The Bw-Tree: A B-tree for
New Hardware Platforms

Author: J. Levandoski et al.

The Bw-T7ee: A B-tree for
NeW Hal’dwa DRAM + Flash storage rms

Author: J. Levandoski et al.

iiii

Hardware Trends

- - -
Illllllllllll IIIIIIIIIIIII

e Multi-core + large main memories
o Latch contention f S S G
m Worker threads set latches for accessing data
o Cache invalidation
m Worker threads access data from different NUMA nodes

Hardware Trends

Multi-core + large main memories

O

O

Latch contention

m Worker threads set latches for accessing data

Cache invalidation

iiii

m Worker threads access data from different NUMA nodes

/
Delta updates

o No updates in place
o Reduces cache invalidation

o

watch-free tree operation)

Hardware Trends

e Flash storage
o Good at random reads and sequential reads/writes
o Bad at random writes
m Erase cycle

Hardware Trends

e Flash storage
o Good at random reads and sequential reads/writes
o Bad at random writes
m Erase cycle

Log-structured storage design]

Architecture

CRUD API
Bw-tree search logic
In-memory pages

Logical page abstraction
Paging between flash and RAM

Sequential writes to log-
structured storage
Flash garbage collection

Architecture

Atomic record store, not an
ACID transactional

database
e CRUD API
e Bw-tree search logic
e In-memory pages S~

e Logical page abstraction
e Paging between flash and RAM

e Sequential writes to log-
structured storage
e Flash garbage collection

Architecture

Atomic record store, not an
ACID transactional

database
CRUD API
Bw-tree search logic
In-memory pages S~

Logical page abstraction
Paging between flash and RAM

Sequential writes to log-
structured storage
Flash garbage collection

Logical Pages and Mapping Table

Mapping Table Page A

PID Physical
Address

D o -===+ Logical pointer

— Physical pointer

e Logical pages are identified by PIDs stored as Mapping Table keys.
e Physical addresses can be either in main memory or in flash storage.

Delta Updates

Mapping Table

PID Physical
Address

* Consolidated Page P

Tree operations are atomic.

Update operations are “logged” as a lineage of delta records.

Delta records are incorporated to the base page asynchronously.
Updates are “installed” to Mapping Table through compare-and-swap.
Important enabler for latch-freedom and cache-efficiency.

Delta Updates

Mapping Table
0| Aress Q: What is the performance
, of reading data from page
P H\
Consolidated Page P

Tree operations are atomic.

Update operations are “logged” as a lineage of delta records.

Delta records are incorporated to the base page asynchronously.
Updates are “installed” to Mapping Table through compare-and-swap.
Important enabler for latch-freedom and cache-efficiency.

Other details

e SMO: structure modification operations
o split, merge, consolidate
o has multiple phases -> how to make SMO atomic?

e In-memory page garbage collection
o epoch-based.

Architecture

CRUD API
Bw-tree search logic
In-memory pages

Logical page abstraction
Paging between flash and RAM

Sequential writes to log-
structured storage
Flash garbage collection

Flash Layer

Mapping Table
PID Physical
Address

A *—

----+ Logical pointer

— Physical pointer

nas:/':um address

63 bits

Log Structured Store (LSS) on Flash

Flushing Pages 4 A

Q: Why flushing pages?

Q: When to flush pages?

Q: How many pages to flush?

Q: What if you crash during a flush?

PID Physical
Address j
= = =1
/ Il el
P

A S

Insert 40 |

R

Page P

Log-structured Store

Flushing Pages

Physical

\ [Flush Write Buffe}r
[]Log-structured Store

Flushing Pages

Physical

\

Flush Write Buffer

[Page P

]Log-structured Store

Flushing Pages

PID

Physical
Address

\

Page P

Flush Write Buffe\r

Page P

Page T

|

Log-structured Store

Flushing Pages

PID Physical
Address
P ~
\’ ______ ;
. ,* Flush 1 .
Rk ‘\‘ - Flush Write Buffer
Page P

y3
[Page P Page T]Log-structu red Store

Flushing Pages

PID Physical
Address
|_ _____ 1
4 Delete 33 |

TR

- -\— - Flush Write Buffer

[Page P Page T]Log-structu red Store

Flushing Pages

PID Physical
Address
|_ _____ 1
4 Delete 33 |

TR

- -\— - Flush Write Buffer

[Page P Page T]Log-structu red Store

Flushing Pages

PID Physical
Address
______ 1
'l Delete 33 |
p |
R
: _ _Flusll _ _| .
‘\ Flush Write Buffer
______ 1
' Delete33 |

[Page P Page T]Log-structu red Store

Flushing Pages

PID

Physical
Address

______ 1

/Il Jelees

e

Flush Write Buffer

Page E

Page P

Page T

]Log-structured Store

Flushing Pages

PID

Physical
Address

i

/

Flush t.
r R :
Delete 33 |

-2
N

' Flush |

t=- '\' - - Flush Write Buffer
Page P
N W
Page P Page T Il Delete 33 | Page E
S S
s

\

— -
e o mm =

Log-structured Store

Other details

e Log-structured Store garbage collection

o Cleans orphaned data unreachable from mapping
table

o Relocates entire pages in sequential blocks (to
reduce fragmentation)

e Access method recovery

o Occasionally checkpoint mapping table
o Redo-scan starts from last checkpoint

Experiment

e Against
o BerkeleyDB (without transaction)
o latch-free skip-list

Experiment Over Skip-ist

- 4.4x speedup in read-only workload.

- 3.7x speedup in update-intensive workload.
" BW-Tree mBerkeleyDB

12000000.0
10402244.61
10000000.0
[swiree | Skiplist_
8000000.0
00000 Synthetic 3.83M 1.02 M
Operations/Sec (M) ' workload Ops/Sec Ops/Sec

3829679.23

2837646.88
u L1 hits ®L2 hits mL3 hits s RAM

o Xbox Synthetic Deduﬁﬁ’@%%n 8
50%
Over BerkerleyDB: 20%
- 18x speedup in read-intensive workload
- 5-8x speedup in update-intensive workload
10% -~

Bw-tree Skiplist

Thank you!

Slides adapted from http://www.hpts.ws/papers/2013/bw-tree-hpts2013.pdf

