in all three DBMS
models is that the buffer pool is a large shared data struc-
ture available to all database threads and /or processes. When
a thread needs a page to be read in from the database, it
generates an I/0O request specifying the disk address, and a
handle to a free memory location (frame) in the buffer pool
where the result can be placed. To flush a buffer pool page
to disk, a thread generates an I/O request that includes the
page’s current frame in the buffer pool, and its destination
address on disk. Buffer pools are discussed in more detail in
Section 4.3.

e Log I/O Requests: The Log Tail. The database log
(Section 6.4) is an array of entries stored on one or
more disks. As log entries are generated during transaction

158 Process Models

processing, they are staged to an in-memory queue that
is periodically flushed to the log disk(s) in FIFO order.
This queue is usually called the log tail. In many systems,
a separate process or thread is responsible for periodically
flushing the log tail to the disk.

With thread per DBMS worker, the log tail is simply
a heap-resident data structure. In the other two models,
two different design choices are common. In one approach,
a separate process manages the log. Log records are com-
municated to the log manager by shared memory or any
other efficient inter-process communications protocol. In the
other approach, the log tail is allocated in shared memory
in much the same way as the buffer pool was handled
above. The key point is that all threads and/or processes
executing database client requests need to be able to
request that log records be written and that the log tail be
flushed.

An important type of log flush is the commit transaction
flush. A transaction cannot be reported as successfully
committed until a commit log record is flushed to the log
device. This means that client code waits until the commit
log record is flushed, and that DBMS server code must
hold all resources (e.g., locks) until that time as well. Log
flush requests may be postponed for a time to allow the
batching of commit records in a single I/O request (“group
commit”).

Client communication buffers: SQL is typically used in a “pull” model:
clients consume result tuples from a query cursor by repeatedly issuing
the SQL FETCH request, which retrieve one or more tuples per request.
Most DBMSs try to work ahead of the stream of FETCH requests to
enqueue results in advance of client requests.

In order to support this prefetching behavior, the DBMS worker
may use the client communications socket as a queue for the tuples
it produces. More complex approaches implement client-side cursor
caching and use the DBMS client to store results likely to be fetched

2.2 DBMS Threads 159

in the near future rather than relying on the OS communications
buffers.

Lock table: The lock table is shared by all DBMS workers and is
used by the Lock Manager (Section 6.3) to implement database lock-
ing semantics. The techniques for sharing the lock table are the same
as those of the buffer pool and these same techniques can be used
to support any other shared data structures needed by the DBMS
implementation.

2.2 DBMS Threads

The previous section provided a simplified description of DBMS process
models. We assumed the availability of high-performance OS threads
and that the DBMS would target only uniprocessor systems. In the
remainder of this section, we relax the first of those assumptions and
describe the impact on DBMS implementations. Multi-processing and
parallelism are discussed in the next section.

2.2.1 DBMS Threads

Most of today’s DBMSs have their roots in research systems from the
1970s and commercialization efforts from the 1980s. Standard OS fea-
tures that we take for granted today were often unavailable to DBMS
developers when the original database systems were built. Efficient,
high-scale OS thread support is perhaps the most significant of these.
It was not until the 1990s that OS threads were widely implemented
and, where they did exist, the implementations varied greatly. Even
today, some OS thread implementations do not scale well enough to
support all DBMS workloads well [31, 48, 93, 94].

Hence for legacy, portability, and scalability reasons, many widely
used DBMS do not depend upon OS threads in their implementa-
tions. Some avoid threads altogether and use the process per DBMS
worker or the process pool model. Those implementing the remaining
process model choice, the thread per DBMS worker model, need a solu-
tion for those OS without good kernel thread implementations. One
means of addressing this problem adopted by several leading DBMSs

160 Process Models

was to implement their own proprietary, lightweight thread package.
These lightweight threads, or DBMS threads, replace the role of the
OS threads described in the previous section. Each DBMS thread is
programmed to manage its own state, to perform all potentially block-
ing operations (e.g., I/Os) via non-blocking, asynchronous interfaces,
and to frequently yield control to a scheduling routine that dispatches
among these tasks.

Lightweight threads are an old idea that is discussed in a retro-
spective sense in [49], and are widely used in event-loop programming
for user interfaces. The concept has been revisited frequently in the
recent OS literature [31, 48, 93, 94]. This architecture provides fast
task-switching and ease of porting, at the expense of replicating a good
deal of OS logic in the DBMS (task-switching, thread state manage-
ment, scheduling, etc.) [86].

2.3 Standard Practice

In leading DBMSs today, we find representatives of all three of the
architectures we introduced in Section 2.1 and some interesting varia-
tions thereof. In this dimension, IBM DB2 is perhaps the most interest-
ing example in that it supports four distinct process models. On OSs
with good thread support, DB2 defaults to thread per DBMS worker
and optionally supports DBMS workers multiplexed over a thread pool.
When running on OSs without scalable thread support, DB2 defaults
to process per DBMS worker and optionally supports DBMS worker
multiplexed over a process pool.

Summarizing the process models supported by IBM DB2, MySQL,
Oracle, PostgreSQL, and Microsoft SQL Server:

Process per DBMS worker:

This is the most straight-forward process model and is still heavily used
today. DB2 defaults to process per DBMS worker on OSs that do not
support high quality, scalable OS threads and thread per DBMS worker
on those that do. This is also the default Oracle process model. Oracle
also supports process pool as described below as an optional model.
PostgreSQL runs the process per DBMS worker model exclusively on
all supported operating systems.

2.3 Standard Practice 161

Thread per DBMS worker: This is an efficient model with two major
variants in use today:

1. OS thread per DBMS worker: IBM DB2 defaults to this
model when running on systems with good OS thread sup-
port and this is the model used by MySQL.

2. DBMS thread per DBMS worker: In this model, DBMS
workers are scheduled by a lightweight thread scheduler on
either OS processes or OS threads. This model avoids any
potential OS scheduler scaling or performance problems at
the expense of high implementation costs, poor development
tools support, and substantial long-standing software main-
tenance costs for the DBMS vendor. There are two main
sub-categories of this model:

a. DBMS threads scheduled on OS process:
A lightweight thread scheduler is hosted by
one or more OS processes. Sybase supports this
model as does Informix. All current generation
systems using this model implement a DBMS
thread scheduler that schedules DBMS workers
over multiple OS processes to exploit multiple
processors. However, not all DBMSs using this
model have implemented thread migration: the
ability to reassign an existing DBMS thread to a
different OS process (e.g., for load balancing).

b. DBMS threads scheduled on OS threads: Microsoft
SQL Server supports this model as a non-default
option (default is DBMS workers multiplezed over
a thread pool described below). This SQL Server
option, called Fibers, is used in some high scale
transaction processing benchmarks but, otherwise,
is in fairly light use.

Process/thread pool:
In this model, DBMS workers are multiplexed over a pool of processes.
As OS thread support has improved, a second variant of this model

162 Process Models

has emerged based upon a thread pool rather than a process pool. In
this latter model, DBMS workers are multiplexed over a pool of OS
threads:

1. DBMS workers multiplezed over a process pool: This model
is much more memory efficient than process per DBMS
worker, is easy to port to OSs without good OS thread sup-
port, and scales very well to large numbers of users. This is
the optional model supported by Oracle and the one they rec-
ommend for systems with large numbers of concurrently con-
nected users. The Oracle default model is process per DBMS
worker. Both of the options supported by Oracle are easy to
support on the vast number of different OSs they target (at
one point Oracle supported over 80 target OSs).

2. DBMS workers multiplexed over a thread pool: Microsoft
SQL Server defaults to this model and over 99% of the SQL
Server installations run this way. To efficiently support tens
of thousands of concurrently connected users, as mentioned
above, SQL Server optionally supports DBMS threads sched-
uled on OS threads.

As we discuss in the next section, most current generation com-
mercial DBMSs support intra-query parallelism: the ability to execute
all or parts of a single query on multiple processors in parallel. For
the purposes of our discussion in this section, intra-query parallelism is
the temporary assignment of multiple DBMS workers to a single SQL
query. The underlying process model is not impacted by this feature
in any way other than that a single client connection may have more
than a single DBMS worker executing on its behalf.

2.4 Admission Control

We close this section with one remaining issue related to supporting
multiple concurrent requests. As the workload in any multi-user system
increases, throughput will increase up to some maximum. Beyond this
point, it will begin to decrease radically as the system starts to thrash.
As with OSs, thrashing is often the result of memory pressure: the

2.4 Admission Control 163

DBMS cannot keep the “working set” of database pages in the buffer
pool, and spends all its time replacing pages. In DBMSs, this is particu-
larly a problem with query processing techniques like sorting and hash
joins that tend to consume large amounts of main memory. In some
cases, DBMS thrashing can also occur due to contention for locks: trans-
actions continually deadlock with each other and need to be rolled back
and restarted [2]. Hence any good multi-user system has an admission
control policy, which does not accept new work unless sufficient DBMS
resources are available. With a good admission controller, a system will
display graceful degradation under overload: transaction latencies will
increase proportionally to the arrival rate, but throughput will remain
at peak.

Admission control for a DBMS can be done in two tiers. First, a
simple admission control policy may be in the dispatcher process to
ensure that the number of client connections is kept below a threshold.
This serves to prevent overconsumption of basic resources like network
connections. In some DBMSs this control is not provided, under the
assumption that it is handled by another tier of a multi-tier system, e.g.,
application servers, transaction processing monitors, or web servers.

The second layer of admission control must be implemented directly
within the core DBMS relational query processor. This execution
admission controller runs after the query is parsed and optimized, and
determines whether a query is postponed, begins execution with fewer
resources, or begins execution without additional constraints. The exe-
cution admission controller is aided by information from the query
optimizer that estimates the resources that a query will require and
the current availability of system resources. In particular, the opti-
mizer’s query plan can specify (1) the disk devices that the query will
access, and an estimate of the number of random and sequential 1/Os
per device, (2) estimates of the CPU load of the query based on the
operators in the query plan and the number of tuples to be processed,
and, most importantly (3) estimates about the memory footprint of
the query data structures, including space for sorting and hashing
large inputs during joins and other query execution tasks. As noted
above, this last metric is often the key for an admission controller,
since memory pressure is typically the main cause of thrashing. Hence

164 Process Models

many DBMSs use memory footprint and the number of active DBMS
workers as the main criterion for admission control.

2.5 Discussion and Additional Material

Process model selection has a substantial influence on DBMS scaling
and portability. As a consequence, three of the more broadly used com-
mercial systems each support more than one process model across their
product line. From an engineering perspective, it would clearly be much
simpler to employ a single process model across all OSs and at all scal-
ing levels. But, due to the vast diversity of usage patterns and the
non-uniformity of the target OSs, each of these three DBMSs have
elected to support multiple models.

Looking forward, there has been significant interest in recent years
in new process models for server systems, motivated by changes in
hardware bottlenecks, and by the scale and variability of workload on
the Internet well [31, 48, 93, 94]. One theme emerging in these designs
is to break down a server system into a set of independently scheduled
“engines,” with messages passed asynchronously and in bulk between
these engines. This is something like the “process pool” model above,
in that worker units are reused across multiple requests. The main
novelty in this recent research is to break the functional granules of
work in a more narrowly scoped task-specific manner than was done
before. This results in many-to-many relationship between workers and
SQL requests — a single query is processed via activities in multiple
workers, and each worker does its own specialized tasks for many SQL
requests. This architecture enables more flexible scheduling choices —
e.g., it allows dynamic trade-offs between allowing a single worker to
complete tasks for many queries (perhaps to improve overall system
throughput), or to allow a query to make progress among multiple
workers (to improve that query’s latency). In some cases this has been
shown to have advantages in processor cache locality, and in the ability
to keep the CPU busy from idling during cache misses in hardware.
Further investigation of this idea in the DBMS context is typified by
the StagedDB research project [35], which is a good starting point for
additional reading.

3

Parallel Architecture: Processes and Memory
Coordination

Parallel hardware is a fact of life in modern servers and comes in a
variety of configurations. In this section, we summarize the standard
DBMS terminology (introduced in [87]), and discuss the process models
and memory coordination issues in each.

3.1 Shared Memory

A shared-memory parallel system (Figure 3.1) is one in which all pro-
cessors can access the same RAM and disk with roughly the same
performance. This architecture is fairly standard today — most server
hardware ships with between two and eight processors. High-end
machines can ship with dozens of processors, but tend to be sold at
a large premium relative to the processing resources provided. Highly
parallel shared-memory machines are one of the last remaining “cash
cows” in the hardware industry, and are used heavily in high-end online
transaction processing applications. The cost of server hardware is usu-
ally dwarfed by costs of administering the systems, so the expense of

165

166 Parallel Architecture: Processes and Memory Coordination

Fig. 3.1 Shared-memory architecture.

buying a smaller number of large, very expensive systems is sometimes
viewed to be an acceptable trade-off.!

Multi-core processors support multiple processing cores on a sin-
gle chip and share some infrastructure such as caches and the memory
bus. This makes them quite similar to a shared-memory architecture in
terms of their programming model. Today, nearly all serious database
deployments involve multiple processors, with each processor having
more than one CPU. DBMS architectures need to be able to fully
exploit this potential parallelism. Fortunately, all three of the DBMS
architectures described in Section 2 run well on modern shared-memory
hardware architectures.

The process model for shared-memory machines follows quite
naturally from the uniprocessor approach. In fact, most database
systems evolved from their initial uniprocessor implementations to
shared-memory implementations. On shared-memory machines, the OS
typically supports the transparent assignment of workers (processes or

I The dominant cost for DBMS customers is typically paying qualified people to adminis-
ter high-end systems. This includes Database Administrators (DBAs) who configure and
maintain the DBMS, and System Administrators who configure and maintain the hard-
ware and operating systems.

3.2 Shared-Nothing 167

threads) across the processors, and the shared data structures continue
to be accessible to all. All three models run well on these systems and
support the execution of multiple, independent SQL requests in paral-
lel. The main challenge is to modify the query execution layers to take
advantage of the ability to parallelize a single query across multiple
CPUs; we defer this to Section 5.

3.2 Shared-Nothing

A shared-nothing parallel system (Figure 3.2) is made up of a cluster
of independent machines that communicate over a high-speed network
interconnect or, increasingly frequently, over commodity networking
components. There is no way for a given system to directly access the
memory or disk of another system.

Shared-nothing systems provide no hardware sharing abstractions,
leaving coordination of the various machines entirely in the hands of the
DBMS. The most common technique employed by DBMSs to support
these clusters is to run their standard process model on each machine,
or node, in the cluster. Each node is capable of accepting client SQL

Fig. 3.2 Shared-nothing architecture.

168 Parallel Architecture: Processes and Memory Coordination

requests, accessing necessary metadata, compiling SQL requests, and
performing data access just as on a single shared memory system as
described above. The main difference is that each system in the cluster
stores only a portion of the data. Rather than running the queries they
receive against their local data only, the requests are sent to other
members of the cluster and all machines involved execute the query in
parallel against the data they are storing. The tables are spread over
multiple systems in the cluster using horizontal data partitioning to
allow each processor to execute independently of the others.

Each tuple in the database is assigned to an individual machine,
and hence each table is sliced “horizontally” and spread across the
machines. Typical data partitioning schemes include hash-based parti-
tioning by tuple attribute, range-based partitioning by tuple attribute,
round-robin, and hybrid which is a combination of both range-based
and hash-based. Each individual machine is responsible for the access,
locking and logging of the data on its local disks. During query execu-
tion, the query optimizer chooses how to horizontally re-partition tables
and intermediate results across the machines to satisfy the query, and it
assigns each machine a logical partition of the work. The query execu-
tors on the various machines ship data requests and tuples to each
other, but do not need to transfer any thread state or other low-level
information. As a result of this value-based partitioning of the database
tuples, minimal coordination is required in these systems. Good par-
titioning of the data is required, however, for good performance. This
places a significant burden on the Database Administrator (DBA) to
lay out tables intelligently, and on the query optimizer to do a good
job partitioning the workload.

This simple partitioning solution does not handle all issues in the
DBMS. For example, explicit cross-processor coordination must take
place to handle transaction completion, provide load balancing, and
support certain maintenance tasks. For example, the processors must
exchange explicit control messages for issues like distributed deadlock
detection and two-phase commit [30]. This requires additional logic,
and can be a performance bottleneck if not done carefully.

Also, partial failure is a possibility that has to be managed in a
shared-nothing system. In a shared-memory system, the failure of a

3.2 Shared-Nothing 169

processor typically results in shutdown of the entire machine, and hence
the entire DBMS. In a shared-nothing system, the failure of a single
node will not necessarily affect other nodes in the cluster. But it will
certainly affect the overall behavior of the DBMS, since the failed node
hosts some fraction of the data in the database. There are at least
three possible approaches in this scenario. The first is to bring down
all nodes if any node fails; this in essence emulates what would hap-
pen in a shared-memory system. The second approach, which Informix
dubbed “Data Skip,” allows queries to be executed on any nodes that
are up, “skipping” the data on the failed node. This is useful in sce-
narios where data availability is more important than completeness of
results. But best-effort results do not have well-defined semantics, and
for many workloads this is not a useful choice — particularly because
the DBMS is often used as the “repository of record” in a multi-tier
system, and availability-vs-consistency trade-offs tend to get done in a
higher tier (often in an application server). The third approach is to
employ redundancy schemes ranging from full database failover (requir-
ing double the number of machines and software licenses) to fine-grain
redundancy like chained declustering [43]. In this latter technique, tuple
copies are spread across multiple nodes in the cluster. The advantage
of chained declustering over simpler schemes is that (a) it requires
fewer machines to be deployed to guarantee availability than naive
schemes, and (b) when a node does fails, the system load is distributed
fairly evenly over the remaining nodes: the n — 1 remaining nodes each
do n/(n — 1) of the original work, and this form of linear degrada-
tion in performance continues as nodes fail. In practice, most current
generation commercial systems are somewhere in the middle, nei-
ther as coarse-grained as full database redundancy nor as fine-grained
as chained declustering

The shared-nothing architecture is fairly common today, and has
unbeatable scalability and cost characteristics. It is mostly used at the
extreme high end, typically for decision-support applications and data
warehouses. In an interesting combination of hardware architectures,
a shared-nothing cluster is often made up of many nodes each of which
is a shared-memory multi-processors.

170 Parallel Architecture: Processes and Memory Coordination

3.3 Shared-Disk

A shared-disk parallel system (Figure 3.3) is one in which all processors
can access the disks with about the same performance, but are unable
to access each other’s RAM. This architecture is quite common with
two prominent examples being Oracle RAC and DB2 for zSeries SYS-
PLEX. Shared-disk has become more common in recent years with the
increasing popularity of Storage Area Networks (SAN). A SAN allows
one or more logical disks to be mounted by one or more host systems
making it easy to create shared disk configurations.

One potential advantage of shared-disk over shared-nothing systems
is their lower cost of administration. DBAs of shared-disk systems do
not have to consider partitioning tables across machines in order to
achieve parallelism. But very large databases still typically do require
partitioning so, at this scale, the difference becomes less pronounced.
Another compelling feature of the shared-disk architecture is that the
failure of a single DBMS processing node does not affect the other
nodes’ ability to access the entire database. This is in contrast to both
shared-memory systems that fail as a unit, and shared-nothing sys-
tems that lose access to at least some data upon a node failure (unless
some alternative data redundancy scheme is used). However, even with
these advantages, shared-disk systems are still vulnerable to some single

Fig. 3.3 Shared-disk architecture.

3.4 NUMA 171

points of failure. If the data is damaged or otherwise corrupted by hard-
ware or software failure before reaching the storage subsystem, then
all nodes in the system will have access to only this corrupt page. If
the storage subsystem is using RAID or other data redundancy tech-
niques, the corrupt page will be redundantly stored but still corrupt in
all copies.

Because no partitioning of the data is required in a shared-disk sys-
tem, data can be copied into RAM and modified on multiple machines.
Unlike shared-memory systems, there is no natural memory location to
coordinate this sharing of the data — each machine has its own local
memory for locks and buffer pool pages. Hence explicit coordination of
data sharing across the machines is needed. Shared-disk systems depend
upon a distributed lock manager facility, and a cache-coherency pro-
tocol for managing the distributed buffer pools [8]. These are complex
software components, and can be bottlenecks for workloads with sig-
nificant contention. Some systems such as the IBM zSeries SYSPLEX
implement the lock manager in a hardware subsystem.

3.4 NUMA

Non-Uniform Memory Access (NUMA) systems provide a shared-
memory programming model over a cluster of systems with independent
memories. Each system in the cluster can access its own local memory
quickly, whereas remote memory access across the high-speed cluster
interconnect is somewhat delayed. The architecture name comes from
this non-uniformity of memory access times.

NUMA hardware architectures are an interesting middle ground
between shared-nothing and shared-memory systems. They are much
easier to program than shared-nothing clusters, and also scale to more
processors than shared-memory systems by avoiding shared points of
contention such as shared-memory buses.

NUMA clusters have not been broadly successful commercially
but one area where NUMA design concepts have been adopted is
shared memory multi-processors (Section 3.1). As shared memory
multi-processors have scaled up to larger numbers of processors, they
have shown increasing non-uniformity in their memory architectures.

172 Parallel Architecture: Processes and Memory Coordination

Often the memory of large shared memory multi-processors is divided
into sections and each section is associated with a small subset of the
processors in the system. Each combined subset of memory and CPUs
is often referred to as a pod. Each processor can access local pod mem-
ory slightly faster than remote pod memory. This use of the NUMA
design pattern has allowed shared memory systems to scale to very
large numbers of processors. As a consequence, NUMA shared memory
multi-processors are now very common whereas NUMA clusters have
never achieved any significant market share.

One way that DBMSs can run on NUMA shared memory systems is
by ignoring the non-uniformity of memory access. This works accept-
ably provided the non-uniformity is minor. When the ratio of near-
memory to far-memory access times rises above the 1.5:1 to 2:1 range,
the DBMS needs to employ optimizations to avoid serious memory
access bottlenecks. These optimizations come in a variety of forms, but
all follow the same basic approach: (a) when allocating memory for use
by a processor, use memory local to that processor (avoid use of far
memory) and (b) ensure that a given DBMS worker is always sched-
uled if possible on the same hardware processor it was on previously.
This combination allows DBMS workloads to run well on high scale,
shared memory systems having some non-uniformity of memory access
times.

Although NUMA clusters have all but disappeared, the pro-
gramming model and optimization techniques remain important to
current generation DBMS systems since many high-scale shared mem-
ory systems have significant non-uniformity in their memory access
performance.

3.5 DBMS Threads and Multi-processors

One potential problem that arises from implementing thread per DBMS
worker using DBMS threads becomes immediately apparent when we
remove the last of our two simplifying assumptions from Section 2.1,
that of uniprocessor hardware. The natural implementation of the
lightweight DBMS thread package described in Section 2.2.1 is one
where all threads run within a single OS process. Unfortunately, a

3.6 Standard Practice 173

single process can only be executed on one processor at a time. So,
on a multi-processor system, the DBMS would only be using a sin-
gle processor at a time and would leave the rest of the system idle.
The early Sybase SQL Server architecture suffered this limitation. As
shared memory multi-processors became more popular in the early
90s, Sybase quickly made architectural changes to exploit multiple
OS processes.

When running DBMS threads within multiple processes, there will
be times when one process has the bulk of the work and other pro-
cesses (and therefore processors) are idle. To make this model work well
under these circumstances, DBMSs must implement thread migration
between processes. Informix did an excellent job of this starting with
the Version 6.0 release.

When mapping DBMS threads to multiple OS processes, decisions
need to be made about how many OS processes to employ, how to
allocate the DBMS threads to OS threads, and how to distribute across
multiple OS processes. A good rule of thumb is to have one process per
physical processor. This maximizes the physical parallelism inherent in
the hardware while minimizing the per-process memory overhead.

3.6 Standard Practice

With respect to support for parallelism, the trend is similar to that
of the last section: most of the major DBMSs support multiple mod-
els of parallelism. Due to the commercial popularity of shared-memory
systems (SMPs, multi-core systems and combinations of both), shared-
memory parallelism is well-supported by all major DBMS vendors.
Where we start to see divergence in support is in multi-node cluster
parallelism where the broad design choices are shared-disk and shared-
nothing.

® Shared-Memory: All major commercial DBMS providers
support shared memory parallelism including: IBM DB2,
Oracle, and Microsoft SQL Server.

® Shared-Nothing: This model is supported by IBM DB2,
Informix, Tandem, and NCR Teradata among others; Green-

174 Parallel Architecture: Processes and Memory Coordination

plum offers a custom version of PostgreSQL that supports
shared-nothing parallelism.

® Shared-Disk: This model is supported by Oracle RAC, RDB
(acquired by Oracle from Digital Equipment Corp.), and
IBM DB2 for zSeries amongst others.

IBM sells multiple different DBMS products, and chose to imple-
ment shared disk support in some and shared nothing in others. Thus
far, none of the leading commercial systems have support for both
shared-nothing and shared-disk in a single code base; Microsoft SQL
Server has implemented neither.

3.7 Discussion and Additional Material

The designs above represent a selection of hardware/software archi-
tecture models used in a variety of server systems. While they were
largely pioneered in DBMSs, these ideas are gaining increasing currency
in other data-intensive domains, including lower-level programmable
data-processing backends like Map-Reduce [12] that are increasing
users for a variety of custom data analysis tasks. However, even as
these ideas are influencing computing more broadly, new questions are
arising in the design of parallelism for database systems.

One key challenge for parallel software architectures in the next
decade arises from the desire to exploit the new generation of “many-
core” architectures that are coming from the processor vendors. These
devices will introduce a new hardware design point, with dozens, hun-
dreds or even thousands of processing units on a single chip, com-
municating via high-speed on-chip networks, but retaining many of the
existing bottlenecks with respect to accessing off-chip memory and disk.
This will result in new imbalances and bottlenecks in the memory path
between disk and processors, which will almost certainly require DBMS
architectures to be re-examined to meet the performance potential of
the hardware.

A somewhat related architectural shift is being foreseen on a more
“macro” scale, in the realm of services-oriented computing. Here, the
idea is that large datacenters with tens of thousands of computers will
host processing (hardware and software) for users. At this scale, appli-

3.7 Discussion and Additional Material 175

cation and server administration is only affordable if highly automated.
No administrative task can scale with the number of servers. And,
since less reliable commodity servers are typically used and failures are
more common, recovery from common failures needs to be fully auto-
mated. In services at scale there will be disk failures every day and
several server failures each week. In this environment, administrative
database backup is typically replaced by redundant online copies of
the entire database maintained on different servers stored on different
disks. Depending upon the value of the data, the redundant copy or
copies may even be stored in a different datacenter. Automated offline
backup may still be employed to recover from application, administra-
tive, or user error. However, recovery from most common errors and
failures is a rapid failover to a redundant online copy. Redundancy can
be achieved in a number of ways: (a) replication at the data storage level
(Storage-Area Networks), (b) data replication at the database storage
engine level (as discussed in Section 7.4), (c) redundant execution of
queries by the query processor (Section 6), or (d) redundant database
requests auto-generated at the client software level (e.g., by web servers
or application servers).

At a yet more decoupled level, it is quite common in practice for
multiple servers with DBMS functionality to be deployed in tiers,
in an effort to minimize the I/O request rate to the “DBMS of
record.” These schemes include various forms of middle-tier database
caches for SQL queries, including specialized main-memory databases
like Oracle TimesTen, and more traditional databases configured
to serve this purpose (e.g., [55]). Higher up in the deployment
stack, many object-oriented application-server architectures, support-
ing programming models like Enterprise Java Beans, can be configured
to do transactional caching of application objects in concert with a
DBMS. However, the selection, setup and management of these vari-
ous schemes remains non-standard and complex, and elegant univer-
sally agreed-upon models have remained elusive.

4

Relational Query Processor

The previous sections stressed the macro-architectural design issues in
a DBMS. We now begin a sequence of sections discussing design at a
somewhat finer grain, addressing each of the main DBMS components
in turn. Following our discussion in Section 1.1, we start at the top of
the system with the Query Processor, and in subsequent sections move
down into storage management, transactions, and utilities.

A relational query processor takes a declarative SQL statement,
validates it, optimizes it into a procedural dataflow execution plan,
and (subject to admission control) executes that dataflow program on
behalf of a client program. The client program then fetches (“pulls”) the
result tuples, typically one at a time or in small batches. The major
components of a relational query processor are shown in Figure 1.1.
In this section, we concern ourselves with both the query processor
and some non-transactional aspects of the storage manager’s access
methods. In general, relational query processing can be viewed as
a single-user, single-threaded task. Concurrency control is managed
transparently by lower layers of the system, as described in Section 5.
The only exception to this rule is when the DBMS must explicitly
“pin” and “unpin” buffer pool pages while operating on them so that

176

4.1 Query Parsing and Authorization 177

they remain resident in memory during brief, critical operations as we
discuss in Section 4.4.5.

In this section we focus on the common-case SQL commands:
Data Manipulation Language (DML) statements including SELECT,
INSERT, UPDATE, and DELETE. Data Definition Language (DDL)
statements such as CREATE TABLE and CREATE INDEX are typi-
cally not processed by the query optimizer. These statements are usu-
ally implemented procedurally in static DBMS logic through explicit
calls to the storage engine and catalog manager (described in Sec-
tion 6.1). Some products have begun optimizing a small subset of DDL
statements as well and we expect this trend to continue.

4.1 Query Parsing and Authorization

Given an SQL statement, the main tasks for the SQL Parser are to
(1) check that the query is correctly specified, (2) resolve names and
references, (3) convert the query into the internal format used by the
optimizer, and (4) verify that the user is authorized to execute the
query. Some DBMSs defer some or all security checking to execution
time but, even in these systems, the parser is still responsible for gath-
ering the data needed for the execution-time security check.

Given an SQL query, the parser first considers each of the table
references in the FROM clause. It canonicalizes table names into a fully
qualified name of the form server.database.schema.table. This is also
called a four part name. Systems that do not support queries spanning
multiple servers need only canonicalize to database.schema.table, and
systems that support only one database per DBMS can canonicalize
to just schema.table. This canonicalization is required since users have
context-dependent defaults that allow single part names to be used in
the query specification. Some systems support multiple names for a
table, called table aliases, and these must be substituted with the fully
qualified table name as well.

After canonicalizing the table names, the query processor then
invokes the catalog manager to check that the table is registered in the
system catalog. It may also cache metadata about the table in inter-
nal query data structures during this step. Based on information about

178 Relational Query Processor

the table, it then uses the catalog to ensure that attribute references
are correct. The data types of attributes are used to drive the dis-
ambiguation logic for overloaded functional expressions, comparison
operators, and constant expressions. For example, consider the expres-
sion (EMP.salary * 1.15) < 75000. The code for the multiplication
function and comparison operator, and the assumed data type and
internal format of the strings “1.15” and “75000,” will depend upon
the data type of the EMP.salary attribute. This data type may be
an integer, a floating-point number, or a “money” value. Additional
standard SQL syntax checks are also applied, including the consistent
usage of tuple variables, the compatibility of tables combined via set
operators (UNION/INTERSECT/EXCEPT), the usage of attributes
in the SELECT list of aggregation queries, the nesting of subqueries,
and so on.

If the query parses successfully, the next phase is authoriza-
tion checking to ensure that the user has appropriate permissions
(SELECT/DELETE/INSERT/UPDATE) on the tables, user defined
functions, or other objects referenced in the query. Some systems per-
form full authorization checking during the statement parse phase.
This, however, is not always possible. Systems that support row-level
security, for example, cannot do full security checking until execution
time because the security checks can be data-value dependent. Even
when authorization could theoretically be statically validated at com-
pilation time, deferring some of this work to query plan execution time
has advantages. Query plans that defer security checking to execution
time can be shared between users and do not require recompilation
when security changes. As a consequence, some portion of security val-
idation is typically deferred to query plan execution.

It is possible to constraint-check constant expressions during compi-
lation as well. For example, an UPDATE command may have a clause
of the form SET EMP.salary = -1. If an integrity constraint specifies
positive values for salaries, the query need not even be executed. Defer-
ring this work to execution time, however, is quite common.

If a query parses and passes validation, then the internal format
of the query is passed on to the query rewrite module for further
processing.

4.2 Query Rewrite 179

4.2 Query Rewrite

The query rewrite module, or rewriter, is responsible for simplifying
and normalizing the query without changing its semantics. It can rely
only on the query and on metadata in the catalog, and cannot access
data in the tables. Although we speak of “rewriting” the query, most
rewriters actually operate on an internal representation of the query,
rather than on the original SQL statement text. The query rewrite
module usually outputs an internal representation of the query in the
same internal format that it accepted at its input.

The rewriter in many commercial systems is a logical component
whose actual implementation is in either the later phases of query pars-
ing or the early phases of query optimization. In DB2, for example, the
rewriter is a stand-alone component, whereas in SQL Server the query
rewriting is done as an early phase of the Query Optimizer. Nonethe-
less, it is useful to consider the rewriter separately, even if the explicit
architectural boundary does not exist in all systems.

The rewriter’s main responsibilities are:

o View expansion: Handling views is the rewriter’s main tra-
ditional role. For each view reference that appears in the
FROM clause, the rewriter retrieves the view definition from
the catalog manager. It then rewrites the query to (1) replace
that view with the tables and predicates referenced by the
view and (2) substitute any references to that view with col-
umn references to tables in the view. This process is applied
recursively until the query is expressed exclusively over tables
and includes no views. This view expansion technique, first
proposed for the set-based QUEL language in INGRES
[85], requires some care in SQL to correctly handle dupli-
cate elimination, nested queries, NULLs, and other tricky
details [68].

e (Constant arithmetic evaluation: Query rewrite can simplify
constant arithmetic expressions: e.g., R.x < 10+2+R.y is
rewritten as R.x < 12+R.y.

® Logical rewriting of predicates: Logical rewrites are applied
based on the predicates and constants in the WHERE clause.

180 Relational Query Processor

Simple Boolean logic is often applied to improve the match
between expressions and the capabilities of index-based
access methods. A predicate such as NOT Emp.Salary >
1000000, for example, may be rewritten as Emp.Salary <=
1000000. These logical rewrites can even short-circuit
query execution, via simple satisfiability tests. The expres-
sion Emp.salary < 75000 AND Emp.salary > 1000000, for
example, can be replaced with FALSE. This might allow the
system to return an empty query result without accessing
the database. Unsatisfiable queries may seem implausible,
but recall that predicates may be “hidden” inside view def-
initions and unknown to the writer of the outer query. The
query above, for example, may have resulted from a query for
underpaid employees over a view called “Executives.” Unsat-
isfiable predicates also form the basis for “partition elimina-
tion” in parallel installations of Microsoft SQL Server: when
a relation is horizontally range partitioned across disk vol-
umes via range predicates, the query need not be run on
a volume if its range-partition predicate is unsatisfiable in
conjunction with the query predicates.

An additional, important logical rewrite uses the transi-
tivity of predicates to induce new predicates R.x < 10 AND
R.x = 8.y, for example, suggests adding the additional pred-
icate “AND S.y < 10.” Adding these transitive predicates
increases the ability of the optimizer to choose plans that
filter data early in execution, especially through the use of
index-based access methods.

® Semantic optimization: In many cases, integrity constraints
on the schema are stored in the catalog, and can be used
to help rewrite some queries. An important example of such
optimization is redundant join elimination. This arises when
a foreign key constraint binds a column of one table (e.g.,
Emp.deptno) to another table (Dept). Given such a foreign
key constraint, it is known that there is exactly one Dept for
each Emp and that the Emp tuple could not exist without a
corresponding Dept tuple (the parent).

4.2 Query Rewrite 181

Consider a query that joins the two tables but does not
make use of the Dept columns:

SELECT Emp.name, Emp.salary
FROM Emp, Dept
WHERE Emp.deptno = Dept.dno

Such queries can be rewritten to remove the Dept table
(assuming Emp.deptno is constrained to be non-null), and
hence the join. Again, such seemingly implausible scenar-
ios often arise naturally via views. A user, for example,
may submit a query about employee attributes over a view
EMPDEPT that joins those two tables. Database applica-
tions such as Siebel use very wide tables and, where the
underlying database does not support tables of sufficient
width, they use multiple tables with a view over these tables.
Without redundant join elimination, this view-based wide-
table implementation would perform very poorly.

Semantic optimizations can also circumvent query execu-
tion entirely when constraints on the tables are incompatible
with query predicates.

Subquery flattening and other heuristic rewrites: Query opti-
mizers are among the most complex components in current-
generation commercial DBMSs. To keep that complexity
bounded, most optimizers operate on individual SELECT-
FROM-WHERE query blocks in isolation and do not opti-
mize across blocks. So rather than further complicate query
optimizers, many systems rewrite queries into a form better
suited for the optimizer. This transformation is sometimes
called query normalization. One example class of normal-
izations is to rewrite semantically equivalent queries into
a canonical form, in an effort to ensure that semantically
equivalent queries will be optimized to produce the same
query plan. Another important heuristic is to flatten nested
queries when possible to maximally expose opportunities for
the query optimizer’s single-block optimizations. This turns
out to be very tricky in some cases in SQL, due to issues

182 Relational Query Processor

like duplicate semantics, subqueries, NULLs, and correla-
tion [68, 80]. In the early days, subquery flattening was a
purely heuristic rewrite but some products are now basing
the rewrite decision on cost-based analysis. Other rewrites
are possible across query blocks as well. Predicate transi-
tivity, for example, can allow predicates to be copied across
subqueries [52]. Flattening correlated subqueries is especially
important to achieve good performance in parallel archi-
tectures: correlated subqueries result in “nested-loop” style
comparisons across query blocks, which serializes the exe-
cution of the subqueries despite the availability of parallel
resources.

4.3 Query Optimizer

The query optimizer’s job is to transform an internal query represen-
tation into an efficient query plan for executing the query (Figure 4.1).
A query plan can be thought of as a dataflow diagram that pipes table
data through a graph of query operators. In many systems, queries
are first broken into SELECT-FROM-WHERE query blocks. The opti-
mization of each individual query block is then done using techniques
similar to those described in the famous paper by Selinger et al. on the
System R optimizer [79]. On completion, a few operators are typically
added to the top of each query block as post-processing to compute
GROUP BY, ORDER BY, HAVING and DISTINCT clauses if they
exist. The various blocks are then stitched together in a straightforward
fashion.

The resulting query plan can be represented in a number of ways.
The original System R prototype compiled query plans into machine
code, whereas the early INGRES prototype generated an interpretable
query plan. Query interpretation was listed as a “mistake” by the
INGRES authors in their retrospective paper in the early 1980’s [85],
but Moore’s law and software engineering have vindicated the INGRES
decision to some degree. Ironically, compiling to machine code is listed
by some researchers on the System R project as a mistake. When
the System R code base was made into a commercial DBMS system

4.3 Query Optimizer 183

Sort (AvgSal)

Group By/AVG

EELECT D.DeptName,
AVG(E.Salary) AS AwgSal
FROM EMP E, DEFT D
WHERE E.Dno = D.DeptID
CEROUP BY DeptName
ORDER BY AwgSal DESC
Sort{D.DeptName)

X

IndexJoin

IndexScan
DEPT

HeapScan
EMP

Fig. 4.1 A Query plan. Only the main physical operators are shown.

(SQL/DS) the development team’s first change was to replace the
machine code executor with an interpreter.

Toenable cross-platform portability, every major DBMS now compiles
queries into some kind of interpretable data structure. The only difference
between them is the intermediate form’s level of abstraction. The query
plan in some systems is a very lightweight object, not unlike a relational
algebraic expression, that is annotated with the names of access methods,
join algorithms, and so on. Other systems use a lower-level language of
“op-codes,” closer in spirit to Java byte codes than to relational algebraic
expressions. For simplicity in our discussion, we focus on algebra-like
query representations in the remainder of this paper.

184 Relational Query Processor

Although Selinger’s paper is widely considered the “bible” of query
optimization, it was preliminary research. All systems extend this
work significantly in a number of dimensions. Among the main exten-
sions are:

® Plan space: The System R optimizer constrained its plan
space somewhat by focusing only on “left-deep” query plans
(where the right-hand input to a join must be a base table),
and by “postponing Cartesian products” (ensuring that
Cartesian products appear only after all joins in a dataflow).
In commercial systems today, it is well known that “bushy”
trees (with nested right-hand inputs) and early use of Carte-
sian products can be useful in some cases. Hence both options
are considered under some circumstances by most systems.
o Selectivity estimation: The selectivity estimation techniques
in the Selinger paper are based on simple table and index car-
dinalities and are naive by the standards of current genera-
tion systems. Most systems today analyze and summarize the
distributions of values in attributes via histograms and other
summary statistics. Since this involves visiting every value
in each column, it can be relatively expensive. Consequently,
some systems use sampling techniques to get an estimation of
the distribution without the expense of an exhaustive scan.
Selectivity estimates for joins of base tables can be
made by “joining” the histograms on the join columns.
To move beyond single-column histograms, more sophisti-
cated schemes to incorporate issues like dependencies among
columns have recently been proposed [16, 69]. These inno-
vations have begun to show up in commercial products, but
considerable progress remains to be made. One reason for
the slow adoption of these schemes was a longstanding flaw
in many industry benchmarks: the data generators in bench-
marks like TPC-D and TPC-H generated statistically inde-
pendent values in columns, and hence did not encourage the
adoption of technology to handle “real” data distributions.
This benchmark flaw has been addressed in the TPC-DS

4.3 Query Optimizer 185

benchmark [70]. Despite slow adoption rates, the benefits of
improved selectivity estimation are widely recognized. loan-
nidis and Christodoulakis noted that errors in selectivity
early in optimization propagate multiplicatively up the plan
tree and result in terrible subsequent estimations [45].
Search Algorithms: Some commercial systems, notably those
of Microsoft and Tandem, discard Selinger’s dynamic pro-
gramming optimization approach in favor of a goal-directed
“top-down” search scheme based on the techniques used in
Cascades [25]. Top-down search can in some instances lower
the number of plans considered by an optimizer [82], but can
also have the negative effect of increasing optimizer memory
consumption. If practical success is an indication of quality,
then the choice between top-down search and dynamic pro-
gramming is irrelevant. Each has been shown to work well in
state-of-the-art optimizers, and both still have runtimes and
memory requirements that are, unfortunately, exponential in
the number of tables in a query.

Some systems fall back on heuristic search schemes for
queries with “too many” tables. Although the research
literature of randomized query optimization heuristics is
interesting [5, 18, 44, 84], the heuristics used in commer-
cial systems tend to be proprietary, and apparently do not
resemble the randomized query optimization literature. An
educational exercise is to examine the query “optimizer” of
the open-source MySQL engine, which at last check was
entirely heuristic and relied mostly on exploiting indexes and
key/foreign-key constraints. This is reminiscent of early (and
infamous) versions of Oracle. In some systems, a query with
too many tables in the FROM clause can only be executed
if the user explicitly directs the optimizer how to choose a
plan (via so-called optimizer “hints” embedded in the SQL).
Parallelism: Every major commercial DBMS today has some
support for parallel processing. Most also support “intra-
query” parallelism: the ability to speed up a single query via
the use of multiple processors. The query optimizer needs

186 Relational Query Processor

to get involved in determining how to schedule operators —
and parallelized operators — across multiple CPUs, and (in
the shared-nothing or shared-disk cases) across multiple sep-
arate computers. Hong and Stonebraker [42] chose to avoid
the parallel optimization complexity problem and use two
phases: first a traditional single-system optimizer is invoked
to pick the best single-system plan, and then this plan is
scheduled across multiple processors or machines. Research
has been published on this second optimization phase [19, 21]
although it is not clear to what extent these results have
influenced current practice.

Some commercial systems implement the two-phase
approach described above. Others attempt to model the clus-
ter network topology and data distribution across the cluster
to produce an optimal plan in a single phase. While the
single pass approach can be shown to produce better plans
under some circumstances, it’s not clear whether the addi-
tional query plan quality possible using a single phase
approach justifies the additional optimizer complexity. Con-
sequently, many current implementations still favor the two-
phase approach. Currently this area seems to be more like
art than science. The Oracle OPS (now called RAC) shared-
disk cluster uses a two phase optimizer. IBM DB2 Parallel
Edition (now called DB2 Database Partitioning Feature) was
first implemented using a two-phase optimizer but has since
been evolving toward a single-phase implementation.

e Auto-Tuning: A variety of ongoing industrial research efforts
attempt to improve the ability of a DBMS to make tuning
decisions automatically. Some of these techniques are based
on collecting a query workload, and then using the optimizer
to find the plan costs via various “what-if” analyses. What
if, for example, other indexes had existed or the data had
been laid out differently? An optimizer needs to be adjusted
somewhat to support this activity efficiently, as described
by Chaudhuri and Narasayya [12]. The Learning Optimizer
(LEO) work of Markl et al. [57] is also in this vein.

4.3 Query Optimizer 187

4.3.1 A Note on Query Compilation and Recompilation

SQL supports the ability to “prepare” a query: to pass it through
the parser, rewriter and, optimizer, store the resulting query execu-
tion plan, and use it in subsequent “execute” statements. This is even
possible for dynamic queries (e.g., from web forms) that have program
variables in the place of query constants. The only wrinkle is that
during selectivity estimation, the variables that are provided by the
forms are assumed by the optimizer to take on “typical” values. When
non-representative “typical” values are chosen, extremely poor query
execution plans can result. Query preparation is especially useful for
form-driven, canned queries over fairly predictable data: the query is
prepared when the application is written, and when the application
goes live, users do not experience the overhead of parsing, rewriting,
and optimizing.

Although preparing a query when an application is written can
improve performance, this is a very restrictive application model.
Many application programmers, as well as toolkits like Ruby on Rails,
build SQL statements dynamically during program execution, so pre-
compiling is not an option. Because this is so common, DBMSs store
these dynamic query execution plans in the query plan cache. If the
same (or very similar) statement is subsequently submitted, the cached
version is used. This technique approximates the performance of pre-
compiled static SQL without the application model restrictions and is
heavily used.

As a database changes over time, it often becomes necessary to re-
optimize prepared plans. At a minimum, when an index is dropped,
any plan that used that index must be removed from the stored plan
cache, so that a new plan will be chosen upon the next invocation.

Other decisions about re-optimizing plans are more subtle, and
expose philosophical distinctions among the vendors. Some vendors
(e.g., IBM) work very hard to provide predictable performance across
invocations at the expense of optimal performance per invocation. As a
result, they will not re-optimize a plan unless it will no longer execute,
as in the case of dropped indexes. Other vendors (e.g., Microsoft) work
very hard to make their systems self-tuning, and will re-optimize plans

188 Relational Query Processor

more aggressively. For example, if the cardinality of a table changes
significantly, recompilation will be triggered in SQL Server since this
change may influence the optimal use of indexes and join orders. A self-
tuning system is arguably less predictable, but more efficient in a
dynamic environment.

This philosophical distinction arises from differences in the histor-
ical customer base for these products. IBM traditionally focused on
high-end customers with skilled DBAs and application programmers.
In these kinds of high-budget IT shops, predictable performance from
the database is of paramount importance. After spending months tun-
ing the database design and settings, the DBA does not want the opti-
mizer to change it unpredictably. By contrast, Microsoft strategically
entered the database market at the low end. As a result, their customers
tend to have lower IT budgets and expertise, and want the DBMS to
“tune itself” as much as possible.

Over time these companies’ business strategies and customer bases
have converged so that they compete directly, and their approaches are
evolving together. Microsoft has high-scale enterprise customers that
want complete control and query plan stability. And IBM has some
customers without DBA resources needing full auto-administration.

4.4 Query Executor

Thequeryexecutoroperatesonafully-specifiedqueryplan. Thisistypically
a directed dataflow graph that connects operators that encapsulate
base-tableaccessand variousquery executionalgorithms. Insomesystems,
this dataflow graph is already compiled into low-level op-codes by the
optimizer.Inthiscase,thequeryexecutorisbasically aruntimeinterpreter.
In other systems, the query executor receives a representation of the
dataflow graph and recursively invokes procedures for the operators based
on the graph layout. We focus on this latter case, as the op-code approach
essentially compiles the logic we describe here into a program.

Most modern query executors employ the iterator model that
was used in the earliest relational systems. Iterators are most simply
described in an object-oriented fashion. Figure 4.2 shows a simplified
definition for an iterator . Each iterator specifies its inputs that define

4.4 Query Executor 189

class iterator ({
iterator &inputs|[];
void init () ;
tuple get _next();
void close() ;

Fig. 4.2 Iterator superclass pseudocode.

the edges in the dataflow graph. All operators in a query plan —
the nodes in the dataflow graph — are implemented as subclasses
of the iterator class. The set of subclasses in a typical system might
include filescan, indexscan, sort, nested-loops join, merge-join, hash-
join, duplicate-elimination, and grouped-aggregation. An important
feature of the iterator model is that any subclass of iterator can be
used as input to any other. Hence each iterator’s logic is independent
of its children and parents in the graph, and special-case code for par-
ticular combinations of iterators is not needed.

Graefe provides more details on iterators in his query execution
survey [24]. The interested reader is also encouraged to examine the
open-source PostgreSQL code base. PostgreSQL utilizes moderately
sophisticated implementations of the iterators for most standard query
execution algorithms.

4.4.1 Iterator Discussion

An important property of iterators is that they couple dataflow with
control flow. The get next() call is a standard procedure call that
returns a tuple reference to the caller via the call stack. Hence a tuple
is returned to a parent in the graph exactly when control is returned.
This implies that only a single DBMS thread is needed to execute an
entire query graph, and queues or rate-matching between iterators are
not needed. This makes relational query executors clean to implement
and easy to debug, and is a contrast with dataflow architectures in
other environments. Networks, for example, rely on various protocols
for queuing and feedback between concurrent producers and consumers.

The single-threaded iterator architecture is also quite efficient for
single-system (non-cluster) query execution. In most database applica-

190 Relational Query Processor

tions, the performance metric of merit is time to query completion, but
other optimization goals are possible. For example, maximizing DBMS
throughput is another reasonable goal. Another that is popular with
interactive applications is time to first row. In a single-processor envi-
ronment, time to completion for a given query plan is achieved when
resources are fully utilized. In an iterator model, since one of the iter-
ators is always active, resource utilization is maximized.!

As we mentioned previously, most modern DBMSs support paral-
lel query execution. Fortunately, this support can be provided with
essentially no changes to the iterator model or query execution archi-
tecture. Parallelism and network communications can be encapsulated
within special ezchange iterators, as described by Graefe [23]; these also
implement network-style “pushing” of data in a manner that is invisible
to the DBMS iterators, which retain a “pull”’-style get next() APL
Some systems make the push logic explicit in their query execution
model as well.

4.4.2 Where’s the Data?

Our discussion of iterators has conveniently sidestepped any questions
of memory allocation for in-flight data. We neither specified how tuples
were stored in memory, nor how they were passed between iterators. In
practice, each iterator is pre-allocated a fixed number of tuple descrip-
tors, one for each of its inputs, and one for its output. A tuple descriptor
is typically an array of column references, where each column reference
is composed of a reference to a tuple somewhere else in memory, and
a column offset in that tuple. The basic iterator superclass logic never
allocates memory dynamically. This raises the question of where the
actual tuples being referenced are stored in memory.

There are two possible answers to this question. The first is that
tuples reside in pages in the buffer pool. We call these BP-tuples. If an
iterator constructs a tuple descriptor that references a BP-tuple, it must

1 This assumes that iterators never block waiting for 1/O requests. In the cases where
prefetching is ineffective, inefficiencies in the iterator model can occur due to blocking on
I/0. This is typically not a problem in single-system databases, but it arises frequently
when executing queries over remote tables or in multi-system clusters [23, 56].

4.4 Query Executor 191

increment the pin count of the tuple’s page — a count of the number
of active references to tuples on that page. It decrements the pin count
when the tuple descriptor is cleared. The second possibility is that an
iterator implementation may allocate space for a tuple on the memory
heap. We call this an M-tuple. An iterator may construct an M-tuple
by copying columns from the buffer pool (the copy bracketed by a
pin increment/decrement pair), and/or by evaluating expressions (e.g.,
arithmetic expressions like “EMP.sal % 0.1”) in the query specification.

One general approach is to always copy data out of the buffer pool
immediately into M-tuples. This design uses M-tuples as the only in-
flight tuple structure and simplifies the executor code. The design also
circumvents bugs that can result from having buffer-pool pin and unpin
calls separated by long periods of execution (and many lines of code).
One common bug of this sort is to forget to unpin the page altogether
(a “buffer leak”). Unfortunately, as noted in Section 4.2, exclusive use
of M-tuples can be a major performance problem, since memory copies
are often a serious bottleneck in high-performance systems.

On the other hand, constructing an M-tuple makes sense in some
cases. As long as a BP-tuple is directly referenced by an iterator, the
page on which the BP-tuple resides must remain pinned in the buffer
pool. This consumes a page worth of buffer pool memory, and ties the
hands of the buffer replacement policy. Copying a tuple out of the buffer
pool can be beneficial if the tuple will continue to be referenced for a
long period of time.

The upshot of this discussion is that the most efficient approach
is to support tuple descriptors that can reference both BP-tuples and
M-tuples.

4.4.3 Data Modification Statements

Up to this point we have only discussed queries, that is, read-only
SQL statements. Another class of DML statements exist that modify
data: INSERT, DELETE, and UPDATE statements. Execution plans
for these statements typically look like simple straight-line query plans,
with a single access method as the source, and a data modification
operator at the end of the pipeline.

192 Relational Query Processor

In some cases, however, these plans both query and modify the
same data. This mix of reading and writing the same table (possibly
multiple times) requires some care. A simple example is the notorious
2 so called because it was discovered on October
31st by the System R group. The Halloween problem arises from a

“Halloween problem,”

particular execution strategy for statements like “give everyone whose
salary is under $20K a 10% raise.” A naive plan for this query pipelines
an index scan iterator over the Emp.salary field into an update iterator
(the left-hand side of Figure 4.3). The pipelining provides good I/0O

Update
EMP

UPDATE EMP
SET salary=salary*1l.1
WHERE salary < 20000 Fetch-by-RID

EMP

VAV,

HeapScan
4
Update Materialize
EMP RID

»
—P
»
U

IndexScan
EMP IndexScan

EMP

Fig. 4.3 Two query plans for updating a table via an IndexScan. The plan on the left is
susceptible to the Halloween problem. The plan on the right is safe, since it identifies all
tuples to be updated before actually performing any updates.

2 Despite the spooky similarity in names, the Halloween problem has nothing to do with
the phantom problem of Section 4.2.1

4.5 Access Methods 193

locality, because it modifies tuples just after they are fetched from the
B+-tree. This pipelining, however, can also result in the index scan
“rediscovering” a previously modified tuple that moved rightward in
the tree after modification, leading to multiple raises for each employee.
In our example, all low-paid employees will receive repeated raises until
they earn more than $20K. This is not the intention of the statement.

SQL semantics forbid this behavior: a single SQL statement is not
allowed to “see” its own updates. Some care is needed to ensure that
this visibility rule is observed. A simple, safe implementation has the
query optimizer choose plans that avoid indexes on the updated col-
umn. This can be quite inefficient in some cases. Another technique is to
use a batch read-then-write scheme. This interposes Record-ID mate-
rialization and fetching operators between the index scan and the data
modification operators in the dataflow (right-hand side of Figure 4.3).
The materialization operator receives the IDs of all tuples to be modi-
fied and stores them in temporary file. It then scans the temporary file
and fetches each physical tuple ID by RID and feeds the resulting tuple
to the data modification operator. If the optimizer chooses an index, in
most cases this implies that only a few tuples are being changed. Hence
the apparent inefficiency of this technique may be acceptable, since the
temporary table is likely to remain entirely in the buffer pool. Pipelined
update schemes are also possible, but require (somewhat exotic) multi-
version support from the storage engine [74].

4.5 Access Methods

Access methods are the routines that manage access to the various
disk-based data structures that the system supports. These typically
included unordered files (“heaps”), and various kinds of indexes. All
major commercial systems implement heaps and B+-tree indexes. Both
Oracle and PostgreSQL support hash indexes for equality lookups.
Some systems are beginning to introduce rudimentary support for
multi-dimensional indexes such as R-trees [32]. PostgreSQL supports
an extensible index called the Generalized Search Tree (GiST) [39],
and currently uses it to implement R-trees for multi-dimensional data,
and RD-trees for text data [40]. IBM UDB Version 8 introduced

194 Relational Query Processor

Multi-Dimensional Clustered (MDC) Indexes for accessing data via
ranges on multiple dimensions [66]. Systems that target read-mostly
data warehousing workloads often include specialized bitmap variants
of indexes as well [65], as we describe in Section 4.6.

The basic API that an access method provides is an iterator API.
The init () routine is expanded to accept a “search argument” (or in
the terminology of System R, a SARG) of the form column operator
constant. A NULL SARG is treated as a request to scan all tuples in
the table. The get next () call at the access method layer returns NULL
when no more tuples satisfy the search argument.

There are two reasons to pass SARGs into the access method layer.
The first reason should be clear: index access methods like B+-trees
require SARGs in order to function efficiently. The second reason is a
more subtle performance issue, but one that applies to heap scans as
well as index scans. Assume that the SARG is checked by the routine
that calls the access method layer. Then each time the access method
returns from get_next (), it must either (a) return a handle to a tuple
residing in a frame in the buffer pool, and pin the page in that frame
to avoid replacement or (b) make a copy of the tuple. If the caller finds
that the SARG is not satisfied, it is responsible for either (a) decre-
menting the pin count on the page, or (b) deleting the copied tuple.
It must then reinvoke get next()to try the next tuple on the page.
This logic consumes a significant number of CPU cycles in function
call/return pairs, and will either pin pages in the buffer pool unneces-
sarily (generating unnecessary contention for buffer frames) or create
and destroy copies of tuples unnecessarily — a significant CPU over-
head when streaming through millions of tuples. Note that a typical
heap scan will access all of the tuples on a given page, resulting in mul-
tiple iterations of this interaction per page. By contrast, if all this logic
is done in the access method layer, the repeated pairs of call /return and
either pin/unpin or copy/delete can be avoided by testing the SARGs
a page at a time, and only returning from a get next() call for a
tuple that satisfies the SARG. SARGS keep a nice clean architectural
boundary between the storage engine and the relational engine while
obtaining excellent performance. Consequently, many systems support
very rich SARG support and use them broadly. Thematically, this is

4.5 Access Methods 195

an instance of the standard DBMS wisdom of amortizing work across
multiple items in a collection, but in this case it is being applied for
CPU performance, rather than disk performance.

All DBMSs need some way to “point” to rows in a base table, so that
index entries can reference the rows appropriately. In many DBMSs,
this is implemented by using direct row IDs (RIDs) that are the physi-
cal disk addresses of the rows in the base tables. This has the advantage
of being fast, but has the downside of making base table row movement
very expensive since all secondary indexes that point to this row require
updating. Both finding and updating these rows can be costly. Rows
need to move when an update changes the row size and space is unavail-
able on the current page for the freshly updated row. And many rows
need to move when a B-+-tree is split. DB2 uses a forwarding pointer
to avoid the first problem. This requires a second I/O to find a moved
page, but avoids having to update the secondary index. DB2 avoids the
second problem by simply not supporting B+-trees as primary storage
for base table tuples. Microsoft SQL Server and Oracle support B+-
trees as primary storage and must be able to deal with row movement
efficiently. The approach taken is to avoid using a physical row address
in the secondary indexes and instead use the row primary key (with
some additional system provided bits to force uniqueness if the table
does not have a unique key) rather than the physical RID. This sacri-
fices some performance when using a secondary index to access a base
table row, but avoids the problems that row movement causes. Oracle
avoids the performance penalty of this approach in some cases by keep-
ing a physical pointer with the primary key. If the row has not moved,
it will be found quickly using the physical pointer. But, if it has moved,
the slower primary key technique will be used.

Oracle avoids moving rows in heap files by allowing rows to span
pages. So, when a row is updated to a longer value that no longer fits
on the original page, rather than being forced to move the row, they
store what fits in the original page and the remainder can span to
the next.

In contrast to all other iterators, access methods have deep interac-
tions with the concurrency and recovery logic surrounding transactions,
as described in Section 4.

196 Relational Query Processor

4.6 Data Warehouses

Data Warehouses — large historical databases for decision-support that
are loaded with new data on a periodic basis — have evolved to require
specialized query processing support, and in the next section we survey
some of the key features that they tend to require. This topic is relevant
for two main reasons:

1. Data warehouses are a very important application of DBMS
technology. Some claim that warehouses account for 1/3 of
all DBMS activity [26, 63].

2. The conventional query optimization and execution engines
discussed so far in this section do not work well on data
warehouses. Hence, extensions or modifications are required
to achieve good performance.

Relational DBMSs were first architected in the 1970’s and 1980’s to
address the needs of business data processing applications, since that
was the dominant requirement at the time. In the early 1990’s the
market for data warehouses and “business analytics” appeared, and
has grown dramatically since that time.

By the 1990’s on-line transaction processing (OLTP) had replaced
batch business data processing as the dominant paradigm for database
usage. Moreover, most OLTP systems had banks of computer oper-
ators submitting transactions, either from phone conversations with
the end customer or by performing data entry from paper. Automated
teller machines had become widespread, allowing customers to do cer-
tain interactions directly without operator intervention. Response time
for such transactions was crucial to productivity. Such response time
requirements have only become more urgent and varied today as the
web is fast replacing operators with self service by the end customer.

About the same time, enterprises in the retail space had the idea
to capture all historical sales transactions, and to store them typically
for one or two years. Such historical sales data can be used by buyers
to figure out “what’s hot and what’s not.” Such information can be
leveraged to affect purchasing patterns. Similarly, such data can be used
to decide what items to put on promotion, which ones to discount, and

4.6 Data Warehouses 197

which ones to send back to the manufacturer. The common wisdom of
the time was that a historical data warehouse in the retail space paid
for itself through better stock management, shelf and store layout in a
matter of months.

It was clear at the time that a data warehouse should be deployed on
separate hardware from an OLTP system. Using that methodology, the
lengthy (and often unpredictable) business intelligence queries would
not spoil OLTP response time. Also, the nature of data is very different;
warehouses deal with history, OLTP deals with “now.” Finally, it was
found that the schema desired for historical data often did not match
the schema desired for current data, and a data transformation was
required to convert from one to the other.

For these reasons workflow systems were constructed that would
“scrape” data from operational OLTP systems and load it into a data
warehouse. Such systems were branded “extract, transform, and load”
(ETL) systems. Popular ETL products include Data Stage from IBM
and PowerCenter from Informatica. In the last decade ETL vendors
have extended their products with data cleansing tools, de-duplication
tools, and other quality-oriented offerings.

There are several issues that must be dealt with in the data ware-
house environment, as we discuss below.

4.6.1 Bitmap Indexes

B+-trees are optimized for fast insertion, deletion, and update of
records. In contrast, a data warehouse performs an initial load and
then the data is static for months or years. Moreover, data warehouses
often have columns with a small number of values. Consider, for exam-
ple, storing the sex of a customer. There are only two values, and this
can be represented by one bit per record in a bitmap. In contrast, a B+-
tree will require (value, record-pointer) pairs for each record and will
typically consume 40 bits per record.
Bitmaps are also advantageous for conjunctive filters, such as

Customer.sex = “F” and Customer.state = “California”

In this case, the result set can be determined by intersecting
bitmaps. There are a host of more sophisticated bitmap arithmetic

198 Relational Query Processor

tricks that can be played to improve performance of common analytics
queries. For a discussion of bitmap processing, the interested reader
should consult [65].

In current products, bitmap indexes complement the B+-trees in
Oracle for indexing stored data, while DB2 offers a more limited ver-
sion. Sybase IQ makes extensive use of bitmap indexes. Of course, the
disadvantage of bitmaps is that they are expensive to update, so their
utility is restricted to warehouse environments.

4.6.2 Fast Load

Often, data warehouses are loaded in the middle of the night with the
days’ transactional data. This was an obvious strategy for retail estab-
lishments that are open only during the day. A second reason for bulk
nightly loads is to avoid having updates appear during user interac-
tion. Consider the case of a business analyst who wishes to formulate
some sort of ad-hoc query, perhaps to investigate the impact of hur-
ricanes on customer buying patterns. The result of this query might
suggest a follow-on query, such as investigating buying patterns dur-
ing large storms. The result of these two queries should be compatible,
i.e., the answers should be computed on the same data set. This can
be problematic for queries that include recent history, if data is being
concurrently loaded.

As such, it is crucial that data warehouses be bulk-loadable very
quickly. Although one could program warehouse loads with a sequence
of SQL insert statements, this tactic is never used in practice. Instead
a bulk loader is utilized that will stream large numbers of records into
storage without the overhead of the SQL layer, and taking advantage of
special bulk-load methods for access methods like B+-trees. In round
numbers, a bulk loader is an order of magnitude faster than SQL inserts,
and all major vendors offer a high performance bulk loader.

As the world moves to e-commerce and 24 hour-per-day sales,
this bulk load tactic makes less sense. But the move to “real time”
warehouses has a couple of problems. First, inserts, whether from
the bulk loader or from transactions, must set write locks as dis-
cussed in Section 6.3. These collide with the read locks acquired by

4.6 Data Warehouses 199

queries, and can cause the warehouse to “freeze up.” Second, pro-
viding compatible answers across query sets as described above is
problematic.

Both issues can be circumvented by avoiding update-in-place, and
providing historical queries. If one keeps before and after values of
updates, suitably timestamped, then one can provide queries as of a
time in the recent past. Running a collection of queries as of the same
historical time will provide compatible answers. Moreover, the same
historical queries can be run without setting read locks.

As discussed in Section 5.2.1, multi-version (MVCC) isolation levels
like SNAPSHOT ISOLATION are provided by some vendors, notably
Oracle. As real time warehouses become more popular, the other ven-
dors will presumably follow suit.

4.6.3 Materialized Views

Data warehouses are typically gigantic, and queries that join multiple
large tables have a tendency to run “forever.” To speed up performance
on popular queries, most vendors offer materialized views. Unlike the
purely logical views discussed earlier in this section, materialized views
take are actual tables that can be queried, but which correspond to a
logical view expression over the true “base” data tables. A query to a
materialized view will avoid having to perform the joins in the view
expression at run time. Instead, the materialized view must be kept up
to date as updates are performed.

There are three aspects to Materialized View use: (a) selecting
the views to materialize, (b) maintaining the freshness of the views,
and (c) considering the use of materialized views in ad-hoc queries.
Topic (a) is an advanced aspect of the automatic database tuning we
mentioned in Section 4.3. Topic (c) is implemented to varying extents
in the various products; the problem is theoretically challenging even
for simple single-block queries [51], and moreso for generic SQL with
aggregation and subqueries. For (b), most vendors offer multiple refresh
techniques, ranging from performing a materialized view update on
each update to the tables from which the materialized view is derived,
to periodically discarding and then recreating the materialized view.

200 Relational Query Processor

Such tactics offer a trade-off between run-time overhead and data con-
sistency of the materialized view.

4.6.4 OLAP and Ad-hoc Query Support

Some warehouse workloads have predictable queries. For example, at
the end of every month, a summary report might be run to provide total
sales by department for each sales region in a retail chain. Interspersed
with this workload are ad-hoc queries, formulated on the fly by business
analysts.

Obviously, predictable queries can be supported by appropriately
constructed materialized views. More generally, since most business
analytics queries ask for aggregates, one can compute a materialized
view which is the aggregate sales by department for each store. Then,
if the above region query is specified, it can be satisfied by “rolling up”
individual stores in each region.

Such aggregates are often called data cubes, and are an interest-
ing class of materialized views. In the early 1990’s products such as
Essbase provided customized tools for storing data in priority cube for-
mat while providing cube-based user interfaces to navigate the data,
and this capability came to be known as on-line analytical process-
ing (OLAP). Over time, data cube support has been added to full-
function relational database systems, and is often termed Relational
OLAP (ROLAP). Many DBMSs that provide ROLAP have evolved to
internally implement some of the earlier OLAP-style storage schemes
in special cases, and as a result are sometimes referred to as HOLAP
(Hybrid OLAP) schemes.

Clearly, data cubes provide high performance for a predictable, lim-
ited class of queries. However, they are generally not helpful for sup-
porting ad-hoc queries.

4.6.5 Optimization of Snowflake Schema Queries

Many data warehouses follow a particular method for schema design.
Specifically, they store a collection of facts, which, in a retail
environment, are typically simple records like “customer X bought
product Y from store Z at time T.” A central fact table records infor-

4.6 Data Warehouses 201

mation about each fact, such as the purchase price, discount, sales
tax information, etc. Also in the fact table are foreign keys for each
of a set of dimensions. Dimensions can include customers, products,
stores, time, etc. A schema of this form is usually called a star schema,
because it has a central fact table surrounded by dimensions, each with
a 1-N primary-key-foreign-key relationship to the fact table. Drawn in
an entity-relationship diagram, such a schema is star-shaped.

Many dimensions are naturally hierarchical. For example, if stores
can be aggregated into regions, then the Stores “dimension table” has
an added foreign key to a Region dimension table. Similar hierarchies
are typical for attributes involving time (months/days/years), man-
agement hierarchies, and so on. In these cases, a multi-level star, or
snowflake schema results.

Essentially all data warehouse queries entail filtering one or more
dimensions in a snowflake schema on some attributes in these tables,
then joining the result to the central fact table, grouping by some
attributes in the fact table or a dimension table, and then comput-
ing an SQL aggregate.

Over time, vendors have special-cased this class of query in their
optimizers, because it is so popular, and it is crucial to choose a good
plan for such long running commands.

4.6.6 Data Warehousing: Conclusions

As can be seen, data warehouses require quite different capabilities
from OLTP environments. In addition to B+-trees, one needs bitmap
indexes. Instead of a general purpose optimizer, one needs to focus spe-
cial attention on aggregate queries over snowflake schemas. Instead of
normal views, one requires materialized views. Instead of fast transac-
tional updates, one needs fast bulk load, etc. A longer overview of data
warehousing practices can be found in [11].

The major relational vendors began with OLTP-oriented architec-
tures, and have added warehouse-oriented features over time. In addi-
tion, there are a variety of smaller vendors offering DBMS solutions
in this space. These include Teradata and Netezza, who offer shared-
nothing proprietary hardware on which their DBMSs run. Also, selling

202 Relational Query Processor

to this space are Greenplum (a parallelization of PostgreSQL), DATAI-
legro, and EnterpriseDB, all of whom are run on more conventional
hardware.

Finally, there are some (including one of the authors) who claim
that column stores have a huge advantage in the data warehouse space
versus traditional storage engines in which the unit of storage is a
table row. Storing each column separately is especially efficient when
tables are “wide” (high arity), and accesses tend to be on only a few
columns. Column storage also enables simple and effective disk com-
pression, since all data in a column is from the same type. The challenge
with column stores is that the position of rows in the table needs to
remain consistent across all stored columns, or extra mechanisms are
needed to join up columns. This is a big problem for OLTP, but not a
major issue for append-mostly databases like warehouses or system-log
repositories. Vendors offering column stores include Sybase, Vertica,
Sand, Vhayu, and KX. More details on this architecture discussion can
be found in [36, 89, 90].

4.7 Database Extensibility

Relational databases have traditionally been viewed as being limited in
the kinds of data they store, focused mostly on the “facts and figures”
used in corporate and administrative record-keeping. Today, however,
they host a wide range of data types expressed in a variety of popular
programming languages. This is achieved by making the core relational
DBMS extensible in a variety of ways. In this section, we briefly sur-
vey the kinds of extensions that are in wide use, highlighting some of
the architectural issues that arise in delivering this extensibility. These
features appear in most of the commercial DBMSs today to varying
degrees, and in the open-source PostgreSQL DBMS as well.

4.7.1 Abstract Data Types

In principle, the relational model is agnostic to the choice of scalar
data types that can be placed on schema columns. But the initial rela-
tional database systems supported only a static set of alphanumeric
column types, and this limitation came to be associated with the rela-

4.7 Database Extensibility 203

tional model per se. A relational DBMS can be made extensible to new
abstract data types at runtime, as was illustrated in the early Ingres-
ADT system, and more aggressively in the follow-on Postgres system
[88]. To achieve this, the DBMS type system — and hence the parser —
has to be driven from the system catalog, which maintains the list of
types known to the system, and pointers to the “methods” (code) used
to manipulate the types. In this approach, the DBMS does not interpret
types, it merely invokes their methods appropriately in expression eval-
uation; hence the name “abstract data types.” As a typical example,
one could register a type for 2-dimensional spatial “rectangles,” and
methods for operations like rectangle intersection or union. This also
means that the system must provide a runtime engine for user-defined
code, and safely execute that code without any risk of crashing the
database server or corrupting data. All of today’s major DBMSs allow
users to define functions in an imperative “stored procedure” sublan-
guage of modern SQL. With the exception of MySQL, most support
at least a few other languages, typically C and Java. On the Windows
platform, Microsoft SQL Server and IBM DB2 support code compiled
to the Microsoft. Net Common Language Runtime, which can be writ-
ten in a wide variety of languages, most commonly Visual Basic, C++,
and C#. PostgreSQL ships with support for C, Perl, Python and Tcl,
and allows support for new languages to be added to the system at
runtime — there are popular third-party plugins for Ruby and the
open-source R statistical package.

To make abstract data types run efficiently in the DBMS, the query
optimizer has to account for “expensive” user-defined code in selection
and join predicates, and in some cases postpone selections until after
joins [13, 37]. To make ADTs even more efficient, it is useful to be able
to define indexes on them. At minimum, B+-trees need to be extended
to index expressions over ADTSs rather than just columns (sometimes
termed “functional indexes”), and the optimizer has to be extended to
choose them when applicable. For predicates other than linear orders
(<,>,=), B+-trees are insufficient, and the system needs to support
an extensible indexing scheme; two approaches in the literature are
the original Postgres extensible access method interface [88], and the
GiST [39].

204 Relational Query Processor

4.7.2 Structured Types and XML

ADTs are designed to be fully compatible with the relational model —
they do not in any way change the basic relational algebra, they only
change the expressions over attribute values. Over the years, how-
ever, there have been many proposals for more aggressive changes to
databases to support non-relational structured types: i.e., nested col-
lection types like arrays, sets, trees, and nested tuples and /or relations.
Perhaps the most relevant of these proposals today is the support
for XML via languages like XPath and XQuery.® There are roughly
three approaches to handling structured types like XML. The first is
to build a custom database system that operates on data with struc-
tured types; historically these attempts have been overshadowed by
approaches that accommodate the structured types within a traditional
relational DBMS, and this trend was followed in the case of XML as
well. The second approach is to treat the complex type as an ADT.
For example, one can define a relational table with a column of type
XML that stores an XML document per row. This means that expres-
sions to search the XML — e.g., XPath tree-matching patterns — are
executed in a manner that is opaque to the query optimizer. A third
approach is for the DBMS to “normalize” the nested structure into
a set of relations upon insertion, with foreign keys connecting sub-
objects to their parents. This technique, sometimes called “shredding”
the XML, exposes all the structure of the data to the DBMS within a
relational framework, but adds storage overhead, and requires joins to
“reconnect” the data upon querying. Most DBMS vendors today offer
both ADT and shredded options for storage, and allow the database
designer to choose between them. In the case of XML, it is also common
in the shredded approach to offer the option of removing the ordering
information between XML elements nested at the same level, which

3 XML is sometimes referred to as “semi-structured” data, because it places no restrictions
on the structure of documents. However, unlike free-text, it encourages structure, includ-
ing non-relational complexities like ordering and nested collections. The complications in
storing and querying XML in databases tend to arise from handling the structure of an
XML document, rather than from issues in dealing with unstructured text within the
document. Indeed, many of the techniques used for query processing over XML have their
roots in research on the richly structured ODMG object database model, and its OQL
query language.

4.7 Database Extensibility 205

can improve query performance by allowing join reordering and other
relational optimizations.

A related issue is more modest extensions to the relational model to
handle nested tables and tuples, as well as arrays. These are widely used
in Oracle installations, for example. The design trade-offs are similar
in many ways to those of handling XML.

4.7.3 Full-Text Search

Traditionally, relational databases were notoriously poor at handling
rich textual data and the keyword search that usually goes with it. In
principle, modeling free-text in a database is a simple matter of storing
the documents, defining an “inverted file” relation with tuples of the
form (word, documentID, position), and building a B+4-tree index
over the word column. This is roughly what happens in any text search
engine, modulo some linguistic canonicalization of words, and some
additional per-tuple attributes to aid in rank-ordering search results.
But in addition to the model, most text indexing engines implement
a number of performance optimizations specific to this schema, which
are not implemented in a typical DBMS. These include “denormaliz-
ing” the schema to have each word appear only once with a list of
occurrences per word, i.e., (word, list <documentID, position>)
This allows for aggressive delta-compression of the list (typically called
a “postings list”), which is critical given the characteristically skewed
(Zipfian) distribution of words in documents. Moreover, text databases
tend to be used in a data warehousing style, bypassing any DBMS logic
for transactions. The common belief is that a naive implementation of
text search in a DBMS like the one above runs roughly an order of
magnitude slower than the custom text indexing engines.

However, most DBMSs today either contain a subsystem for text
indexing, or can be bundled with a separate engine to do the job.
The text indexing facility can typically be used both over full-text
documents, and over short textual attributes in tuples. In most cases
the full-text index is updated asynchronously (“crawled”) rather than
being maintained transactionally; PostgreSQL is unusual in offering the
option of a full-text index with transactional updates. In some systems,

206 Relational Query Processor

the full-text index is stored outside the DBMS, and hence requires sep-
arate tools for backup and restore. A key challenge in handling full-text
search in a relational database is to bridge the semantics of relational
queries (unordered and complete sets of results) with ranked document
search using keywords (ordered and typically incomplete results) in a
way that is useful and flexible. For example, it is unclear how to order
the output of a join query over two relations when there is a keyword
search predicate on each relation. This issue remains rather ad hoc in
current practice. Given a semantics for query output, another challenge
is for the relational query optimizer to reason about selectivity and cost
estimation for the text index, as well as judging the appropriate cost
model for a query whose answer set is ordered and paginated in the
user interface, and likely not to be retrieved completely. By all reports,
this last topic is being aggressively pursued in a number of the popular
DBMSs.

4.7.4 Additional Extensibility Issues

In addition to the three driving usage scenarios for database extensibil-
ity, we bring up two core components within the engine that are often
made extensible for a variety of uses.

There have been anumber of proposals for extensible query optimizers,
including the designs that underpin the IBM DB2 optimizer [54, 6],
and the designs that underpin the Tandem and Microsoft optimizers
[25]. All these schemes provide rule-driven subsystems that generate or
modify query plans, and allow new optimization rules to be registered
independently. These techniques are helpful in making it easier to extend
the optimizer when new features are added to the query executor,
or when new ideas are developed for specific query rewrites or plan
optimizations. These generic architectures were important in enabling
many of the specific extensible type functionalities described above.

Another cross-cutting form of extensibility that arose since the early
systems is the ability for the database to “wrap” remote data sources
within the schema as if they were native tables, and access them dur-
ing query processing. One challenge in this regard is for the optimizer
to handle data sources that do not support scans, but will respond

4.8 Standard Practice 207

requests that assign values to variables; this requires generalizing the
optimizer logic that matches index SARGs to query predicates [33].
Another challenge is for the executor to deal efficiently with remote
data sources that may be slow or bursty in producing outputs; this
generalizes the design challenge of having the query executor do asyn-
chronous disk I/0, increasing the access-time variability by an order of
magnitude or more [22, 92].

4.8 Standard Practice

The coarse architecture of essentially all relational database query
engines looks similar to that of the System R prototype [3]. Query
processing research and development over the years has focused on
innovations within that framework, to accelerate more and more classes
of queries and schemas. Major design differences across systems arise
in the optimizer search strategy (top-down vs. bottom-up), and in the
query executor control-flow model, especially for shared-nothing and
shared-disk parallelism (iterators and the exchange operator vs. asyn-
chronous producer/consumer schemes). At a finer-grained level, there
is a good deal of differentiation on the mix of schemes used within the
optimizer, executor, and access methods to achieve good performance
for different workloads including OLTP, decision-support for warehous-
ing, and OLAP. This “secret sauce” within the commercial products
determines how well they perform in specific circumstances, but to a
first approximation all of the commercial systems do quite well across
a broad range of workloads, and can be made to look slow in specific
workloads.

In the open source arena, PostgreSQL has a reasonably sophisti-
cated query processor with a traditional cost-based optimizer, a broad
set of execution algorithms, and a number of extensibility features not
found in commercial products. MySQL’s query processor is far simpler,
built around nested-loop joins over indices. The MySQL query opti-
mizer focuses on analyzing queries to make sure that common opera-
tions are lightweight and efficient — particularly key/foreign-key joins,
outer-join-to-join rewrites, and queries that ask for only the first few
rows of the result set. It is instructive to read through the MySQL

208 Relational Query Processor

manual and query processing code and compare it to the more involved
traditional designs, keeping in mind the high adoption rate of MySQL
in practice, and the tasks at which it seems to excel.

4.9 Discussion and Additional Material

Because of the clean modularity of query optimization and exe-
cution, there have been a huge number of algorithms, techniques,
and tricks that have been developed in this environment over the years,
and relational query processing research continues today. Happily, most
of the ideas that have been used in practice (and many that have not)
are found in the research literature. A good starting point for query
optimization research is Chaudhuri’s short survey [10]. For query pro-
cessing research, Graefe offers a very comprehensive survey [24].

Beyond traditional query processing, there has been a great deal of
work in recent years to incorporate rich statistical methods into the
processing of large data sets. One natural extension is to use sampling
or summary statistics to provide numerical approximations to aggre-
gation queries [20], possibly in a continuously improving online fashion
[38]. However, this has seen relatively slow uptake in the marketplace,
despite fairly mature research results. Oracle and DB2 both provide
simple base-table sampling techniques, but do not provide statistically
robust estimation of queries involving more than one table. Instead
of focusing on these features, most vendors have chosen to enrich
their OLAP features instead, which constrain the family of queries
that can be answered quickly, but provide users with 100% correct
answers.

Another important but more fundamental extension has been to
include “data mining” techniques in the DBMS. Popular techniques
include statistical clustering, classification, regression, and association
rules [14]. In addition to the standalone implementation of these tech-
niques studied in the research literature, there are architectural chal-
lenges in integrating these techniques with rich relational queries [77].

Finally, it is worth noting that the broader computing community
has recently become excited by data parallelism, as embodied by frame-
works like Google’s Map-Reduce, Microsoft’s Dryad, and the open-

4.9 Discussion and Additional Material 209

source Hadoop code that is supported by Yahoo! These systems are very
much like shared-nothing-parallel relational query executors, with cus-
tom query operators implemented by the programmers of the applica-
tion logic. They also include simple but sensibly engineered approaches
to managing the failure of participating nodes, which is a common
occurrence at large scales. Perhaps the most interesting aspect of this
trend is the way that it is being creatively used for a variety of data-
intensive problems in computing, including text and image processing,
and statistical methods. It will be interesting to see whether other ideas
from database engines get borrowed by users of these frameworks — for
instance, there is early work at Yahoo! to extend Hadoop with declar-
ative queries and an optimizer. Innovations built on these frameworks
could be incorporated back into database engines as well.

5

Storage Management

Two basic types of DBMS storage managers are in commercial use
today: either (1) the DBMS interacts directly with the low-level block-
mode device drivers for the disks (often called raw-mode access), or
(2) the DBMS uses standard OS file system facilities. This decision
affects the DBMS’s ability to control storage in both space and time.
We consider these two dimensions in turn, and proceed to discuss the
use of the storage hierarchy in more detail.

5.1 Spatial Control

Sequential bandwidth to and from disk is between 10 and 100 times
faster than random access, and this ratio is increasing. Disk density
has been doubling every 18 months and bandwidth rises approximately
as the square root of density (and linearly with rotation speed). Disk
arm movement, however, is improving at a much slower rate — about
7% /year [67]. As a result, it is critical for the DBMS storage manager to
place blocks on the disk such that queries that require large amounts
of data can access it sequentially. Since the DBMS can understand
its workload access patterns more deeply than the underlying OS, it

210

5.1 Spatial Control 211

makes sense for DBMS architects to exercise full control over the spatial
positioning of database blocks on disk.

The best way for the DBMS to control spatial locality of its data
is to store the data directly to the “raw” disk device and avoid the
file system entirely. This works because raw device addresses typically
correspond closely to physical proximity of storage locations. Most com-
mercial database systems offer this functionality for peak performance.
This technique, although effective, does have some drawbacks. First,
it requires the DBA to devote entire disk partitions to the DBMS,
which makes them unavailable to utilities (backups, etc.) that need a
filesystem interface. Second, “raw disk” access interfaces are often OS-
specific, which can make the DBMS more difficult to port. This is a
hurdle, however, that most commercial DBMS vendors overcame years
ago. Finally, developments in the storage industry like RAID, Storage
Area Networks (SAN), and logical volume managers have become pop-
ular. We are now at a point where “virtual” disk devices are the norm
in most scenarios today — the “raw” device interface is actually being
intercepted by appliances or software that reposition data aggressively
across one or more physical disks. As a result, the benefits of explicit
physical control by the DBMS have been diluted over time. We discuss
this issue further in Section 7.3.

An alternative to raw disk access is for the DBMS to create a very
large file in the OS file system, and to manage positioning of data
as offsets in that file. The file is essentially treated as a linear array
of disk-resident pages. This avoids some of the disadvantages of raw
device access and still offers reasonably good performance. In most
popular file systems, if you allocate a very large file on an empty disk,
the offsets in that file will correspond fairly closely to physical prox-
imity of storage regions. Hence this is a good approximation to raw
disk access, without the need to go directly to the raw device inter-
face. Most virtualized storage systems are also designed to place close
offsets in a file in nearby physical locations. Hence the relative con-
trol lost when using large files rather than raw disks is becoming less
significant over time. Using the file system interface has other ram-
ifications regarding temporal control, which we discuss in the next
subsection.

212 Storage Management

As a data point, we recently compared direct raw access with large
file access on a mid-sized system using one of the major commercial
DBMSs and found only a 6% degradation when running the TPC-C
benchmark [91], and almost no negative impact on less I/O-intensive
workloads. DB2 reports file system overhead as low as 1% when using
Direct I/O (DIO) and its variants such as concurrent I/O (CIO). Con-
sequently, DBMS vendors typically no longer recommend raw storage,
and few customers run in this configuration. It remains a supported
feature in major commercial systems primarily for benchmark use.

Some commercial DBMS also allow the database page size to be
custom-set to a size appropriate for the expected work load. Both IBM
DB2 and Oracle support this option. Other commercial systems such
as Microsoft SQL Server do not support multiple page sizes due to
the increased administrative complexity this brings. If tunable page
sizes are supported, the selected size should be a multiple of the page
size used by the file system (or raw device if raw I/O is being used).
A discussion of the appropriate choice of page sizes is given in the
“5-minute rule” paper which has been subsequently updated to the
“30-minute rule” [27]. If the file system is being used rather than raw
device access, special interfaces may be required to write pages of a
different size than that of the file system; the POSIX mmap/msync
calls, for example, provide such support.

5.2 Temporal Control: Buffering

In addition to controlling where on the disk data should be placed,
a DBMS must control when data gets physically written to the disk.
As we will discuss in Section 5, a DBMS contains critical logic that
reasons about when to write blocks to disk. Most OS file systems also
provide built-in I/O buffering mechanisms to decide when to do reads
and writes of file blocks. If the DBMS uses standard file system inter-
faces for writing, the OS buffering can confound the intention of the
DBMS logic by silently postponing or reordering writes. This can cause
major problems for the DBMS.

The first set of problems regard the correctness of the database’s
ACID transaction promise: the DBMS cannot guarantee atomic recov-

5.2 Temporal Control: Buffering 213

ery after software or hardware failure without explicitly controlling the
timing and ordering of disk writes. As we will discuss in Section 5.3,
the write ahead logging protocol requires that writes to the log device
must precede corresponding writes to the database device, and com-
mit requests cannot return to users until commit log records have been
reliably written to the log device.

The second set of problems with OS buffering concern performance,
but have no implications on correctness. Modern OS file systems typically
have some built-in support for read-ahead (speculative reads) and
write-behind (delayed, batched writes). These are often poorly suited to
DBMS access patterns. File system logic depends on the contiguity of
physical byte offsets in files to make read ahead decisions. DBMS-level
I/0 facilities can support logical predictive I/O decisions based upon
future read requests that are known at the SQL query processing level
but are not easily discernable at the file system level. For example, logical
DBMS-level read-ahead can be requested when scanning the leaves of
a B-+-tree (rows are stored in the leaves of a B+-tree) that are not
necessarily contiguous. Logical read-ahead is easily achieved in DBMS
logic by having the DBMS issue I/O requests in advance of its needs. The
query execution plan contains the relevant information about data access
algorithms, and has full information about future access patterns for the
query. Similarly, the DBMS may want to make its own decisions about
when to flush the log tail, based on considerations that mix issues like
lock contention with I/O throughput. This detailed future access pattern
knowledge is available to the DBMS, but not to the OS file system.

The final performance issues are “double buffering” and the high
CPU overhead of memory copies.Given that the DBMS has to do its
own buffering carefully for correctness, any additional buffering by the
OS is redundant. This redundancy results in two costs. First, it wastes
system memory by effectively reducing the memory available for doing
useful work. Second, it wastes time and processing resources, by causing
an additional copying step: on reads, data is first copied from the disk
to the OS buffer, and then copied again to the DBMS buffer pool. On
writes, both of these copies are required in reverse.

Copying data in memory can be a serious bottleneck. Copies con-
tribute latency, consume CPU cycles, and can flood the CPU data

214 Storage Management

cache. This fact is often a surprise to people who have not operated or
implemented a database system, and assume that main-memory oper-
ations are “free” compared to disk I/O. But in practice, throughput in
a well-tuned transaction processing DBMS is typically not 1/0O-bound.
This is achieved in high-end installations by purchasing sufficient disks
and RAM so that repeated page requests are absorbed by the buffer
pool, and disk I/Os are shared across the disk arms at a rate that can
feed the data appetite of all the processors in the system. Once this
kind of “system balance” is achieved, I/O latencies cease to be the pri-
mary system throughput bottleneck, and the remaining main-memory
bottlenecks become the limiting factors in the system. Memory copies
are becoming a dominant bottleneck in computer architectures: this is
due to the gap in performance evolution between raw CPU cycles per
second per dollar (which follows Moore’s law) and RAM access speed
(which trails Moore’s law significantly) [67].

The problems of OS buffering have been well known in the database
research literature [86] and the industry for some time. Most modern
OSs now provide hooks (e.g., the POSIX mmap suite calls or the plat-
form specific DIO and CIO APIT sets) so that programs such as database
servers can circumvent double-buffering the file cache. This ensures
that writes go through to disk when requested, that double buffering is
avoided, and that the DBMS can control the page replacement strategy.

5.3 Buffer Management

In order to provide efficient access to database pages, every DBMS
implements a large shared buffer pool in its own memory space. In the
early days the buffer pool was statically allocated to an administratively
chosen value, but most commercial DBMSs now dynamically adjust
the buffer pool size based upon system need and available resources.
The buffer pool is organized as an array of frames, where each frame
is a region of memory the size of a database disk block. Blocks are
copied into the buffer pool from disk without format change, manipu-
lated in memory in this native format, and later written back. This
translation-free approach avoids CPU bottlenecks in “marshalling”
and “unmarshalling” data to/from disk; perhaps more importantly,

5.3 Buffer Management 215

fixed-sized frames sidestep the memory-management complexities of
external fragmentation and compaction that generic techniques cause.

Associated with the array of buffer pool frames is a hash table that
maps (1) page numbers currently held in memory to their location in
the frame table, (2) the location for that page on backing disk storage,
and (3) some metadata about the page. The metadata includes a dirty
bit to indicate whether the page has changed since it was read from disk,
and any information needed by the page replacement policy to choose
pages to evict when the buffer pool is full. Most systems also include
a pin count to signal that the page is not eligible for participation in
the page-replacement algorithm. When the pin count is non-zero, the
page is “pinned” in memory and will not be forced to disk or stolen.
This allows the DBMS’s worker threads to pin pages in the buffer pool
by incrementing the pin count before manipulating the page, and then
decrementing it thereafter. The intent is to have only a tiny fraction
of the buffer pool pinned at any fixed point of time. Some systems
also offer the ability to pin tables in memory as an administrative
option, which can improve access times to small, heavily used tables.
However, pinned pages reduce the number of pages available for normal
buffer pool activities and can negatively impact performance as the
percentage of pinned pages increases.

Much research in the early days of relational systems focused on
the design of page replacement policies, since the diversity of data
access patterns found in DBMSs render simple techniques ineffective.
For example, certain database operations tend to require full table scans
and, when the scanned table is much larger than the buffer pool, these
operations tend to clear the pool of all commonly referenced data. For
such access patterns, the recency of reference is a poor predictor of
the probability of future reference, so OS page replacement schemes
like LRU and CLOCK were well-known to perform poorly for many
database access patterns [86]. A variety of alternative schemes were
proposed, including some that attempted to tune the replacement strat-
egy via query execution plan information [15]. Today, most systems use
simple enhancements to LRU schemes to account for the case of full
table scans. One that appears in the research literature and has been
implemented in commercial systems is LRU-2 [64]. Another scheme

216 Storage Management

used in commercial systems is to have the replacement policy depend
on the page type: e.g., the root of a B-+-tree might be replaced with
a different strategy than a page in a heap file. This is reminiscent of
Reiter’s Domain Separation scheme [15, 75].

Recent hardware trends, including 64-bit addressing and falling
memory prices, have made very large buffer pools economically possible.
This opens up new opportunities for exploiting large main memory for
efficiency. As a counterpoint, alarge and very active buffer pool also brings
more challenges in restart recovery speed and efficient checkpointing,
among other issues. These topics will be discussed further in Section 6.

5.4 Standard Practice

In the last decade, commercial file systems have evolved to the point
where they can support database storage systems quite well. In the
standard usage model, the system administrator creates a file system
on each disk or logical volume in the DBMS. The DBMS then allocates
a single large file in each of these file systems and controls placement of
data within that file via low-level interfaces like the mmap suite. The
DBMS essentially treats each disk or logical volume as a linear array of
(nearly) contiguous database pages. In this configuration, modern file
systems offer reasonable spatial and temporal control to the DBMS and
this storage model is available in essentially all database system imple-
mentations. The raw disk support remains a common high-performance
option in most database systems, however, its usage is rapidly narrow-
ing to performance benchmarks only.

5.5 Discussion and Additional Material

Database storage subsystems are a very mature technology, but a num-
ber of new considerations have emerged for database storage in recent
years, which have the potential to change data management techniques
in a number of ways.

One key technological change is the emergence of flash memory as an
economically viable random-access persistent storage technology [28].
Ever since the early days of database system research, there has been

5.5 Discussion and Additional Material 217

discussion of sea-changes in DBMS design arising from new storage
technologies replacing disk. Flash memory appears to be both techno-
logically viable and economically supported by a broad market, and
presents an interesting intermediate cost/performance trade-off rela-
tive to disk and RAM. Flash is the first new persistent storage medium
to succeed in this regard in more than three decades, and hence its
particulars may have significant impact on future DBMS designs.

Another traditional topic that has recently come to the fore is com-
pression of database data. Early work on the topic focused on on-disk
compression to minimize disk latencies during read, and maximize the
capacity of the database buffer pool. As processor performance has
improved and RAM latencies have not kept pace, it has become increas-
ingly important to consider keeping data compressed even during com-
putations, so as to maximize the residency of data in processor caches as
well. But this requires compressed representations that are amenable to
data processing, and query processing internals that manipulate com-
pressed data. Another wrinkle in relational database compression is
that databases are reorderable sets of tuples, whereas most work on
compression focuses on byte streams without considering reordering.
Recent research on this topic suggests significant promise for database
compression in the near future [73].

Finally, outside the traditional relational database market there is
enhanced interest in large-scale but sparse data storage techniques,
where there are logically thousands of columns, the bulk of which
are null for any given row. These scenarios are typically represented
via some kind of set of attribute-value pairs or triples. Instances
include Google’s BigTable [9], the Tagged Columns used by Microsoft’s
Active Directory and Exchange products, and the Resource Description
Framework (RDF) proposed for the “Semantic Web.” Common to these
approaches are the use of storage systems that organize disk in terms
of the columns of data tables, rather than rows. The idea of column-
oriented storage has been revived and explored in detail in a number
of recent database research efforts [36, 89, 90].

6

Transactions: Concurrency Control
and Recovery

Databasesystemsareoftenaccused ofbeingenormous, monolithicsoftware
systems that cannot be split into reusable components. In practice,
database systems — and the development teams that implement and
maintain them — do break down into independent components with
documented interfaces between them. This is particularly true of the
interface between the relational query processor and the transactional
storage engine. In most commercial systems these components are written
by different teams and have well-defined interfaces between them.

The truly monolithic piece of a DBMS is the transactional storage
manager that typically encompasses four deeply intertwined components:

1. A lock manager for concurrency control.

2. A log manager for recovery.

3. A buffer pool for staging database I/Os.

4. Access methods for organizing data on disk.

A great deal of ink has been spilled describing the fussy details
of transactional storage algorithms and protocols in database sys-
tems. The reader wishing to become knowledgeable about these sys-
tems should read — at a minimum — a basic undergraduate database

218

6.1 A Note on ACID 219

textbook [72], the journal article on the ARIES log protocol [59], and
at least one serious article on transactional index concurrency and log-
ging [46, 58]. More advanced readers will want to consult Gray and
Reuter’s textbook on transactions [30]. To really become an expert,
this reading has to be followed by an implementation effort. We do not
dwell on algorithms and protocols here, but rather survey the roles of
these various components. We focus on the system infrastructure that
is often ignored in the textbooks, highlighting the inter-dependencies
between components that lead to much of the subtlety and complexity
in making the simple protocols workable.

6.1 A Note on ACID

Many people are familiar with the term “ACID transactions,” a
mnemonic due to Haerder and Reuter [34]. ACID stands for Atom-
icity, Consistency, Isolation, and Durability. These terms were not
formally defined, and are not mathematical axioms that combine to
guarantee transactional consistency. So it is not important to care-
fully distinguish the terms and their relationships. But despite the
informal nature, the ACID acronym is useful to organize a discussion
of transaction systems, and is sufficiently important that we review
it here:

e Atomicity is the “all or nothing” guarantee for transac-
tions — either all of a transaction’s actions commit or
none do.

e (Consistency is an application-specific guarantee; SQL
integrity constraints are typically used to capture these guar-
antees in a DBMS. Given a definition of consistency provided
by a set of constraints, a transaction can only commit if it
leaves the database in a consistent state.

® [solation is a guarantee to application writers that two con-
current transactions will not see each other’s in-flight (not-
yet-committed) updates. As a result, applications need not
be coded “defensively” to worry about the “dirty data” of
other concurrent transactions; they can be coded as if the
programmer had sole access to the database.

220 Transactions: Concurrency Control and Recovery

® Durability is a guarantee that the updates of a committed
transaction will be visible in the database to subsequent
transactions independent of subsequent hardware or software
errors, until such time as they are overwritten by another
committed transaction.

Roughly speaking, modern DBMSs implement isolation via a lock-
ing protocol. Durability is typically implemented via logging and
recovery. Isolation and Atomicity are guaranteed by a combination of
locking (to prevent visibility of transient database states), and logging
(to ensure correctness of data that is visible). Consistency is managed
by runtime checks in the query executor: if a transaction’s actions will
violate a SQL integrity constraint, the transaction is aborted and an
error code returned.

6.2 A Brief Review of Serializability

We begin our discussion of transactions by briefly reviewing the main
goal of database concurrency control, and proceed in the next section
to describe two of the most important building blocks used to imple-
ment this notion in most multi-user transactional storage managers:
(1) locking and (2) latching.

Serializability is the well-defined textbook notion of correctness
for concurrent transactions. It dictates that a sequence of interleaved
actions for multiple committing transactions must correspond to some
serial execution of the transactions — as though there were no parallel
execution at all. Serializability is a way of describing the desired behavior
of a set of transactions. Isolation is the same idea from the point of view
of a single transaction. A transaction is said to execute in isolation if it
does not see any concurrency anomalies — the “I” of ACID.

Serializability is enforced by the DBMS concurrency control model.
There are three broad techniques of concurrency control enforcement.
These are well-described in textbooks and early survey papers [7], but
we very briefly review them here:

1. Strict two-phase locking (2PL): Transactions acquire a
shared lock on every data record before reading it, and

6.2 A Brief Review of Serializability 221

an exclusive lock on every data item before writing it. All
locks are held until the end of the transaction, at which time
they are all released atomically. A transaction blocks on a
wait-queue while waiting to acquire a lock.

2. Multi- Version Concurrency Control (MVCC): Transactions
do not hold locks, but instead are guaranteed a consistent
view of the database state at some time in the past, even if
rows have changed since that fixed point in time.

3. Optimistic Concurrency Control (OCC): Multiple transac-
tions are allowed to read and update an item without block-
ing. Instead, transactions maintain histories of their reads
and writes, and before committing a transaction checks his-
tory for isolation conflicts they may have occurred; if any are
found, one of the conflicting transactions is rolled back.

Most commercial relational DBMS implement full serializability via
2PL. The lock manager is the code module responsible for providing
the facilities for 2PL.

In order to reduce locking and lock conflicts some DBMSs sup-
port MVCC or OCC, typically as an add-on to 2PL. In an MVCC
model, read locks are not needed, but this is often implemented at the
expense of not providing full serializability, as we will discuss shortly
in Section 4.2.1. To avoid blocking writes behind reads, the write is
allowed to proceed after the previous version of the row is either saved,
or guaranteed to be quickly obtainable otherwise. The in-flight read
transactions continue to use the previous row value as though it were
locked and prevented from being changed. In commercial MVCC imple-
mentations, this stable read value is defined to be either the value at
the start of the read transaction or the value at the start of that trans-
action’s most recent SQL statement.

While OCC avoids waiting on locks, it can result in higher penal-
ties during true conflicts between transactions. In dealing with con-
flicts across transactions, OCC is like 2PL except that it converts
what would be lock-waits in 2PL into transaction rollbacks. In scenar-
ios where conflicts are uncommon, OCC performs very well, avoiding
overly conservative wait time. With frequent conflicts, however, exces-

222 Transactions: Concurrency Control and Recovery

sive rollbacks and retries negatively impact performance and make it a
poor choice [2].

6.3 Locking and Latching

Database locks are simply names used by convention within the system
to represent either physical items (e.g., disk pages) or logical items (e.g.,
tuples, files, volumes) that the DBMS manages. Note that any name can
have a lock associated with it — even if that name represents an abstract
concept. The locking mechanism simply provides a place to register and
check for these names. Every lock is associated with a transaction and
each transaction has a unique transaction ID. Locks come in different lock
“modes,” and these modes are associated with a lock-mode compatibility
table. In most systems, this logic is based on the well-known lock modes
that are introduced in Gray’s paper on granularity of locks [29]. That
paper also explains how hierarchical locks are implemented in commercial
systems. Hierarchical locking allows a single lock to be used to lock an
entire table and, at the same time, support row granularity locks in the
same table both efficiently and correctly.

The lock manager supports two basic calls; lock (lockname,
transactionID, mode), and remove transaction (transaction-
ID). Note that because of the strict 2PL protocol, there should
not be an individual call to unlock resources individually — the
remove_transaction() call will unlock all resources associated with
a transaction. However, as we discuss in Section 5.2.1, the SQL stan-
dard allows for lower degrees of transaction isolation, and hence there is
a need for an unlock (lockname, transactionID)call as well. There
is also a lock_upgrade (lockname, transactionID, newmode) call
to allow transactions to “upgrade” to higher lock modes (e.g.,
from shared to exclusive mode) in a two-phase manner, without drop-
ping and re-acquiring locks. Additionally, some systems also support
a conditional_lock (lockname, transactionID, mode) call. The
conditional lock() call always returns immediately, and indicates
whether it succeeded in acquiring the lock. If it did not succeed, the
calling DBMS thread is not enqueued waiting for the lock. The use of
conditional locks for index concurrency is discussed in [60].

6.3 Locking and Latching 223

To support these calls, the lock manager maintains two data struc-
tures. A global lock table is maintained to hold lock names and their
associated information. The lock table is a dynamic hash table keyed
by (a hash function of) lock names. Associated with each lock is a
mode flag to indicate the lock mode, and a wait queue of lock request
pairs (transactionID, mode). In addition, the lock manager maintains
a transaction table keyed by transactionlD, which contains two items
for each transaction 7 (1) a pointer to 7°s DBMS thread state, to
allow T’s DBMS thread to be rescheduled when it acquires any locks
it is waiting on, and (2) a list of pointers to all of T”s lock requests in
the lock table, to facilitate the removal of all locks associated with a
particular transaction (e.g., upon transaction commit or abort).

Internally, the lock manager makes use of a deadlock detector DBMS
thread that periodically examines the lock table to detect waits-for
cycles (a cycle of DBMS workers where each is waiting for the next and
a cycle is formed). Upon detection of a deadlock, the deadlock detector
aborts one of the deadlocked transactions. The decision of which dead-
locked transaction to abort is based on heuristics that have been stud-
ied in the research literature [76]. In shared-nothing and shared-disk
systems, either distributed deadlock detection [61] or a more primitive
timeout-based deadlock detector is required. A more detailed descrip-
tion of a lock manager implementation is given in Gray and Reuter’s
text [30].

As an auxiliary to database locks, lighter-weight latches are also
provided for mutual exclusion. Latches are more akin to monitors [41]
or semaphores than locks; they are used to provide exclusive access to
internal DBMS data structures. As an example, the buffer pool page
table has a latch associated with each frame, to guarantee that only
one DBMS thread is replacing a given frame at any time. Latches are
used in the implementation of locks and to briefly stabilize internal
data structures potentially being concurrently modified.

Latches differ from locks in a number of ways:

® Locks are kept in the lock table and located via hash tables;
latches reside in memory near the resources they protect, and
are accessed via direct addressing.

224 Transactions: Concurrency Control and Recovery

® In a strict 2PL implementation, locks are subject to the strict
2PL protocol. Latches may be acquired or dropped during a
transaction based on special-case internal logic.

® Lock acquisition is entirely driven by data access, and hence
the order and lifetime of lock acquisitions is largely in the hands
of applications and the query optimizer. Latches are acquired
by specialized code inside the DBMS, and the DBMS internal
code issues latch requests and releases strategically.

® Locks are allowed to produce deadlock, and lock deadlocks
are detected and resolved via transactional restart. Latch
deadlock must be avoided; the occurrence of a latch dead-
lock represents a bug in the DBMS code.

® Latches are implemented using an atomic hardware instruc-
tion or, in rare cases, where this is not available, via mutual
exclusion in the OS kernel.

e Latch calls take at most a few dozen CPU cycles whereas
lock requests take hundreds of CPU cycles.

® The lock manager tracks all the locks held by a transac-
tion and automatically releases the locks in case the transac-
tion throws an exception, but internal DBMS routines that
manipulate latches must carefully track them and include
manual cleanup as part of their exception handling.

e Latches are not tracked and so cannot be automatically
released if the task faults.

The latch API supports the routines latch(object, mode),
unlatch(object), and conditional latch(object, mode). In most
DBMSs, the choices of latch modes include only shared or exclusive.
Latches maintain a mode, and a waitqueue of DBMS threads waiting on
the latch. The latch and unlatch calls work as one might expect. The
conditional latch() call is analogous to the conditional lock()
call described above, and is also used for index concurrency [60].

6.3.1 Transaction Isolation Levels

Very early in the development of the transaction concept, attempts
were made to increase concurrency by providing “weaker” semantics

6.3 Locking and Latching 225

than serializability. The challenge was to provide robust definitions
of the semantics in these cases. The most influential effort in this
regard was Gray’s early work on “Degrees of Consistency” [29]. That
work attempted to provide both a declarative definition of consistency
degrees, and implementations in terms of locking. Influenced by this
work, the ANSI SQL standard defines four “Isolation Levels”:

1. READ UNCOMMITTED: A transaction may read any ver-
sion of data, committed or not. This is achieved in a locking
implementation by read requests proceeding without acquir-
ing any locks.!

2. READ COMMITTED: A transaction may read any commit-
ted version of data. Repeated reads of an object may result
in different (committed) versions. This is achieved by read
requests acquiring a read lock before accessing an object,
and unlocking it immediately after access.

3. REPEATABLE READ: A transaction will read only one
version of committed data; once the transaction reads an
object, it will always read the same version of that object.
This is achieved by read requests acquiring a read lock
before accessing an object, and holding the lock until end-
of-transaction.

4. SERIALIZABLE: Full serializable access is guaranteed.

At first blush, REPEATABLE READ seems to provide full seri-
alizability, but this is not the case. Early in the System R project
[3], a problem arose that was dubbed the “phantom problem.” In the
phantom problem, a transaction accesses a relation more than once
with the same predicate in the same transaction, but sees new “phan-
tom” tuples on re-access that were not seen on the first access. This is
because two-phase locking at tuple-level granularity does not prevent
the insertion of new tuples into a table. Two-phase locking of tables
prevents phantoms, but table-level locking can be restrictive in cases

I1n all isolation levels, write requests are preceded by write locks that are held until end of
transaction.

226 Transactions: Concurrency Control and Recovery

where transactions access only a few tuples via an index. We inves-
tigate this issue further in Section 5.4.3 when we discuss locking in
indexes.

Commercial systems provide the four isolation levels above via
locking-based implementations of concurrency control. Unfortunately,
as noted by Berenson et al. [6], neither the early work by Gray nor the
ANSI standard achieve the goal of providing truly declarative defini-
tions. Both rely in subtle ways on an assumption that a locking scheme
is used for concurrency control, as opposed to an optimistic [47] or
multi-version [74] concurrency scheme. This implies that the proposed
semantics are ill-defined. The interested reader is encouraged to look at
the Berenson paper which discusses some of the problems in the SQL
standard specifications, as well as the research by Adya et al. [1], which
provides a new, cleaner approach to the problem.

In addition to the standard ANSI SQL isolation levels, various ven-
dors provide additional levels that have proven popular in particular
cases.

e CURSOR STABILITY: This level is intended to solve the
“lost update” problem of READ COMMITTED. Consider
two transactions T1 and T2. T1 runs in READ COM-
MITTED mode, reads an object X (say the value of a
bank account), remembers its value, and subsequently writes
object X based on the remembered value (say adding $100
to the original account value). T2 reads and writes X as well
(say subtracting $300 from the account). If T2’s actions hap-
pen between T1’s read and T1’s write, then the effect of T2’s
update will be lost — the final value of the account in our
example will be up by $100, instead of being down by $200 as
desired. A transaction in CURSOR STABILITY mode holds
a lock on the most recently read item on a query cursor;
the lock is automatically dropped when the cursor is moved
(e.g., via another FETCH) or the transaction terminates.
CURSOR STABILITY allows the transaction to do read—
think—write sequences on individual items without interven-
ing updates from other transactions.

6.3 Locking and Latching 227

o SNAPSHOT ISOLATION: A transaction running in SNAP-
SHOT ISOLATION mode operates on a version of the
database as it existed at the time the transaction began;
subsequent updates by other transactions are invisible to the
transaction. This is one of the major uses of MVCC in pro-
duction database systems. When the transaction starts, it
gets a unique start-timestamp from a monotonically increas-
ing counter; when it commits it gets a unique end-timestamp
from the counter. The transaction commits only if no other
transaction with an overlapping start/end-transaction pair
wrote data that this transaction also wrote. This isolation
mode depends upon a multi-version concurrency implemen-
tation, rather than locking. These schemes typically coexist,
however, in systems that support SNAPSHOT ISOLATION.

o READ CONSISTENCY: Thisisan MVCC scheme defined by
Oracle; it issubtly different from SNAPSHOT ISOLATION. In
the Oracle scheme, each SQL statement (of which there may be
many in a single transaction) sees the most recently committed
values as of the start of the statement. For statements that
fetch from cursors, the cursor set is based on the values as
of the time it is opened. This is implemented by maintaining
multiple logical versions of individual tuples, with a single
transaction possibly referencing multiple versions of a single
tuple. Rather than storing each version that might be needed,
Oracle stores only the most recent version. If an older version
is needed, it produces the older version by taking the current
version and “rolling it back” by applying undo log records
as needed. Modifications are maintained via long-term write
locks, so when two transactions want to write the same object,
the first writer “wins” and the second writer must wait for
the transaction completion of the first writer before its write
proceeds. By contrast, in SNAPSHOT ISOLATION the first
committer “wins” rather than the first writer.

Weak isolation schemes can provide higher concurrency than full
serializability. As a result, some systems even use weak consistency

228 Transactions: Concurrency Control and Recovery

as the default. For example, Microsoft SQL Server defaults to READ
COMMITTED. The downside is that Isolation (in the ACID sense)
is not guaranteed. Hence application writers need to reason about the
subtleties of the schemes to ensure that their transactions run correctly.
This can be tricky given the operationally defined semantics of the
schemes, and can lead to applications being more difficult to move
between DBMSs.

6.4 Log Manager

The log manager is responsible for maintaining the durability of com-
mitted transactions, for facilitating the rollback of aborted transactions
to ensure atomicity, and for recovering from system failure or non-
orderly shutdown. To provide these features, the log manager main-
tains a sequence of log records on disk, and a set of data structures
in memory. In order to support correct behavior after a crash, the
memory-resident data structures obviously need to be re-creatable from
persistent data in the log and the database.

Database logging is an extremely complex and detail-oriented topic.
The canonical reference on database logging is the journal paper on
ARIES [59], and a database expert should be familiar with the details
of that paper. The ARIES paper not only explains logging protocol,
but also provides discussion of alternative design possibilities, and the
problems that they can cause. This makes for dense, but ultimately
rewarding reading. As a more digestible introduction, the Ramakrish-
nan and Gehrke textbook [72] provides a description of the basic ARIES
protocol without side discussions or refinements. Here we discuss some
of the basic ideas in recovery, and try to explain the complexity gap
between textbook and journal descriptions.

The standard theme of database recovery is to use a Write-Ahead
Logging (WAL) protocol. The WAL protocol consists of three very
simple rules:

1. Each modification to a database page should generate a log
record, and the log record must be flushed to the log device
before the database page is flushed.

6.4 Log Manager 229

2. Database log records must be flushed in order; log record r
cannot be flushed until all log records preceding r are flushed.

3. Upon a transaction commit request, a commit log record
must be flushed to the log device before the commit request
returns successfully.

Many people only remember the first of these rules, but all three are
required for correct behavior.

The first rule ensures that the actions of incomplete transactions
can be undone in the event of a transaction abort, to ensure atomicity.
The combination of rules (2) and (3) ensure durability: the actions of
a committed transaction can be redone after a system crash if they are
not yet reflected in the database.

Given these simple principles, it is surprising that efficient database
logging is as subtle and detailed as it is. In practice, however, the sim-
ple story above is complicated by the need for extreme performance.
The challenge is to guarantee efficiency in the “fast path” for transac-
tions that commit, while also providing high-performance rollback for
aborted transactions, and quick recovery after crashes. Logging gets
even more complex when application-specific optimizations are added,
e.g., to support improved performance for fields that can only be incre-
mented or decremented (“escrow transactions”).

In order to maximize the speed of the fast path, most commer-
cial database systems operate in a mode that Haerder and Reuter call
“DIRECT, STEAL/NOT-FORCE” [34]: (a) data objects are updated
in place, (b) unpinned buffer pool frames can be “stolen” (and the mod-
ified data pages written back to disk) even if they contain uncommitted
data, and (c) buffer pool pages need not be “forced” (flushed) to the
database before a commit request returns to the user. These policies
keep the data in the location chosen by the DBA, and they give the
buffer manager and disk scheduler full latitude to decide on memory
management and 1/O policies without consideration for transactional
correctness. These features can have major performance benefits, but
require that the log manager efficiently handle all the subtleties of undo-
ing the flushes of stolen pages from aborted transactions, and redoing
the changes to not-forced pages of committed transactions that are

230 Transactions: Concurrency Control and Recovery

lost on crash. One optimization used by some DBMSs is to combine
the scalability advantages of a DIRECT, STEAL/NOT-FORCE sys-
tem with the performance of a DIRECT NOT-STEAL/NOT-FORCE
system. In these systems, pages are not stolen unless there are no clean
pages remaining in the buffer pool, in which case the system degrades
back to a STEAL policy with the additional overhead described above.

Another fast-path challenge in logging is to keep log records as small
as possible, in order to increase the throughput of log I/O activity.
A natural optimization is to log logical operations (e.g., “insert (Bob,
$25000) into EMP”) rather than physical operations (e.g., the after-
images for all byte ranges modified via the tuple insertion, including
bytes on both heap file and index blocks.) The trade-off is that the logic
to redo and undo logical operations becomes quite involved. This can
severely degrade performance during transaction abort and database
recovery.? In practice, a mixture of physical and logical logging (so-
called “physiological” logging) is used. In ARIES, physical logging is
generally used to support REDO, and logical logging is used to support
UNDO. This is part of the ARIES rule of “repeating history” during
recovery to reach the crash state, and then rolling back transactions
from that point.

Crash recovery is required to restore the database to a consistent
state after a system failure or non-orderly shutdown. As explained
above, recovery is theoretically achieved by replaying history and step-
ping through log records from the first all the way to the most recent
record. This technique is correct, but not very efficient since the log
could be arbitrarily long. Rather than starting from the very first log
record, a correct result will be obtained by starting recovery at the
oldest of these two log records: (1) the log record describing the earli-
est change to the oldest dirty page in the buffer pool, and (2) the log
record representing the start of the oldest transaction in the system.
The sequence number of this point is called the recovery log sequence
number (recovery LSN). Since computing and recording the recovery
LSN incurs overhead, and since we know that the recovery LSN is

2Note also that logical log records must always have well-known, inverse functions if they
need to participate in undo processing.

6.5 Locking and Logging in Indexes 231

monotonically increasing, we do not need to keep it always up to date.
Instead we compute it at periodic intervals called checkpoints.

A nailve checkpoint would force all dirty buffer pool pages and
then compute and store the recovery LSN. With a large buffer pool,
this could lead to delays of several seconds to complete the I/O of the
pending pages. So a more efficient “fuzzy” scheme for checkpointing is
required, along with logic to correctly bring the checkpoint up to the
most recent consistent state by processing as little of the log as possi-
ble. ARIES uses a very clever scheme in which the actual checkpoint
records are quite tiny, containing just enough information to initiate
the log analysis process and to enable the recreation of main-memory
data structures lost at crash time. During an ARIES fuzzy checkpoint,
the recovery LSN is computed but no buffer pool pages need to be syn-
chronously written out. A separate policy is used to determine when
to asynchronously write out old dirty buffer pool pages.

Note that rollback will require that log records be written. This
can lead to difficult situations where the in-flight transactions cannot
proceed due to running out of log space but they cannot be rolled back
either. This situation is typically avoided through space reservation
schemes, however, these schemes are hard to get and keep correct as
the system evolves through multiple releases.

Finally, the task of logging and recovery is further complicated by
the fact that a database is not merely a set of user data tuples on disk
pages; it also includes a variety of “physical” information that allows
it to manage its internal disk-based data structures. We discuss this in
the context of index logging in the next section.

6.5 Locking and Logging in Indexes

Indexes are physical storage structures for accessing data in the
database. The indexes themselves are invisible to database application
developers, except inasmuch as they improve performance or enforce
uniqueness constraints. Developers and application programs cannot
directly observe or manipulate entries in indexes. This allows indexes
to be managed via more efficient (and complex) transactional schemes.
The only invariant that index concurrency and recovery needs to pre-

232 Transactions: Concurrency Control and Recovery

serve is that the index always returns transactionally consistent tuples
from the database.

6.5.1 Latching in B+-Trees

A well-studied example of this issue arises in B+-tree latching. B+-
trees consist of database disk pages that are accessed via the buffer
pool, just like data pages. Hence one scheme for index concurrency
control is to use two-phase locks on index pages. This means that every
transaction that touches the index needs to lock the root of the B+-
tree until commit time — a recipe for limited concurrency. A variety of
latch-based schemes have been developed to work around this problem
without setting any transactional locks on index pages. The key insight
in these schemes is that modifications to the tree’s physical structure
(e.g., splitting pages) can be made in a non-transactional manner as
long as all concurrent transactions continue to find the correct data at
the leaves. There are roughly three approaches to this:

e (onservativeschemes: Multipletransactionswantingtoaccess
the same pages are allowed only if they can be guaranteed not
to conflict in their use of a page’s content. One such conflict
is a reading transaction that wants to traverse a fully packed
internal page ofthetree while aconcurrent inserting transaction
is operating below that page and might need to split that page
[4]. These conservative schemes sacrifice too much concurrency
compared with the more recent ideas below.

® Latch-coupling schemes: The tree traversal logic latches each
node before it is visited, only unlatching a node when the
next node to be visited has been successfully latched. This
scheme is sometimes called latch “crabbing,” because of the
crablike movement of “holding” a node in the tree, “grab-
bing” its child, releasing the parent, and repeating. Latch
coupling is used in some commercial systems; IBM’s ARIES-
IM version is well-described [60]. ARIES-IM includes some
fairly intricate details and corner cases — on occasion it has
to restart traversals after splits, and even set (very short-
term) tree-wide latches.

6.5 Locking and Logging in Indexes 233

® Right-link schemes: Simple additional structures are added
to the B+-tree to minimize the requirement for latches and
re-traversals. In particular, a link is added from each node to
its right-hand neighbor. During traversal, right-link schemes
do no latch-coupling — each node is latched, read, and
unlatched. The main intuition in right-link schemes is that
if a traversing transaction follows a pointer to a node n and
finds that n was split in the interim, the traversing transac-
tion can detect this fact, and “move right” via the right-links
to find the new correct location in the tree [46, 50]. Some sys-
tems support reverse traversal using back-links as well.

Kornacker et al. [46] provide a detailed discussion of the distinctions
between latch-coupling and right-link schemes, and point out that
latch-coupling is only applicable to B+-trees, and will not work for
index trees over more complex data, e.g., geographic data that does
not have a single linear order. The PostgreSQL Generalized Search
Tree (GiST) implementation is based on Kornacker et al.’s extensible
right-link scheme.

6.5.2 Logging for Physical Structures

In addition to special-case concurrency logic, indexes also use special-
case logging logic. This logic makes logging and recovery much more
efficient, at the expense of increased code complexity. The main idea is
that structural index changes need not be undone when the associated
transaction is aborted; such changes can often have no effect on the
database tuples seen by other transactions. For example, if a B+-tree
page is split during an inserting transaction that subsequently aborts,
there is no pressing need to undo the split during the abort processing.

This raises the challenge of labeling some log records redo-only.
During any undo processing of the log, the redo-only changes can be
left in place. ARIES provides an elegant mechanism for these scenarios,
called nested top actions, that allows the recovery process to “jump
over” log records for physical structure modifications during recovery
without any special-case code.

234 Transactions: Concurrency Control and Recovery

This same idea is used in other contexts, including heap files. An
insertion into a heap file may require that the file be extended on disk.
To capture this, changes must be made to the file’s extent map. This
is a data structure on disk that points to the runs of contiguous blocks
that constitute the file. These changes to the extent map need not be
undone if the inserting transaction aborts. The fact that the file has
become larger is a transactionally invisible side-effect, and may in fact
be useful for absorbing future insert traffic.

6.5.3 Next-Key Locking: Physical Surrogates
for Logical Properties

We close this section with a final index concurrency problem that illus-
trates a subtle but significant idea. The challenge is to provide full
serializability (including phantom protection) while allowing for tuple-
level locks and the use of indexes. Note that this technique only applies
to full serializability and is not required or used in relaxed isolation
models.

The phantom problem can arise when a transaction accesses tuples
via an index. In such cases, the transaction typically does not lock the
entire table, just the tuples in the table that are accessed via the index
(e.g., “Name BETWEEN ‘Bob’ AND ‘Bobby’”). In the absence of a
table-level lock, other transactions are free to insert new tuples into
the table (e.g., “Name=‘Bobbie’”). When these new inserts fall within
the value-range of a query predicate, they will appear in subsequent
accesses via that predicate. Note that the phantom problem relates to
the visibility of database tuples, and hence is a problem with locks,
not just latches. In principle, what is needed is the ability to some-
how lock the logical space represented by the original query’s search
predicate, e.g., the range of all possible strings that fall between “Bob”
and “Bobby” in lexicographic order. Unfortunately, predicate locking
is expensive, since it requires a way to compare arbitrary predicates for
overlap. This cannot be done with a hash-based lock table [3].

A common approach to the phantom problem in B-+-trees is called
next-key locking. In next-key locking, the index insertion code is mod-
ified so that an insertion of a tuple with index key kmust allocate an

6.6 Interdependencies of Transactional Storage 235

exclusive lock on the next-key tuple that exists in the index, where the
next-key tuple has the lowest key greater than k. This protocol ensures
that subsequent insertions cannot appear in between two tuples that
were returned previously to an active transaction. It also ensures that
tuples cannot be inserted just below the lowest-keyed tuple previously
returned. If no “Bob” key was found on the first access, for example,
then one should not be found on subsequent accesses within the same
transaction. One case remains: the insertion of tuples just above the
highest-keyed tuple previously returned. To protect against this case,
the next-key locking protocol requires read transactions get a shared
lock on the next-key tuple in the index as well. In this scenario, the
next-key tuple is the minimum-keyed tuple that does not satisfy the
query predicate. Updates behave logically as delete followed by insert
although optimizations are both possible and common.

Next key locking, although effective, does suffer from over-locking
and this can be problematic with some workloads. For example, if we
were scanning records from key 1 through key 10, but the column being
indexed had only the keys 1, 5, and 100 stored, the entire range from
1 to 100 would be read-locked since 100 is the next key after 10.

Next-key locking is not simply a clever hack. It is an example of
using a physical object (a currently-stored tuple) as a surrogate for a
logical concept (a predicate). The benefit is that simple system infras-
tructure like hash-based lock tables can be used for more complex pur-
poses, simply by modifying the lock protocol. Designers of complex
software systems should keep this general approach of logical surrogates
in their “bag of tricks” when such semantic information is available.

6.6 Interdependencies of Transactional Storage

We claimed early in this section that transactional storage systems are
monolithic, deeply entwined systems. In this section, we discuss a few
of the interdependencies between the three main aspects of a transac-
tional storage system: concurrency control, recovery management, and
access methods. In a happier world, it would be possible to identify nar-
row APIs between these modules that would allow the implementations
behind those APIs to be swappable. Our examples in this section show
that this is not easily done. We do not intend to provide an exhaustive

236 Transactions: Concurrency Control and Recovery

list of interdependencies here; generating and proving the completeness
of such a list would be a very challenging exercise. We do hope, how-
ever, to illustrate some of the twisty logic of transactional storage, and
thereby justify the resulting monolithic implementations in commercial
DBMSs.

We begin by considering concurrency control and recovery alone
without the further complication of access methods. Even with this
simplification, components are deeply intertwined. One manifestation
of the relationship between concurrency and recovery is that write-
ahead logging makes implicit assumptions about the locking proto-
col. Write-ahead logging requires strict two-phase locking, and will not
operate correctly with non-strict two-phase locking. To see this, con-
sider what happens during the rollback of an aborted transaction. The
recovery code begins processing the log records of the aborted transac-
tion, undoing its modifications. Typically this requires changing pages
or tuples that the transaction previously modified. In order to make
these changes, the transaction needs to have locks on those pages or
tuples. In a non-strict 2PL scheme, if the transaction drops any locks
before aborting, it may be unable to re-acquire the locks it needs to
complete the rollback process.

Access methods complicate things yet further. It is a significant
intellectual and engineering challenge to take a textbook access method
algorithm (e.g., linear hashing [53] or R-trees [32]) and implement a
correct, high-concurrency, recoverable version in a transactional sys-
tem. For this reason, most leading DBMSs still only implement heap
files and B+-trees as transactionally protected access methods; Post-
greSQL’s GiST implementation is a notable exception. As we illustrated
above for B+-trees, high-performance implementations of transactional
indexes include intricate protocols for latching, locking, and logging.
The B+-trees in serious DBMSs are riddled with calls to the concur-
rency and recovery code. Even simple access methods like heap files
have some tricky concurrency and recovery issues surrounding the data
structures that describe their contents (e.g., extent maps). This logic is
not generic to all access methods — it is very much customized to the
specific logic of the access method and its particular implementation.

Concurrency control in access methods has been well-developed
only for locking-oriented schemes. Other concurrency schemes (e.g.,

6.7 Standard Practice 237

Optimistic or Multi-version concurrency control) do not usually
consider access methods at all, or mention them only in an offhanded
and impractical fashion [47]. Hence mixing and matching different
concurrency mechanisms for a given access method implementation
is difficult.

Recovery logic in access methods is particularly system-specific: the
timing and contents of access method log records depend upon fine
details of the recovery protocol, including the handling of structure
modifications (e.g., whether they get undone upon transaction rollback,
and if not how that is avoided), and the use of physical and logical
logging. Even for a specific access method like a B-+-tree, the recovery
and concurrency logic are intertwined. In one direction, the recovery
logic depends upon the concurrency protocol: if the recovery manager
has to restore a physically consistent state of the tree, then it needs
to know what inconsistent states could possibly arise, to bracket those
states appropriately with log records for atomicity (e.g., via nested
top actions). In the opposite direction, the concurrency protocol for an
access method may be dependent on the recovery logic. For example,
the right-link scheme for B+-trees assume that pages in the tree never
“re-merge” after they split. This assumption requires that the recovery
scheme use a mechanism such as nested top actions to avoid undoing
splits generated by aborted transactions.

The one bright spot in this picture is that buffer management is
relatively well-isolated from the rest of the components of the storage
manager. As long as pages are pinned correctly, the buffer manager is
free to encapsulate the rest of its logic and re-implement it as needed.
For example, the buffer manager has freedom in the choice of pages to
replace (because of the STEAL property), and the scheduling of page
flushes (thanks to the NOT FORCE property). Achieving this isolation,
of course, is the direct cause of much of the complexity in concurrency
and recovery. So this spot is perhaps less bright than it seems.

6.7 Standard Practice

All production databases today support ACID transactions. As a rule,
they use write-ahead logging for durability, and two-phase locking for

238 Transactions: Concurrency Control and Recovery

concurrency control. An exception is PostgreSQL, which uses multi-
version concurrency control throughout. Oracle pioneered the limited
use of multi-version concurrency side-by-side with locking as a way
to offer relaxed consistency models like Snapshot Isolation and Read
Consistency; the popularity of these modes among users has led to
their adoption in more than one commercial DBMS, and in Oracle this
is the default. B+-tree indexing are standard in all of the production
databases, and most of the commercial database engines offer some
form of multi-dimensional index either embedded in the system or as
a “plugin” module. Only PostgreSQL offers high-concurrency multi-
dimensional and text indexing, via its GiST implementation.

MySQL is unique in actively supporting a variety of storage man-
agers underneath, to the point where DBAs often choose different stor-
age engines for different tables in the same database. Its default storage
engine, MyISAM, only supports table-level locking, but is considered
the high-performance choice for read-mostly workloads. For read/write
workloads, the InnoDB storage engine is recommended; it offers row-
level locking. (InnoDB was purchased by Oracle some years ago, but
remains open-source and free for use for the time being.) Neither of
the MySQL storage engines provide the well-known hierarchical lock-
ing scheme developed for System R [29], despite its universal use in the
other database systems. This makes the choice between InnoDB and
MyISAM tricky for MySQL DBAs, and in some mixed-workload cases
neither engine can provide good lock granularity, requiring the DBA to
develop a physical design using multiple tables and/or database repli-
cation to support both scans and high-selectivity index access. MySQL
also supports storage engines for main-memory and cluster-based stor-
age, and some third-party vendors have announced MySQL-compliant
storage engines, but most of the energy in the MySQL userbase today
is focused on MyISAM and InnoDB.

6.8 Discussion and Additional Material

Transaction mechanisms are by now an extremely mature topic, and
most of the possible tricks have been tried in one form or another over
the years; new designs tend to involve permutations and combinations

6.8 Discussion and Additional Material 239

of existing ideas. Perhaps the most noticeable changes in this space are
due to the rapidly dropping price of RAM. This increases the motiva-
tion to keep a large fraction of the “hot” portions of the database in
memory and run at memory speeds, which complicates the challenge of
getting data flushed to persistent storage often enough to keep restart
times low. The role of flash memory in transaction management is part
of this evolving balancing act.

An interesting development in recent years is the relatively broad
adoption of write-ahead logging in the OSs community, typically under
the rubric of Journaling file systems. These have become standard
options in essentially all OSs today. Since these filesystems typically
still do not support transactions over file data, it is interesting to
see how and where they use write-ahead logging for durability and
atomicity. The interested reader is referred to [62, 71] for further read-
ing. Another interesting direction in this regard is the work on Stasis
[78], which attempts to better modularize ARIES-style logging and
recovery and make it available to systems programmers for a wide
variety of uses.

7

Shared Components

In this section, we cover a number of shared components and utilities
that are present in nearly all commercial DBMS, but rarely discussed
in the literature.

7.1 Catalog Manager

The database catalog holds information about data in the system and
is a form of metadata. The catalog records the names of basic entities
in the system (users, schemas, tables, columns, indexes, etc.) and their
relationships, and is itself stored as a set of tables in the database. By
keeping the metadata in the same format as the data, the system is
made both more compact and simpler to use: users can employ the
same language and tools to investigate the metadata that they use for
other data, and the internal system code for managing the metadata is
largely the same as the code for managing other tables. This code and
language reuse is an important lesson that is often overlooked in early
stage implementations, typically to the significant regret of developers
later on. One of the authors witnessed this mistake yet again in an
industrial setting within the last decade.

240

7.2 Memory Allocator 241

The basic catalog data is treated somewhat differently from normal
tables for efficiency reasons. High-traffic portions of the catalog are
often materialized in main memory as needed, typically in data struc-
tures that “denormalize” the flat relational structure of the catalogs
into a main-memory network of objects. This lack of data indepen-
dence in memory is acceptable because the in-memory data structures
are used in a stylized fashion only by the query parser and optimizer.
Additional catalog data is cached in query plans at parsing time, again
often in a denormalized form suited to the query. Moreover, catalog
tables are often subject to special-case transactional tricks to minimize
“hot spots” in transaction processing.

Catalogs can become formidably large in commercial applications.
One major Enterprise Resource Planning application, for example, has
over 60,000 tables, with between 4 and 8 columns per table, and typi-
cally two or three indexes per table.

7.2 Memory Allocator

The textbook presentation of DBMS memory management tends to
focus entirely on the buffer pool. In practice, database systems allo-
cate significant amounts of memory for other tasks as well. The correct
management of this memory is both a programming burden and a per-
formance issue. Selinger-style query optimization can use a great deal of
memory, for example, to build up state during dynamic programming.
Query operators like hashjoins and sorts allocate significant memory
at runtime. Memory allocation in commercial systems is made more
efficient and easier to debug via the use of a contexrt-based memory
allocator.

A memory context is an in-memory data structure that maintains a
list of regions of contiguous virtual memory, often called memory pools.
Fach region can have a small header that contains either a context label
or a pointer to the context header structure. The basic API for memory
contexts includes calls to:

o (C'reate a context with a given name or type. The context type
might advise the allocator how to efficiently handle memory
allocation. For example, the contexts for the query optimizer

242 Shared Components

grow via small increments, while contexts for hashjoins allo-
cate their memory in a few large batches. Based on such
knowledge, the allocator can choose to allocate bigger or
smaller regions at a time.

e Allocate a chunk of memory within a context. This allocation
will return a pointer to memory (much like the traditional
malloc () call). That memory may come from an existing
region in the context. Or, if no such space exists in any region,
the allocator will ask the OS for a new region of memory,
label it, and link it into the context

® Delete a chunk of memory within a context. This may or
may not cause the context to delete the corresponding region.
Deletion from memory contexts is somewhat unusual. A more
typical behavior is to delete an entire context.

® Delete a context. This first frees all of the regions associated
with the context, and then deletes the context header.

® Reset a context. This retains the context, but returns it to
the state of original creation, typically by deallocating all
previously allocated regions of memory.

Memory contexts provide important software engineering advan-
tages. The most important is that they serve as a lower-level,
programmer-controllable alternative to garbage collection. For exam-
ple, the developers writing the optimizer can allocate memory in an
optimizer context for a particular query, without worrying about how
to free the memory later on. When the optimizer has picked the best
plan, it can copy the plan into memory from a separate executor con-
text for the query, and then simply delete the query’s optimizer context.
This saves the trouble of writing code to carefully walk all the optimizer
data structures and delete their components. It also avoids tricky mem-
ory leaks that can arise from bugs in such code. This feature is very
useful for the naturally “phased” behavior of query execution, where
control proceeds from parser to optimizer to executor, with a number
of allocations in each context followed by a context deletion.

Note that memory contexts actually provide more control than most
garbage collectors as developers can control both spatial and temporal

7.2 Memory Allocator 243

locality of deallocation. The context mechanism itself provides the spa-
tial control that allows the programmer to separate memory into log-
ical units. Temporal control follows from programmers being allowed
to issue context deletions when appropriate. By contrast, garbage col-
lectors typically work on all of a program’s memory, and make their
own decisions about when to run. This is one of the frustrations of
attempting to write server-quality code in Java [81].

Memory contexts also provide performance advantages on platforms
where the overhead for malloc() and free() is relatively high. In par-
ticular, memory contexts can use semantic knowledge (via the context
type) of how memory will be allocated and deallocated, and may call
malloc() and free() accordingly to minimize OS overheads. Some
components of a database system (e.g., the parser and optimizer) allo-
cate a large number of small objects, and then free them all at once via
a context deletion. Calls to free () many small objects are rather expen-
sive on most platforms. A memory allocator can instead call malloc ()
to allocate large regions, and apportion the resulting memory to its
callers. The relative lack of memory deallocations means that the com-
paction logic that malloc() and free() use is not needed. And when
the context is deleted, only a few free() calls are required to remove
the large regions.

The interested reader may want to browse the open-source Post-
greSQL code. This utilizes a fairly sophisticated memory allocator.

7.2.1 A Note on Memory Allocation for Query Operators

Vendors differ philosophically in their memory-allocation schemes for
space-intensive operators such as hash joins and sorts. Some systems
(e.g., DB2 for zSeries) allow the DBA to control the amount of RAM
that such operations will use, and guarantee that each query gets that
amount of RAM when executed. The admission control policy ensures
this guarantee. In such systems, operators allocate their memory from
the heap via the memory allocator. These systems provide good perfor-
mance stability, but force the DBA to (statically) decide how to balance
physical memory across various subsystems such as the buffer pool and
the query operators.

244 Shared Components

Other systems (e.g., MS SQL Server), take the memory allocation
task out of the DBA’s hands and manage these allocations automat-
ically. These systems attempt to intelligently allocate memory across
the various components of query execution, including page caching in
the buffer pool and query operator memory use. The pool of memory
used for all of these tasks is the buffer pool itself. Hence the query
operators in these systems take memory from the buffer pool via a
DBMS-implemented memory allocator and only use the OS allocator
for contiguous requests larger than a buffer pool page.

This distinction echoes our discussion of query preparation in Sec-
tion 6.3.1. The former class of systems assumes that the DBA is engaged
in sophisticated tuning, and that the workload for the system will
be amenable to carefully chosen adjustments to the system’s mem-
ory “knobs.” Under these conditions, such systems should always per-
form predictably well. The latter class assumes that DBAs either do
not or cannot correctly set these knobs, and attempts to replace DBA
tuning with software logic. They also retain the right to change their
relative allocations adaptively. This provides the possibility for better
performance on changing workloads. As discussed in Section 6.3.1, this
distinction says something about how these vendors expect their prod-
ucts to be used, and about the administrative expertise (and financial
resources) of their customers.

7.3 Disk Management Subsystems

DBMS textbooks tend to treat disks as homogeneous objects. In prac-
tice, disk drives are complex and heterogeneous pieces of hardware that
vary widely in capacity and bandwidth. Hence every DBMS has a disk
management subsystem that deals with these issues and manages the
allocation of tables and other units of storage across raw devices, logical
volumes or files.

One responsibility of this subsystem is to map tables to devices
and/or files. One-to-one mappings of tables to files sounds natural, but
raised significant problems in early file systems. First, OS files tradi-
tionally could not be larger than a disk, while database tables may
need to span multiple disks. Second, allocating too many OS files was

7.3 Disk Management Subsystems 245

considered bad form, since the OS typically only allowed a few open
file descriptors, and many OS utilities for directory management and
backup did not scale to very large numbers of files. Finally, many early
file systems limited file size to 2 GB. This is clearly an unacceptably
small table limit. Many DBMS vendors circumvented the OS file sys-
tem altogether using raw 10 while others chose to work around these
restrictions. Hence all leading commercial DBMS may spread a table
over multiple files or store multiple tables in a single database file. Over
time, most OS file systems have evolved beyond these limitations. But
the legacy influence persists and modern DBMSs still typically treat
OS files as abstract storage units that map arbitrarily to database
tables.

More complex is the code to handle device-specific details for main-
taining temporal and spatial control as described in Section 4. A large
and vibrant industry exists today based on complex storage devices
that “pretend” to be disk drives, but that are in fact large hard-
ware/software systems whose API is a legacy disk drive interface like
SCSI. These systems include RAID systems and Storage Area Network
(SAN) devices and tend to have very large capacities and complex
performance characteristics. Administrators like these systems because
they are easy to install, and often provide easily managed, bit-level reli-
ability with fast failover. These features provide a significant sense of
comfort to customers, above and beyond the promises of DBMS recov-
ery subsystems. Large DBMS installations, for example, commonly
use SANs.

Unfortunately, these systems complicate DBMS implementations.
As an example, RAID systems perform very differently after a fault
than they do when all disks are functioning correctly. This poten-
tially complicates the I/O cost models for the DBMS. Some disks
can operate in write-cache enabled mode, but this can lead to data
corruption during hardware failure. Advanced SANs implement large
battery-backed caches, in some cases nearing a terabyte, but these
systems bring with them well over a million lines of microcode and
considerable complexity. With complexity comes new failure modes
and these problems can be incredibly difficult to detect and properly
diagnose.

246 Shared Components

RAID systems also frustrate database designers by underperform-
ing on database tasks. RAID was conceived for bytestream-oriented
storage (a la UNIX files), rather than the page-oriented storage used
by database systems. Hence RAID devices tend to underperform when
compared with database-specific solutions for partitioning and repli-
cating data across multiple physical devices. The chained decluster-
ing scheme of Gamma [43], for example, roughly coincided with the
invention of RAID and performs better for a DBMS environment.
Further, most databases provide DBA commands to control the par-
titioning of data across multiple devices, but RAID devices sub-
vert these commands by hiding the multiple devices behind a single
interface.

Many users configure their RAID devices to minimize space over-
heads (“RAID level 57), when the database would perform far, far
better via simpler schemes like disk mirroring (“RAID level 1”7). A par-
ticularly unpleasant feature of RAID level 5 is that write performance
is poor. This can cause surprising bottlenecks for users, and the DBMS
vendors are often on the hook to explain or provide workarounds for
these bottlenecks. For better or worse, the use (and misuse) of RAID
devices is a fact that commercial DBMSs must take into account. As
a result, most vendors spend significant energy tuning their DBMSs to
work well on the leading RAID devices.

In the last decade, most customer deployments allocate database
storage to files rather than directly to logical volumes or raw devices.
But most DBMSs still support raw device access and often use this
storage mapping when running high-scale transaction processing bench-
marks. And, despite some of the drawback outlines above, most enter-
prise DBMS storage is SAN-hosted today.

7.4 Replication Services

It is often desirable to replicate databases across a network via periodic
updates. This is frequently used for an extra degree of reliability: the
replicated database serves as a slightly-out-of-date “warm standby” in
case the main system goes down. Keeping the warm standby in a phys-
ically different location is advantageous to allow continued functioning

7.4 Replication Services 247

after a fire or other catastrophe. Replication is also often used to pro-
vide a pragmatic form of distributed database functionality for large,
geographically distributed enterprises. Most such enterprises partition
their databases into large geographic regions (e.g., nations or conti-
nents), and run all updates locally on the primary copies of the data.
Queries are executed locally as well, but can run on a mix of fresh
data from their local operations, and slightly-out-of-date data repli-
cated from remote regions.

Ignoring hardware techniques (e.g., EMC SRDF), three typical
schemes for replication are used, but only the third provides the per-
formance and scalability needed for high-end settings. It is, of course,
the most difficult to implement.

1. Physical Replication: The simplest scheme is to physically
duplicate the entire database every replication period. This
scheme does not scale up to large databases, because of the
bandwidth for shipping the data, and the cost for reinstalling
it at the remote site. Moreover, guaranteeing a transaction-
ally consistent snapshot of the database is tricky. Physical
replication is therefore used only as a client-side workaround
at the low end. Most vendors do not encourage this scheme
via any software support.

2. Trigger-Based Replication: In this scheme, triggers are
placed on the database tables so that upon any insert, delete,
or update to the table, a “difference” record is installed in a
special replication table. This replication table is shipped to
the remote site, and the modifications are “replayed” there.
This scheme solves the problems mentioned above for phys-
ical replication, but brings a performance penalty unaccept-
able for some workloads.

3. Log-Based Replication: Log-based replication is the replica-
tion solution of choice when feasible. In log-based replication,
a log sniffer process intercepts log writes and delivers them
to the remote system. Log-based replication is implemented
using two broad techniques: (1) read the log and build SQL
statements to be replayed against the target system, or

248 Shared Components

(2) read log records and ship these to the target system,
which is in perpetual recovery mode replaying log records as
they arrive. Both mechanisms have value, so Microsoft SQL
Server, DB2, and Oracle implement both. SQL Server calls
the first Log Shipping and the second Database Mirroring.

This scheme overcomes all of the problems of the previous
alternatives: it is low-overhead and incurs minimal or invis-
ible performance overhead on the running system; it pro-
vides incremental updates, and hence scales gracefully with
the database size and the update rate; it reuses the built-
in mechanisms of the DBMS without significant additional
logic; and finally, it naturally provides transactionally con-
sistent replicas via the log’s built-in logic.

Most of the major vendors provide log-based replication
for their own systems. Providing log-based replication that
works across vendors is much more difficult, because driv-
ing the vendors replay logic at the remote end requires an
understanding of that vendor’s log formats.

7.5 Administration, Monitoring, and Utilities

Every DBMS provides a set of utilities for managing their systems.
These utilities are rarely benchmarked, but often dictate the manage-
ability of the system. A technically challenging and especially impor-
tant feature is to make these utilities run online, i.e., while user queries
and transactions are in flight. This is important in the 24 x 7 oper-
ations that have become much more common in recent years due to
the global reach of e-commerce. The traditional “reorg window” in the
wee hours of the morning is typically no longer available. Hence most
vendors have invested significant energy in recent years in providing
online utilities. We give a flavor of these utilities here:

e Optimizer Statistics Gathering: Every major DBMS has
some means to sweep tables and build optimizer statistics
of one sort or another. Some statistics, such as histograms,
are non-trivial to build in one pass without flooding memory.

7.5 Administration, Monitoring, and Utilities 249

For examples, see the work by Flajolet and Martin on com-
puting the number of distinct values in a column [17].
Physical Reorganization and Index Construction: Over time,
access methods can become inefficient due to patterns of
insertions and deletions that leave unused space. Also, users
may occasionally request that tables be reorganized in the
background, for example to recluster (sort) them on different
columns, or to repartition them across multiple disks. Online
reorganization of files and indexes can be tricky, since holding
locks for any length of time must be avoided while maintain-
ing physical consistency. In this sense it bears some analo-
gies to the logging and locking protocols used for indexes, as
described in Section 5.4. This has been the subject of several
research papers [95] and patents.

Backup/Export: All DBMSs support the ability to physically
dump the database to backup storage. Again, since this is a
long-running process, it cannot naively set locks. Instead,
most systems perform some kind of “fuzzy” dump, and aug-
ment it with logging logic to ensure transactional consistency.
Similar schemes can be used to export the database to an
interchange format.

Bulk Load: In many scenarios, massive amounts of data need
to be brought quickly into the database. Rather than insert-
ing each row one at a time, vendors supply a bulk load utility
optimized for high speed data import. Typically these util-
ities are supported by custom code in the storage manager.
For example, special bulk-loading code for B+-trees can be
much faster than repeated calls to the tree-insertion code.
Monitoring, Tuning, and Resource Governers: It is not
unusual, even in managed environments, for a query to con-
sume more resources than desirable. Hence most DBMSs
provide tools to assist administrators in identifying and pre-
venting these kinds of problems. It is typical to provide a
SQL-based interface to DBMS performance counters via “vir-
tual tables,” which can show system status broken down by
queries or by resources like locks, memory, temporary stor-

250 Shared Components

age, and the like. In some systems, it is also possible to query
historical logs of such data. Many systems allow alerts to be
registered when queries exceed certain performance limits,
including running time, memory or lock acquisition; in some
cases the triggering of an alert can cause the query to be
aborted. Finally, tools like IBM’s Predictive Resource Gover-
nor attempt to prevent resource-intensive queries from being
run at all.

8

Conclusion

As should be clear from this paper, modern commercial database sys-
tems are grounded both in academic research and in the experiences
of developing industrial-strength products for high-end customers. The
task of writing and maintaining a high-performance, fully functional
relational DBMS from scratch is an enormous investment in time and
energy. Many of the lessons of relational DBMSs, however, translate
over to new domains. Web services, network-attached storage, text and
e-mail repositories, notification services, and network monitors can all
benefit from DBMS research and experience. Data-intensive services
are at the core of computing today, and knowledge of database system
design is a skill that is broadly applicable, both inside and outside the
halls of the main database shops. These new directions raise a number
of research problems in database management as well, and point the
way to new interactions between the database community and other
areas of computing.

251

Acknowledgments

The authors would like to thank Rob von Behren, Eric Brewer, Paul
Brown, Amol Deshpande, Cesar Galindo-Legaria, Jim Gray, Wei Hong,
Matt Huras, Lubor Kollar, Ganapathy Krishnamoorthy, Bruce Lind-
say, Guy Lohman, S. Muralidhar, Pat Selinger, Mehul Shah, and Matt
Welsh for background information and comments on early drafts of this

paper.

252

References

(1]

2]

3]

A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level definitions,” in
16th International Conference on Data Engineering (ICDE), San Diego, CA,
February 2000.

R. Agrawal, M. J. Carey, and M. Livny, “Concurrency control performance
modelling: Alternatives and implications,” ACM Transactions on Database Sys-
tems (TODS), vol. 12, pp. 609-654, 1987.

M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. Gray,
P. P. Griffiths, W. F. Frank King III, R. A. Lorie, P. R. McJones, J. W. Mehl,
G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson, “System R: Relational
approach to database management,” ACM Transactions on Database Systems
(TODS), vol. 1, pp. 97-137, 1976.

R. Bayer and M. Schkolnick, “Concurrency of operations on B-trees,” Acta
Informatica, vol. 9, pp. 1-21, 1977.

K. P. Bennett, M. C. Ferris, and Y. E. Ioannidis, “A genetic algorithm for
database query optimization,” in Proceedings of the 4th International Confer-
ence on Genetic Algorithms, pp. 400—407, San Diego, CA, July 1991.

H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil,
“A critique of ANSI SQL isolation levels,” in Proceedings of ACM SIGMOD
International Conference on Management of Data, pp. 1-10, San Jose, CA,
May 1995.

P. A. Bernstein and N. Goodman, “Concurrency control in distributed database
systems,” ACM Computing Surveys, vol. 13, 1981.

W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N. MacNaughton, “The
oracle universal server buffer,” in Proceedings of 23rd International Conference
on Very Large Data Bases (VLDB), pp. 590-594, Athens, Greece, August 1997.

253

254 References

(9]

(10]
(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

[20]

21]

22]

23]

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” in Symposium on Operating System Design and
Implementation (OSDI), 2006.

S. Chaudhuri, “An overview of query optimization in relational systems,” in
Proceedings of ACM Principles of Database Systems (PODS), 1998.

S. Chaudhuri and U. Dayal, “An overview of data warehousing and olap tech-
nology,” ACM SIGMOD Record, March 1997.

S. Chaudhuri and V. R. Narasayya, “Autoadmin ‘what-if’ index analysis util-
ity,” in Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data, pp. 367-378, Seattle, WA, June 1998.

S. Chaudhuri and K. Shim, “Optimization of queries with user-defined predi-
cates,” ACM Transactions on Database Systems (TODS), vol. 24, pp. 177-228,
1999.

M.-S. Chen, J. Hun, and P. S. Yu, “Data mining: An overview from a database
perspective,” IEEE Transactions on Knowledge and Data Engineering, vol. 8,
1996.

H.-T. Chou and D. J. DeWitt, “An evaluation of buffer management strategies
for relational database systems,” in Proceedings of 11th International Confer-
ence on Very Large Data Bases (VLDB), pp. 127-141, Stockholm, Sweden,
August 1985.

A. Desphande, M. Garofalakis, and R. Rastogi, “Independence is good:
Dependency-based histogram synopses for high-dimensional data,” in Proceed-
ings of the 18th International Conference on Data Engineering, San Jose, CA,
February 2001.

P. Flajolet and G. Nigel Martin, “Probabilistic counting algorithms for data
base applications,” Journal of Computing System Science, vol. 31, pp. 182-209,
1985.

C. A. Galindo-Legaria, A. Pellenkoft, and M. L. Kersten, “Fast, randomized
join-order selection — why use transformations?,” VLDB, pp. 85-95, 1994.

S. Ganguly, W. Hasan, and R. Krishnamurthy, “Query optimization for parallel
execution,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 9-18, San Diego, CA, June 1992.

M. Garofalakis and P. B. Gibbons, “Approximate query processing: Taming
the terabytes, a tutorial,” in International Conferenence on Very Large Data
Bases, 2001. www.vldb.org/conf/2001/tut4.pdf.

M. N. Garofalakis and Y. E. Ioannidis, “Parallel query scheduling and opti-
mization with time- and space-shared resources,” in Proceedings of 23rd Inter-
national Conference on Very Large Data Bases (VLDB), pp. 296-305, Athens,
Greece, August 1997.

R. Goldman and J. Widom, “Wsq/dsq: A practical approach for combined
querying of databases and the web,” in Proceedings of ACM-SIGMOD Inter-
national Conference on Management of Data, 2000.

G. Graefe, “Encapsulation of parallelism in the volcano query processing sys-
tem,” in Proceedings of ACM-SIGMOD International Conference on Manage-
ment of Data, pp. 102-111, Atlantic City, May 1990.

24]
[25]
[26]
27]
(28]

29]

(30]

31]

32]

33]

34]

[35]

(36]

37]

(38]

(39]

(40]

[41]

References 255

G. Graefe, “Query evaluation techniques for large databases,” Computing Sur-
veys, vol. 25, pp. 73-170, 1993.

G. Graefe, “The cascades framework for query optimization,” IEFEE Data Engi-
neering Bulletin, vol. 18, pp. 19-29, 1995.

C. Graham, “Market share: Relational database management systems by oper-
ating system, worldwide, 2005,” Gartner Report No: G00141017, May 2006.
J. Gray, “Greetings from a filesystem user,” in Proceedings of the FAST 05
Conference on File and Storage Technologies, (San Francisco), December 2005.
J. Gray and B. Fitzgerald, FLASH Disk Opportunity for Server-Applications.
http://research.microsoft.com/~Gray/papers/FlashDiskPublic.doc.

J. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger, “Granularity of locks
and degrees of consistency in a shared data base,” in IFIP Working Conference
on Modelling in Data Base Management Systems, pp. 365—-394, 1976.

J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann, 1993.

S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler, “Scalable, dis-
tributed data structures for internet service construction,” in Proceedings of the
Fourth Symposium on Operating Systems Design and Implementation (OSDI),
2000.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,” in Pro-
ceedings of ACM-SIGMOD International Conference on Management of Data,
pp- 47-57, Boston, June 1984.

L. Haas, D. Kossmann, E. L. Wimmers, and J. Yang, “Optimizing queries across
diverse data sources,” in International Conference on Very Large Databases
(VLDB), 1997.

T. Haerder and A. Reuter, “Principles of transaction-oriented database recov-
ery,” ACM Computing Surveys, vol. 15, pp. 287-317, 1983.

S. Harizopoulos and N. Ailamaki, “StagedDB: Designing database servers for
modern hardware,” IEEE Data Engineering Bulletin, vol. 28, pp. 11-16, June
2005.

S. Harizopoulos, V. Liang, D. Abadi, and S. Madden, “Performance tradeoffs
in read-optimized databases,” in Proceedings of the 32nd Very Large Databases
Conference (VLDB), 2006.

J. M. Hellerstein, “Optimization techniques for queries with expensive meth-
ods,” ACM Transactions on Database Systems (TODS), vol. 23, pp. 113-157,
1998.

J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,” in Pro-
ceedings of ACM-SIGMOD International Conference on Management of Data,
1997.

J. M. Hellerstein, J. Naughton, and A. Pfeffer, “Generalized search trees
for database system,” in Proceedings of Very Large Data Bases Conference
(VLDB), 1995.

J. M. Hellerstein and A. Pfeffer, “The russian-doll tree, an index structure for
sets,” University of Wisconsin Technical Report TR1252, 1994.

C. Hoare, “Monitors: An operating system structuring concept,” Communica-
tions of the ACM (CACM), vol. 17, pp. 549-557, 1974.

256 References

[42]

(43]

(44]

[45]

[46]

(47]

(48]
(49]

[50]

[51]

[52]

53]

[54]

[55]

[56]

[57]

W. Hong and M. Stonebraker, “Optimization of parallel query execution plans
in xprs,” in Proceedings of the First International Conference on Parallel
and Distributed Information Systems (PDIS), pp. 218-225, Miami Beach, FL,
December 1991.

H.-1. Hsiao and D. J. DeWitt, “Chained declustering: A new availability strat-
egy for multiprocessor database machines,” in Proceedings of Sizth Interna-
tional Conference on Data Engineering (ICDE), pp. 456-465, Los Angeles, CA,
November 1990.

Y. E. Ioannidis and Y. Cha Kang, “Randomized algorithms for optimizing
large join queries,” in Proceedings of ACM-SIGMOD International Conference
on Management of Data, pp. 312-321, Atlantic City, May 1990.

Y. E. Ioannidis and S. Christodoulakis, “On the propagation of errors in the size
of join results,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data, pp. 268-277, Denver, CO, May 1991.

M. Kornacker, C. Mohan, and J. M. Hellerstein, “Concurrency and recovery
in generalized search trees,” in Proceedings of ACM SIGMOD International
Conference on Management of Data, pp. 62-72, Tucson, AZ, May 1997.

H. T. Kung and J. T. Robinson, “On optimistic methods for concurrency con-
trol,” ACM Tranactions on Database Systems (TODS), vol. 6, pp. 213-226,
1981.

J. R. Larus and M. Parkes, “Using cohort scheduling to enhance server perfor-
mance,” in USENIX Annual Conference, 2002.

H. C. Lauer and R. M. Needham, “On the duality of operating system struc-
tures,” ACM SIGOPS Operating Systems Review, vol. 13, pp. 3—19, April 1979.
P. L. Lehman and S. Bing Yao, “Efficient locking for concurrent operations on
b-trees,” ACM Transactions on Database Systems (TODS), vol. 6, pp. 650-670,
December 1981.

A.Y. Levy, “Answering queries using views,” VLDB Journal, vol. 10, pp. 270—
294, 2001.

A.Y. Levy, I. Singh Mumick, and Y. Sagiv, “Query optimization by predicate
move-around,” in Proceedings of 20th International Conference on Very Large
Data Bases, pp. 96-107, Santiago, September 1994.

W. Litwin, “Linear hashing: A new tool for file and table addressing,” in Sizth
International Conference on Very Large Data Bases (VLDB), pp. 212-223,
Montreal, Quebec, Canada, October 1980.

G. M. Lohman, “Grammar-like functional rules for representing query optimiza-
tion alternatives,” in Proceedings of ACM SIGMOD International Conference
on Management of Data, pp. 18-27, Chicago, IL, June 1988.

Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G. Lindsay, and
J. F. Naughton, “Middle-tier database caching for e-business,” in Proceedings
of ACM SIGMOD International Conference on Management of Data, 2002.

S. R. Madden and M. J. Franklin, “Fjording the stream: An architecture for
queries over streaming sensor data,” in Proceedings of 12th IEEE International
Conference on Data Engineering (ICDE), San Jose, February 2002.

V. Markl, G. Lohman, and V. Raman, “Leo: An autonomic query optimizer
for db2,” IBM Systems Journal, vol. 42, pp. 98-106, 2003.

[58]

[59]

[60]

[61]

(62]

(63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

References 257

C. Mohan, “Aries/kvl: A key-value locking method for concurrency control
of multiaction transactions operating on b-tree indexes,” in 16th International
Conference on Very Large Data Bases (VLDB), pp. 392-405, Brisbane, Queens-
land, Australia, August 1990.

C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and P. M. Schwarz,
“Aries: A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging,” ACM Transactions on Database
Systems (TODS), vol. 17, pp. 94-162, 1992.

C. Mohan and F. Levine, “Aries/im: An efficient and high concurrency index
management method using write-ahead logging,” in Proceedings of ACM SIG-
MOD International Conference on Management of Data, (M. Stonebraker, ed.),
pp- 371-380, San Diego, CA, June 1992.

C. Mohan, B. G. Lindsay, and R. Obermarck, “Transaction management in the
r* distributed database management system,” ACM Transactions on Database
Systems (TODS), vol. 11, pp. 378-396, 1986.

E. Nightingale, K. Veerarghavan, P. M. Chen, and J. Flinn, “Rethink the sync,”
in Symposium on Operating Systems Design and Implementation (OSDI),
November 2006.

OLAP Market Report. Online manuscript. http://www.olapreport.com/mar-
ket.htm.

E. J. O'Neil, P. E. O'Neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” in Proceedings of ACM SIGMOD
International Conference on Management of Data, pp. 297-306, Washington,
DC, May 1993.

P. E. O’Neil and D. Quass, “Improved query performance with variant indexes,”
in Proceedings of ACM-SIGMOD International Conference on Management of
Data, pp. 3849, Tucson, May 1997.

S. Padmanabhan, B. Bhattacharjee, T. Malkemus, L.. Cranston, and M. Huras,
“Multi-dimensional clustering: A new data layout scheme in db2,” in ACM
SIGMOD International Management of Data (San Diego, California, June 09—
12, 2003) SIGMOD 03, pp. 637641, New York, NY: ACM Press, 2003.

D. Patterson, “Latency lags bandwidth,” CACM, vol. 47, pp. 71-75, October
2004.

H. Pirahesh, J. M. Hellerstein, and W. Hasan, “Extensible/rule- based query
rewrite optimization in starburst,” in Proceedings of ACM-SIGMOD Interna-
tional Conference on Management of Data, pp. 39-48, San Diego, June 1992.

V. Poosala and Y. E. loannidis, “Selectivity estimation without the attribute
value independence assumption,” in Proceedings of 23rd International Confer-
ence on Very Large Data Bases (VLDB), pp. 486—495, Athens, Greece, August
1997.

M. Péss, B. Smith, L. Kollar, and P.-A. Larson, “Tpc-ds, taking decision sup-
port benchmarking to the next level,” in SIGMOD 2002, pp. 582-587.

V. Prabakharan, A. C. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Analysis and
evolution of journaling file systems,” in Proceedings of USENIX Annual Tech-
nical Conference, April 2005.

258 References

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]
(86]
(87]
(88]

(89)]

R. Ramakrishnan and J. Gehrke, “Database management systems,” McGraw-
Hill, Boston, MA, Third ed., 2003.

V. Raman and G. Swart, “How to wring a table dry: Entropy compression of
relations and querying of compressed relations,” in Proceedings of International
Conference on Very Large Data Bases (VLDB), 2006.

D. P. Reed, Naming and Synchronization in a Decentralized Computer System.
PhD thesis, MIT, Dept. of Electrical Engineering, 1978.

A. Reiter, “A study of buffer management policies for data management sys-
tems,” Technical Summary Report 1619, Mathematics Research Center, Uni-
versity of Wisconsin, Madison, 1976.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, “System level concurrency
control for distributed database systems,” ACM Transactions on Database Sys-
tems (TODS), vol. 3, pp. 178-198, June 1978.

S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating mining with relational
database systems: Alternatives and implications,” in Proceedings of ACM-
SIGMOD International Conference on Management of Data, 1998.

R. Sears and E. Brewer, “Statis: Flexible transactional storage,” in Proceedings
of Symposium on Operating Systems Design and Implementation (OSDI), 2006.
P. G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price, “Access
path selection in a relational database management system,” in Proceedings of
ACM-SIGMOD International Conference on Management of Data, pp. 22-34,
Boston, June 1979.

P. Seshadri, H. Pirahesh, and T. Y. C. Leung, “Complex query decorrelation,”
in Proceedings of 12th IEEE International Conference on Data Engineering
(ICDE), New Orleans, February 1996.

M. A. Shah, S. Madden, M. J. Franklin, and J. M. Hellerstein, “Java support for
data-intensive systems: Experiences building the telegraph dataflow system,”
ACM SIGMOD Record, vol. 30, pp. 103-114, 2001.

L. D. Shapiro, “Exploiting upper and lower bounds in top-down query opti-
mization,” International Database Engineering and Application Symposium
(IDEAS), 2001.

A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System Concepts.
McGraw-Hill, Boston, MA, Fourth ed., 2001.

M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized opti-
mization for the join ordering problem,” VLDB Journal, vol. 6, pp. 191-208,
1997.

M. Stonebraker, “Retrospection on a database system,” ACM Transactions on
Database Systems (TODS), vol. 5, pp. 225-240, 1980.

M. Stonebraker, “Operating system support for database management,” Com-
munications of the ACM (CACM), vol. 24, pp. 412-418, 1981.

M. Stonebraker, “The case for shared nothing,” IEEE Database Engineering
Bulletin, vol. 9, pp. 4-9, 1986.

M. Stonebraker, “Inclusion of new types in relational data base systems,” ICDE,
pPP. 262-269, 1986.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,

[90]

(91]

92]

(93]

(94]

[95]

References 259

and S. Zdonik, “C-store: A column oriented dbms,” in Proceedings of the Con-
ference on Very Large Databases (VLDB), 2005.

M. Stonebraker and U. Cetintemel, “One size fits all: An idea whose time
has come and gone,” in Proceedings of the International Conference on Data
Engineering (ICDE), 2005.

Transaction Processing Performance Council 2006. TPC Benchmark C Stan-
dard Specification Revision 5.7, http://www.tpc.org/tpce/spec/tpec_current.
pdf, April.

T. Urhan, M. J. Franklin, and L. Amsaleg, “Cost based query scrambling for
initial delays,” ACM-SIGMOD International Conference on Management of
Data, 1998.

R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer, “Capriccio:
Scalable threads for internet services,” in Proceedings of the Ninteenth Sym-
posium on Operating System Principles (SOSP-19), Lake George, New York,
October 2003.

M. Welsh, D. Culler, and E. Brewer, “Seda: An architecture for well- condi-
tioned, scalable internet services,” in Proceedings of the 18th Symposium on
Operating Systems Principles (SOSP-18), Banff, Canada, October 2001.

C. Zou and B. Salzberg, “On-line reorganization of sparsely-populated
b-+trees,” pp. 115-124, 1996.

