
The Bw-Tree: A B-tree for 
New Hardware Platforms

Author: J. Levandoski et al.



The Bw-Tree: A B-tree for 
New Hardware Platforms

Author: J. Levandoski et al.

Buzz word

DRAM + Flash storage



Hardware Trends
● Multi-core + large main memories

○ Latch contention
■ Worker threads set latches for accessing data

○ Cache invalidation
■ Worker threads access data from different NUMA nodes



Hardware Trends
● Multi-core + large main memories

○ Latch contention
■ Worker threads set latches for accessing data

○ Cache invalidation
■ Worker threads access data from different NUMA nodes

Delta updates
○ No updates in place
○ Reduces cache invalidation
○ Enable latch-free tree operation



Hardware Trends
● Flash storage

○ Good at random reads and sequential reads/writes
○ Bad at random writes

■ Erase cycle



Hardware Trends
● Flash storage

○ Good at random reads and sequential reads/writes
○ Bad at random writes

■ Erase cycle

Log-structured storage design



Architecture
● CRUD API
● Bw-tree search logic
● In-memory pages

Bw-tree Layer

Cache Layer

Flash Layer

● Logical page abstraction
● Paging between flash and RAM

● Sequential writes to log-
structured storage

● Flash garbage collection



Architecture
● CRUD API
● Bw-tree search logic
● In-memory pages

Bw-tree Layer

Cache Layer

Flash Layer

● Logical page abstraction
● Paging between flash and RAM

● Sequential writes to log-
structured storage

● Flash garbage collection

Atomic record store, not an 
ACID transactional 
database



Architecture
● CRUD API
● Bw-tree search logic
● In-memory pages

Bw-tree Layer

Cache Layer

Flash Layer

● Logical page abstraction
● Paging between flash and RAM

● Sequential writes to log-
structured storage

● Flash garbage collection

Atomic record store, not an 
ACID transactional 
database



Logical Pages and Mapping Table

● Logical pages are identified by PIDs stored as Mapping Table keys.
● Physical addresses can be either in main memory or in flash storage.



Delta Updates

● Tree operations are atomic.
● Update operations are “logged” as a lineage of delta records.
● Delta records are incorporated to the base page asynchronously.
● Updates are “installed” to Mapping Table through compare-and-swap.
● Important enabler for latch-freedom and cache-efficiency.



Delta Updates

● Tree operations are atomic.
● Update operations are “logged” as a lineage of delta records.
● Delta records are incorporated to the base page asynchronously.
● Updates are “installed” to Mapping Table through compare-and-swap.
● Important enabler for latch-freedom and cache-efficiency.

Q: What is the performance 
of reading data from page 
P?



Other details

● SMO: structure modification operations
○ split, merge, consolidate
○ has multiple phases -> how to make SMO atomic?

● In-memory page garbage collection
○ epoch-based.



Architecture
● CRUD API
● Bw-tree search logic
● In-memory pages

Bw-tree Layer

Cache Layer

Flash Layer

● Logical page abstraction
● Paging between flash and RAM

● Sequential writes to log-
structured storage

● Flash garbage collection



Flash Layer



Flushing Pages

PID Physical 
Address

P

Page P

Insert 40

Insert 50

Delete 33

Modify 40 to 60

Q: Why flushing pages?
Q: When to flush pages?
Q: How many pages to flush?
Q: What if you crash during a flush?

Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer

Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer

Page P

Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer

Page P Page T

Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer

Page P Page T

Flush

Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer
Flush

Insert 50

Delete 33

Page P Page T Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer
Flush

Insert 50

Delete 33

Page P Page T Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer

Page P

Flush

Insert 50

Delete 33

Page T

Insert 50

Delete 33

Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer

Page P

Flush

Insert 50

Delete 33

Page T

Insert 50

Delete 33

Page E

Log-structured Store



Flushing Pages

PID Physical 
Address

P

Page P

Flush Write Buffer

Page P

Flush

Insert 50

Delete 33

Page T

Flush

Page EInsert 50 Delete 33 Log-structured Store



Other details

● Log-structured Store garbage collection
○ Cleans orphaned data unreachable from mapping 

table
○ Relocates entire pages in sequential blocks (to 

reduce fragmentation)
● Access method recovery

○ Occasionally checkpoint mapping table
○ Redo-scan starts from last checkpoint



Experiment

● Against
○ BerkeleyDB (without transaction)
○ latch-free skip-list



Experiment

Over BerkerleyDB:
- 18x speedup in read-intensive workload
- 5-8x speedup in update-intensive workload

Over Skip-list:
- 4.4x speedup in read-only workload.
- 3.7x speedup in update-intensive workload.



Thank you!

Slides adapted from http://www.hpts.ws/papers/2013/bw-tree-hpts2013.pdf


