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Abstract. The Rule Interchange Format (RIF) is an emerging W3C format that allows rules to be 

exchanged between rule systems. Uncertainty is an intrinsic feature of real world knowledge, 

hence it is important to take it into account when building logic rule formalisms. However, the set 

of truth values in the Basic Logic Dialect (RIF-BLD) currently consists of only two values (t and 

f). In this paper, we first present two techniques of encoding uncertain knowledge and its fuzzy 

semantics in RIF-BLD presentation syntax. We then propose an extension leading to an 

Uncertainty Rule Dialect (RIF-URD) to support a direct representation of uncertain knowledge. In 

addition, rules in Logic Programs (LP) are often used in combination with the other widely-used 

knowledge representation formalism of the Semantic Web, namely Description Logics (DL), in 

order to provide greater expressive power. To prepare DL as well as LP extensions, we present a 

fuzzy extension to Description Logic Programs (DLP), called Fuzzy DLP, and discuss its mapping 

to RIF. Such a formalism not only combines DL with LP, as in DLP, but also supports uncertain 

knowledge representation. 

1. Introduction 

Description Logics (DL) and Logic Programs (LP) are the two main categories of knowledge 
representation formalisms for the Semantic Web, both of which are based on subsets of first-order logic 
[1]. DL and LP cover different but overlapping areas of knowledge representation. They are 
complementary to some degree; for example, DL cannot express LP’s n-ary function applications 
(complex terms) while LP cannot express DL’s disjunctions (in the head). Combining DL with LP in 
order to “build rules on top of ontologies” or, “build ontologies on top of rules” has become an 
emerging topic for various applications of the Semantic Web. It is therefore important to research the 
combination of DL and LP with different strategies. There have been various achievements in this area, 
including several proposed combination frameworks [2-6]. As a minimal approach in this area, the 
Description Logic Program (DLP) ‘intersection’ of DL and LP has been studied, along with mappings 
from DL to LP [2]. Both [3] and [5] studied the combination of standard Datalog inference procedures 
with intermediate ALC  DL satisfiability checking.  

On the other hand, as evidenced by Fuzzy RuleML [7] and W3C’s Uncertainty Reasoning for the 
World Wide Web (URW3) Incubator Group [8], handling uncertain knowledge is becoming a critical 
research direction for the (Semantic) Web. For example, many concepts needed in business ontology 
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modeling lack well-defined boundaries or, precisely defined criteria of relationships with other 
concepts. To take care of these knowledge representation needs, different approaches for integrating 
uncertain knowledge into traditional rule languages and DL languages have been studied [1, 9-17]. 

The Rule Interchange Format (RIF) is being developed by W3C’s Rule Interchange Format (RIF) 
Working Group to support the exchange of rules between rule systems [18]. In particular, the Basic 
Logic Dialect (RIF-BLD) [19] corresponds to the language of definite Horn rules with equality and a 
standard first-order semantics. While RIF’s Framework for Logic-based Dialects (RIF-FLD) [20] 
permits multi-valued logics, the current version of RIF-BLD instantiates RIF-FLD with the set of truth 
values consisting of only two values, t  and f , hence is not designed for expressing uncertain 

knowledge. 
According to the final report from the URW3 Incubator group, uncertainty is a term intended to 

include different types of uncertain knowledge, including incompleteness, vagueness, ambiguity, 
randomness, and inconsistency [8]. Mathematical theories for representing uncertain knowledge 
include, but are not limited to, Probability, Fuzzy Sets, Belief Functions, Random Sets, Rough Sets, 
and combinations of several models (Hybrid). The uncertain knowledge representations and 
interpretations discussed in this paper are limited to Fuzzy set theory and Fuzzy Logic (a multi-valued 
logic based on Fuzzy set theory); other types of uncertainty will be studied in future work. 

The main contributions of this paper are: (1) two techniques of encoding uncertain information in 
RIF as well as an uncertainty extension to RIF; (2) an extension of DLP to Fuzzy DLP and the mapping 
of Fuzzy DLP to RIF. Two earlier uncertainty extensions to the combination of DL and LP that we can 
expand on are [21] and [22]. While our approach allows DL atoms in the head of hybrid rules and DL 
subsumption axioms in hybrid rules, the approach of [21] excludes them. Our approach deals with 
fuzzy subsumption of fuzzy concepts of the form C D c=�  whereas [22] deals with crisp 
subsumption of fuzzy concepts of the form C D� . Also, we do not limit hybrid knowledge bases to 

the intersection of (fuzzy) DL and (fuzzy) LP. We extend [22] and study the decidable union of DL and 
LP. In this paper, we only consider the Horn logic subset of LP. 

The rest of this paper is organized as follows. Section 2 reviews earlier work on the interoperation 
between DL and LP in the intersection of these two formalisms (known as DLP) and represents the 
DL-LP mappings in RIF. Section 3 addresses the syntax and semantics of fuzzy Logic Programs, and 
then presents two techniques of bringing uncertainty into the current version of RIF presentation syntax 
(hence its semantics and XML syntax), using encodings as RIF functions and RIF predicates. Section 4 
adapts the definition of the set of truth values in RIF-FLD for the purpose of representing uncertain 
knowledge directly, and proposes the new Uncertainty Rule Dialect (RIF-URD), extending RIF-BLD. 
Section 5 extends DLP to Fuzzy DLP, supporting mappings between fuzzy DL and fuzzy LP, and gives 
representations of Fuzzy DLP in RIF and RIF-URD. Finally, Section 6 summarizes our main results 
and gives an outlook on future research.  

2. Description Logic Programs and Their Representation in RIF 

In this section, we summarize the work on Description Logic Programs (DLP) [2] and then show how 
to represent the mappings between DL and LP in RIF presentation syntax. 

The paper [2] studied the intersection between the leading Semantic Web approaches to rules in LP 
and ontologies in DL, and showed how to interoperate between DL and LP in the intersection known as 
DLP. A DLP knowledge base consists of axioms of the following kinds: C D� , C D≡ , .R CΤ ∀� , 
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.R C−Τ ∀� , R P� , P R≡ , P R−≡ , R R+ � , ( )C a  and ( , )R a b , where ,C D  are concepts, 
Τ is the universal concept, ,P R  are roles, R−  and R+  are the inverse role and the transitive role of 
R , respectively, and ,a b  are individuals. 

In RIF presentation syntax, the quantifiers Exists and Forall are made explicit, rules are written with 
a “:-” infix, variables start with a “?” prefix, and whitespace is used as a separator. 

Table 1 summarizes the mappings in [2] between DL and LP in the DLP intersection, and shows its 
representation in RIF. In Table 1, 1 2, , ,C D C C  are atomic concepts, 1 2, , ,P R R R  are atomic roles, 
R−  and R+  are the inverse role and the transitive role of R , respectively, and , ,T a b  are defined as 
above. Note that in DLP, a complex concept expression which is a disjunction (e.g. 1 2C C� ) or an 
existential (e.g. .R C∃ ) is not allowed in the right side of a concept subsumption axiom. 

Table 1. Mapping between LP and DL 

LP syntax DL syntax RIF 

( ) ( )D x C x←  C D�  Forall ?x (D(?x) :- C(?x)) 

( ) ( ),
( ) ( )

D x C x
C x D x

←
←  C D≡  Forall ?x (D(?x) :- C(?x)) 

Forall ?x (C(?x) :- D(?x)) 

( , ) ( )R x y C y∧  .R C∃  Forall ?x (Exists ?y (And(R(?x ?y) C(?y)))) 
( ) ( , )C y R x y←  .R CΤ ∀�  Forall ?x ?y (C(?y) :- R(?x ?y)) 
( ) ( , )C x R x y←  .R C−Τ ∀�  Forall ?x ?y (C(?x) :- R(?x ?y)) 
( )C a  ( )C a  C(a) 
( , )R a b  ( , )R a b  R(a b) 

( , ) ( , ),
( , ) ( , )

R x y P x y
P x y R x y

←
←  P R≡  Forall ?x ?y (R(?x ?y) :- P(?x ?y)) 

Forall ?x ?y (P(?x ?y) :- R(?x ?y)) 

( , ) ( , ),
( , ) ( , )

R x y P y x
P y x R x y

←
←  P R−≡  Forall ?x ?y (R(?x ?y) :- P(?y ?x)) 

Forall ?x ?y (P(?y ?x) :- R(?x ?y)) 

( , ) ( , ), ( , )R x z R x y R y z←  R R+ �  Forall ?x ?y ?z ( 
  R(?x ?z) :- And(R(?x ?y) R(?y ?z))) 

( , ) ( , )P x y R x y←  R P�  Forall ?x ?y (P(?x ?y) :- R(?x ?y)) 
1 2( ) ( ) ( )D x C x C x← ∧  1 2C C D� �  Forall ?x (D(?x) :- And(C1(?x) C2(?x)) 

1 2( , ) ( , ) ( , )P x y R x y R x y← ∧  1 2R R P� �  Forall ?x ?y (P(?x ?y) :- And(R1(?x ?y) R2(?x ?y))

3. Encoding Uncertainty in RIF 

Fuzzy set theory was introduced in [23] as an extension of the classical notion of sets to capture the 
inherent vagueness (the lack of crisp boundaries) of real-world sets. Formally, a fuzzy set A  with 
respect to a set of elements X  (also called a universe) is characterized by a membership function 

( )A xμ  which assigns a value in the real unit interval [0,1] to each element x X∈ . ( )A xμ  gives the 
degree to which an element x  belongs to the set A . Fuzzy logic is a form of multi-valued logic 
derived from fuzzy set theory to deal with reasoning that is approximate rather than precise. In Fuzzy 
Logic the degree of truth of a statement can range between 0 and 1 and is not constrained to the two 
truth values, t  and f , as in classic predicate logic [24]. Such degrees can be computed based on 

various specific membership functions, for example, a trapezoidal function.  
In this section, we first present the syntax and semantics for fuzzy Logic Programs based on Fuzzy 

Sets and Fuzzy Logic [23] and on previous work on fuzzy LP [15, 16, 25], and then propose two 
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techniques of encoding the semantics of uncertain knowledge based on Fuzzy Logic in the presentation 
syntax of RIF-BLD using BLD functions and BLD predicates respectively. 

3.1. Fuzzy Logic Programs 

Rules in van Emden’s formalism for fuzzy LP have the syntactic form 

1, ,c nH B B← "  (1) 

where , iH B  are atoms, 0n ≥ , and the factor c  is a real number in the interval (0,1] [15]. For 
0n = , such fuzzy rules degenerate to fuzzy facts. 

The fuzzy LP language proposed by [16, 25] is a generalization of van Emden’s work [15]. Rules 
are constructed from an implication (← ) with a corresponding t-norm adjunction operator ( 1f ), and 
another t-norm operator denoted by 2f . A t-norm is a generalization to the many-valued setting of the 
conjunction connective. In their setting, a rule is of the form  1 2 1( , , )f nH f B B with cf c← −" , 
where the confidence factor c  is a real number in the unit interval [0,1] and , iH B  are atoms with 
truth values in (0, 1]. If we take the operator 1f  as the product following Goguen implication and the 
operator 2f  as the Gödel t-norm (minimum), this is exactly of the form by van Emden [15]. 

In the current paper, we follow this work and use the following form to represent a fuzzy rule. 

1 1( ) ( ), , ( ) /n nH x B x B x c←
G G G"  (2) 

Here ( ), ( )i iH x B xG G  are atoms, , ix xG G  are vectors of variables or constants, 0n ≥  and the 
confidence factor c  (also called certainty degree) is a real number in the interval (0,1]. For the special 
case of fuzzy facts this becomes /H c . These forms with a “/” symbol have the advantages of 

avoiding possible confusion with the equality symbol usually used for functions in logics with equality, 
as well as using a unified and compact format to represent fuzzy rules and fuzzy facts. 

The semantics of such fuzzy LP is an extension of classical LP semantics. Let RB  stand for the 
Herbrand base of a fuzzy knowledge base LPKB . A fuzzy Herbrand interpretation IH  for LPKB  is 
defined as a mapping [0,1]RB → . It is a fuzzy subset of RB  under Zadeh’s semantics and can be 
specified by a function val  with two arguments: a variable-free atom H  (or 1, , nB B" ) and a fuzzy 
Herbrand interpretation IH . The returned result of the function val  is the membership value of 
H (or 1, , nB B" ) under IH , denoted as ( , )Ival H H  (or ( , )i Ival B H ).  

Therefore, a fuzzy knowledge base LPKB  is true under IH  iff every rule in LPKB  is true 
under IH . Such a Herbrand interpretation IH  is called a Herbrand model of LPKB . Furthermore, a 
rule is true under IH  iff each variable-free instance of this rule is true under IH . A variable-free 
instance of a rule (3) is true under IH  iff ( , ) min{ ( , ) | {1, , }}I i Ival H H c val B H i n≥ × ∈ "  
( min{} 1 0if n= = ). In other words, such an interpretation can be separated into the following two 

parts [26-28].  
(1) The body of the rule consists of n  atoms. Our confidence that all these atoms are true is 

interpreted under Gödel’s semantics for fuzzy logic: 
1(( , , ), ) min{ ( , ) | {1, , }}n I i Ival B B H val B H i n= ∈" "  

(2) The implication is interpreted as the product: 
1( , ) (( , , ), )I n Ival H H c val B B H= × "  

For a fuzzy knowledge base LPKB , the reasoning task is a fuzzy entailment problem written as 
| /LPKB H c=  ( , (0,1]RH B c∈ ∈ ). 

Example 3.1. Consider the following fuzzy LP knowledge base: 
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( , ) ( , ) / 0.9 (1)
( , ) / _ 0 4 1 3 ( ) (2)

cheapFlight x y affordableFlight x y
affordableFlight x y left shoulder k k k k y

←  

Fig. 1 shows the left＿shoulder membership function _ (0, 4000,1000,3000)left shoulder . We use 
the name _ 0 4 1 3left shoulder k k k k  for this parameterization. The function has the mathematical form 

1 0 1000
_ 0 4 1 3 ( ) 0.0005 1.5 1000 3000

0 3000 4000

y
left shoulder k k k k y y y

y

≤ ≤⎧
⎪= − + < ≤⎨
⎪ < ≤⎩

. 

For example, the certainty degree computed by this function for the fact 
( 0001,1800)affordableFlight flight  is 0.7. 

 

Fig. 1. A Left＿shoulder Membership Function 

Applying the semantics we discussed, ( ( 0001,1800), ) 0.9*0.7 0.63Ival cheapFlight flight H = = , so 
we have that | ( 0001,1800) / 0.63LPKB cheapFlight flight= . 

Example 3.2. Consider the following fuzzy LP knowledge base: 
( ) ( ), ( ) / 0.5 (1)
( ) ( ) / 0.5 (2)
( ) / 0.5 (3)
( ) / 0.8 (4)

A x B x C x
C x D x
B d
D d

←
←  

We have that | ( ) / 0.2LPKB A d= . The reasoning steps of example 3.2 are described as follows: 

( ( ), ) 0.5 min( ( ( ), ), ( ( ), )) ** (1)
0.5 min( ( ( ), ),0.5 ( ( ), )) ** (2)
0.5 min(0.5,0.5 ( ( ), )) ** (3)
0.5 min(0.5,0.5 0.8) ** (4

I I I

I I

I

val A d H val B d H val C d H according to
val B d H val D d H according to

val D d H according to
according to

= ×
= × ×
= × ×
= × × )

0.5 0.4
0.2

= ×
=

 

3.2. Encoding Uncertainty Using RIF Functions 

One technique to encode uncertainty in logics with equality such as the current RIF-BLD (where 
equality in the head is “At Risk”) is mapping all predicates to functions and using equality for letting 
them return uncertainty values [29]. We assume that , iH B  of the fuzzy rule of equation (2) from 

Section 3.1 contain variables in {?x1, …, ?xk} and that the head and body predicates are applied to 
terms t1 … tr and tj,1 … tj,sj (1 j n≤ ≤ ) respectively, which can all be variables, constants or complex 

terms. A fuzzy rule in the form of equation (2) from Section 3.1 can then be represented in RIF-BLD as 
(for simplicity, we will omit prefix declarations) 
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Document( 
  Group 
  (    Forall ?x1 … ?xk ( 
        h(t1 … tr)=?ch :- And(b1(t1,1 … t1,s1)=?c1 … bn(tn,1 … tn,sn)=?cn 
                       ?ct =External(numeric-minimum(?c1 … ?cn)) 
                       ?ch=External(numeric-multiply(c ?ct)) ) 
  )   ) 

Each predicate in the fuzzy rule thus becomes a function with a return value between 0 and 1. The 
semantics of the fuzzy rules is encoded in RIF-BLD using the built-in functions numeric-multiply from 
RIF-DTB[30] and an aggregate function numeric-minimum proposed here as an addition to RIF-DTB 
(this could also be defined using rules). 

A fact of the form /H c  can be represented in RIF-BLD presentation syntax as 

h(t1 … tr)=c 
Example 3.3 We can rewrite example 3.1 using RIF functions as follows: 

(* <http://example.org/fuzzy/membershipfunction > *) 
Document( 
  Group 
  (    (* "Definition of membership function _ (0, 4000,1000,3000)left shoulder "[] *) 
    Forall ?y( 
        left＿shoulder0k4k1k3k(?y)=1 :- And(External(numeric-less-than-or-equal(0 ?y))  
                                     External(numeric-less-than-or-equal(?y 1000)))) 
    Forall ?y( 
    left＿shoulder0k4k1k3k(?y)=External(numeric-add(External(numeric-multiply(-0.0005 ?y)) 1.5)) 
        :- And(External(numeric-less-than(1000 ?y))  
              External(numeric-less-than-or-equal(?y 3000)))) 
    Forall ?y( 
        left＿shoulder0k4k1k3k(?y)=0 :- And(External(numeric-less-than(3000 ?y))  
                                      External(numeric-less-than-or-equal(?y 4000)))) 
     . . 
  )   ) 

Note that membership function _ (0,4000,1000,3000)left shoulder  is encoded as three rules.  
Document( 

Import (<http://example.org/fuzzy/membershipfunction >) 
  Group 
  (    Forall ?x ?y( 
      cheapFlight(?x ?y)=?ch :- And(affordableFlight(?x ?y)=?c1 
                              ?ch=External(numeric-multiply(0.4 ?c1)))) 
    Forall ?x ?y(affordableFlight(?x ?y)=left＿shoulder0k4k1k3k(?y)) 
  )   ) 

The Import statement loads the left＿shoulder0k4k1k3k function defined at the given “<…>” IRI. 
Example 3.4 We can rewrite example 3.2 in RIF functions as follows: 

Document( 
  Group 
  (    Forall ?x( 
        A(?x)=?ch :- And(B(?x)=?c1 C(?x)=?c2  
                     ?ct =External(numeric-minimum(?c1 ?c2)) 
                     ?ch=External(numeric-multiply(0.5 ?ct)))) 
    Forall ?x( 
        C(?x)= ?ch :- And(D(?x)=?c1 ?ch=External(numeric-multiply(0.5 ?c1))) ) 
        B(d)=0.5 
        D(d)=0.8 
  )   ) 

3.3 Encoding Uncertainty Using RIF Predicates 

Another encoding technique is making all n-ary predicates into (1+n)-ary predicates, each being 
functional in the first argument which captures the certainty factor of predicate applications. A fuzzy 
rule in the form of equation (2) from Section 3.1 can then be represented in RIF-BLD as 
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Document( 
  Group 
  (    Forall ?x1 … ?xk ( 
        h(?ch t1 … tr) :- And(b1(?c1 t1,1 … t1,s1) … bn(?cn tn,1 … tn,sn) 
                       ?ct =External(numeric-minimum(?c1 … ?cn)) 
                       ?ch=External(numeric-multiply(c ?ct)) ) 
  )    ) 

Likewise, a fact of the form /H c  can be represented in RIF-BLD as 

h(c t1 … tr) 
Example 3.5 We can rewrite example 3.1 in RIF predicates as follows, 

Document( 
  Import (<http://example.org/fuzzy/membershipfunction >) 
  Group 
  ( 
    Forall ?x ?y( 
      cheapFlight(?ch ?x ?y) :- And(affordableFlight(?c1 ?x ?y) 
                              ?ch=External(numeric-multiply(0.4 ?c1))) 
    ) 
    Forall ?x ?y(affordableFlight(?c1 ?x ?y) :- ?c1 =left＿shoulder0k4k1k3k(?y)) 
  )    ) 

4. Uncertainty Extension of RIF 

In this section, we adapt the definition of the set of truth values from RIF-FLD and its semantic 
structure. We then propose a RIF extension for directly representing uncertain knowledge. 

4.1 Definition of Truth Values and Truth Valuation 

In previous sections, we showed how to represent the semantics of fuzzy LP with RIF functions and 
predicates in RIF presentation syntax. We now propose to introduce a new dialect for RIF, RIF 
Uncertainty Rule Dialect (RIF-URD), so as to directly represent uncertain knowledge and extend the 
expressive power of RIF. 

The set TV  of truth values in RIF-BLD consists of just two values, t  and f . This set forms a 
two-element Boolean algebra with 1t =  and 0f = . However, in order to represent uncertain 
knowledge, all intermediate truth values must be allowed. Therefore, the set TV  of truth values is 
extended to a set with infinitely many truth values ranging between 0 and 1. Our uncertain knowledge 
representation is specifically based on Fuzzy Logic, thus a member function maps a variable to a truth 
value in the 0 to 1 range.  

Definition 1. (Set of truth values as a specialization of the set in RIF-FLD). In RIF-FLD, t≤  
denotes the truth order, a binary relation on the set of truth values TV . Instantiating RIF-FLD, which 
just requires a partial order, the set of truth values in RIF-URD is equipped with a total order over the 0 
to 1 range. In RIF-URD, we specialize t≤  to ≤ , denoting the numerical truth order. Thus, we 
observe that the following statements hold for any element ,i je e  or ke  in the set of truth values TV  
in the 0 to 1 range, justifying to write it as the interval [0,1]. 

(1) The set TV  is a complete lattice with respect to ≤ , i.e., the least upper bound (lub) and the 
greatest lower bound (glb) exist for any subset of ≤ . 

(2) Antisymmetry. If i je e≤  and j ie e≤  then i je e= . 
(3) Transitivity. If i je e≤  and j ke e≤  then i ke e≤ . 
(4) Totality. Any two elements should satisfy one of these two relations: i je e≤  or j ie e≤ .  
(5) The set TV  has an operator of negation, :TV TV→∼ , such that 

a). 1i ie e= −∼ . 
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b). ∼ is self-inverse, i.e., i ie e=∼∼ . 
Let ( )TVal ϕ  denote the truth value of a non-document formula, ϕ , in RIF-BLD. ( )TVal ϕ  is a 

mapping from the set of all non-document formulas to TV , I  denotes an interpretation, and c  is a 
real number in the interval (0,1]. 

Definition 2. (Truth valuation adapted from RIF-FLD). Truth valuation for well-formed formulas 
in RIF-URD is determined as in RIF-FLD, adapting the following three cases.  

(8) Conjunction (glbt becomes min): 1 1( ( )) min( ( ) ( ))I n nTVal And B B TVal B TVal B=" " . 
(9) Disjunction (lubt becomes max): 1 1( ( )) max( ( ) ( ))I n nTVal Or B B TVal B TVal B=" "  
(11) Rule implication ( t  becomes 1, f becomes 0, condition valuation is multiplied with c ):  

( : / ) 1ITVal conclusion condition c− =  if ( ) ( )I ITVal conclusion c TVal condition≥ ×  
( : / ) 0ITVal conclusion condition c− =  if ( ) ( )I ITVal conclusion c TVal condition< ×  

4.2 Using RIF-URD to Represent Uncertain Knowledge 

A fuzzy rule in the form of equation (2) from Section 3.1 can be directly represented in RIF-URD as 
Document( 
  Group 
  ( 
    Forall ?x1 … ?xk ( 
        h(t1 … tr) :- And(b1(t1,1 … t1,s1) … bn(tn,1 … tn,sn)) 
    )  / c 
   ) 

Likewise, a fact of the form /H c  can be represented in RIF-URD as 

h(t1 … tr)  / c 
Such a RIF-URD document of course cannot be executed by an ordinary RIF-compliant reasoner. 

RIF-URD-compliant reasoners will need to be extended to support the above semantics and the 
reasoning process shown in Section 3.1.  

Example 3.6 We can directly represent example 3.1 in RIF-URD as follows: 
Document( 
  Import (<http://example.org/fuzzy/membershipfunction >) 
  Group 
  ( 
    Forall ?x ?y( 
        cheapFlight(?x ?y) :- affordableFlight(?x ?y) 
    )  / 0.4 
    Forall ?x ?y(affordableFlight(?x ?y))  / left＿shoulder0k4k1k3k(?y) 
  )    ) 

5. Fuzzy Description Logic Programs and Their Representation in RIF 

In this section, we extend Description Logic Programs (DLP) [2] to support mappings between fuzzy 
DL and fuzzy LP; we also show how to represent such mappings in RIF-BLD and RIF-URD based on 
the three uncertainty treatment methods addressed in previous sections. 

Based on Fuzzy Sets and Fuzzy Logic [23], the semantics for fuzzy DL [12] and fuzzy LP [15], as 
well as the previous work cited in Section 1 and 3, we extend the work on Description Logic Programs 
(DLP) [2] to fuzzy Description Logic Programs (Fuzzy DLP). 

Since DL is a subset of FOL, it can also be seen in terms of that subset of FOL, where individuals 
are equivalent to FOL constants, concepts and concept descriptions are equivalent to FOL formulas 
with one free variable, and roles and role descriptions are equivalent to FOL formulas with two free 
variables. 
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A concept inclusion axiom of the form C D�  is equivalent to an FOL sentence of the form 
. ( ) ( )x C x D x∀ → , i.e. an FOL implication. In uncertainty representation and reasoning, it is important 

to represent and compute the degree of subsumption between two fuzzy concepts, i.e., the degree of 
overlap, in addition to crisp subsumption. Therefore, we consider fuzzy axioms of the form 
C D c=�  generalizing the crisp C D� . The above equivalence leads to a straightforward 
mapping from a fuzzy concept inclusion axiom of the form C D c=�  ( (0,1]c∈ ) to an LP rule as 
follows: ( ) ( ) /D x C x c← . 

The intersection of two fuzzy concepts in fuzzy DL is defined as 
1 2 1 2( ) ( ) min( ( ), ( ))I I IC C x C x C x=� ; therefore, a fuzzy concept inclusion axiom of the form 

1 2C C D c=� �  including the intersection of 1C  and 2C  can be transformed to an LP rule 
1 2( ) ( ), ( ) /D x C x C x c← . Here the certainty degree of (variable-free) instantiations of the atom ( )D x  

is defined by the valuation ( , ) min{ ( , ) | {1, 2}}I i Ival D H c val C H i= × ∈ . It is easy to see that such a 
fuzzy concept inclusion axiom can be extended to include the intersection of n  concepts ( 2n > ).  

Similarly, a role inclusion axiom of the form R P�  is equivalent to an FOL sentence consisting of 
an implication between two roles. Thus we map a fuzzy role inclusion axiom of the form R P c=�  

( (0,1]c∈ ) to a fuzzy LP rule as ( , ) ( , ) /P x y R x y c← . Moreover, 1
n

ii R P c= =∩ �  can be 

transformed to 1( , ) ( , ), , ( , ) /nP x y R x y R x y c← " . 
A concept equivalence axiom of the form C D≡  can be represented as a symmetrical pair of FOL 

implications: . ( ) ( )x C x D x∀ →  and . ( ) ( )x D x C x∀ → . Therefore, we map the ‘fuzzified’ equivalence 
axiom C D c≡ =   into ( ) ( ) /C x D x c←  and ( ) ( ) /D x C x c←  ( (0,1]c∈ ). As later examples 

show, such mappings in hybrid knowledge bases are directed from rules to DL expressions, hence if we 
have two rules of the forms 1( ) ( ) /C x D x c←  and 2( ) ( ) /D x C x c←  ( 1 2, (0,1]c c ∈ ), they are 
mapped to a DL expression as C D c≡ =  with 1 2min( , )c c c= . Similarly, we map two rules 

1( , ) ( , ) /R x y P x y c← and 2( , ) ( , ) /P x y R x y c←  into a role equivalence axiom of the form 

1 2min( , )R P c c≡ = , as well as two rules 1( , ) ( , ) /R x y P y x c←  and 2( , ) ( , ) /P y x R x y c←  into 
an inverse role equivalence axiom of the form 1 2min( , )P R c c−≡ = . 

A DL assertion ( )C a  (respectively, ( , )R a b ) is equivalent to an FOL atom of the form ( )C a  
(respectively, ( , )R a b ), where a  and b  are individuals. Therefore, a fuzzy DL concept-individual 
assertion of the form ( )C a c=  corresponds to a ground fuzzy atom ( ) /C a c  in fuzzy LP, while a 
fuzzy DL role-individual assertion of the form ( , )R a b c=  corresponds to a ground fuzzy fact 

( , ) /R a b c .  

Table 2 summarizes the mappings in Fuzzy DLP. For simplicity, in Fuzzy DLP as defined in this 
paper we do not use fuzzy forms for all of DLP, excluding value restrictions and transitive role axiom, 
and assuming 1c =  whenever / c  is omitted. 

Table 2. Representing Fuzzy DLP in RIF 

LP syntax 1( ) ( ), , ( ) /nD x C x C x c← "  

DL syntax 1
n ii C D c= =∩ �  

RIF function Forall ?x( 
  D(?x)=?ch :-  
    And(C1(?x)=?c1 … Cn(?x)=?cn ?ct =External(numeric-minimum(?c1 … ?cn)) 
        ?ch=External(numeric-multiply(c ?ct)) ) 

RIF predicate Forall ?x( 
  D(?ch ?x) :-  
      And(C1(?c1 ?x) … Cn(?cn ?x) ?ct =External(numeric-minimum(?c1 … ?cn)) 
          ?ch=External(numeric-multiply(c ?ct)) ) 
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RIF-URD Forall ?x( 
    D(?x) :- And(C1(?x) … Cn(?x))   
    )  / c 

LP syntax 1( , ) ( , ), , ( , ) /nP x y R x y R x y c← "  

DL syntax 1
n ii R P c= =∩ �  

RIF function Forall ?x ?y( 
  P(?x ?y)=?ch :-  
    And(R1(?x ?y)=?c1 … Rn(?x ?y)=?cn 
        ?ct =External(numeric-minimum(?c1 … ?cn)) 
        ?ch=External(numeric-multiply(c ?ct))) 

RIF predicate Forall ?x ?y( 
  P(?ch ?x ?y) :-  
        And(R1(?c1 ?x ?y) … Rn(?cn ?x ?y) 
            ?ct =External(numeric-minimum(?c1 … ?cn)) 
            ?ch=External(numeric-multiply(c ?ct))) 

RIF-URD Forall ?x ?y( 
    P(?x ?y) :- And(R1(?x ?y) … Rn(?x ?y)) 
    )  / c 

LP syntax '( ) ( ) / , ( ) ( ) /C x D x c D x C x c← ←  

DL syntax 'min( , )C D c c≡ =  

RIF function Forall ?x( 
  C(?x)=?ch :- And(D(?x)=c1 ?ch=External(numeric-multiply(c c1))) 
Forall ?x( 
  D(?x)=?ch :- And(C(?x)=c1 ?ch=External(numeric-multiply(c’ c1))) 

RIF predicate Forall ?x( 
  C(?ch ?x) :- And(D(?c1 ?x) ?ch=External(numeric-multiply(c c1))) 
Forall ?x( 
  D(?ch ?x) :- And(C(?c1 ?x) ?ch=External(numeric-multiply(c’ c1))) 

RIF-URD Forall ?x(C(?x) :- D(?x))  / c 
Forall ?x(D(?x) :- C(?x))  / c’ 

LP syntax '( , ) ( , ) / , ( , ) ( , ) /R x y P x y c P x y R x y c← ←  

DL syntax 'min( , )R P c c≡ =  

RIF function Forall ?x ?y( 
  R(?x ?y)=?ch :- And(P(?x ?y)=c1 ?ch=External(numeric-multiply(c c1))) 
Forall ?x ?y( 
  P(?x ?y)=?ch :- And( R(?x ?y)=c1 ?ch=External(numeric-multiply(c’ c1))) 

RIF predicate Forall ?x ?y( 
  R(?ch ?x ?y) :- And(P(?c1 ?x ?y) ?ch=External(numeric-multiply(c c1))) 
Forall ?x ?y( 
  P(?ch ?x ?y) :- And(R(?c1 ?x ?y) ?ch=External(numeric-multiply(c’ c1))) 

RIF-URD Forall ?x ?y(R(?x ?y) :- P(?x ?y))  / c 
Forall ?x ?y(P(?x ?y) :- R(?x ?y))  / c’ 

LP syntax '( , ) ( , ) / , ( , ) ( , ) /R x y P y x c P y x R x y c← ←  

DL syntax 'min( , )P R c c−≡ =  

RIF function Forall ?x ?y( 
  R(?x ?y)=?ch :- And(P(?y ?x)=c1 ?ch=External(numeric-multiply(c c1))) 
Forall ?x ?y( 
  P(?y ?x)=?ch :- And( R(?x ?y)=c1 ?ch=External(numeric-multiply(c’ c1))) 

RIF predicate Forall ?x ?y( 
  R(?ch ?x ?y) :- And(P(?c1 ?y ?x) ?ch=External(numeric-multiply(c c1))) 
Forall ?x ?y( 
  P(?ch ?y ?x) :- And(R(?c1 ?x ?y) ?ch=External(numeric-multiply(c’ c1))) 

RIF-URD Forall ?x ?y(R(?x ?y) :- P(?y ?x))  / c 
Forall ?x ?y(P(?y ?x) :- R(?x ?y))  / c’ 

LP syntax ( ) /C a c  ( , ) /R a b c  

DL syntax ( )C a c=  ( , )R a b c=  

RIF function C(a)=c R(a b)=c 

RIF predicate C(c a) R(c a b) 

RIF-URD C(a)  /c R(a b)  /c 

In summary, Fuzzy DLP is an extension of Description Logic Programs supporting the following 
concept and role inclusion axioms, range and domain axioms, concept and role assertion axioms to 
build a knowledge base: 1

n ii C D c= =∩ � , C D c≡ = , .R CΤ ∀� , .R C−Τ ∀� , 
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1
n ii R P c= =∩ � , P R c≡ = , P R c−≡ = , R R+ � , ( )C a c= , and ( , )R a b c= , where 

1, , , nC D C C" are atomic concepts, ,P R  are atomic roles, ,a b  are individuals, (0,1]c∈  and 
1n ≥ . Notice that the crisp DLP axioms in DLP are special cases of their counterparts in Fuzzy DLP. 

For example, C D�  is equal to its fuzzy version 1
n ii C D c= =∩ �  for 1n =  and 1c = . 

In previous sections, we presented two techniques of encoding uncertainty in RIF and proposed a 
method based on an extension of RIF for uncertainty representation. Subsequently, we also showed 
how to represent Fuzzy DLP in RIF-BLD and RIF-URD in Table 2. 

Layered on Fuzzy DLP, we can build fuzzy hybrid knowledge bases in order to build fuzzy rules on 
top of ontologies for the Semantic Web and reason on such KBs. 

Definition 3. A fuzzy hybrid knowledge base hfKB  is a pair ,DL LPK K< > , where DLK  is the 
finite set of (fuzzy) concept inclusion axioms, role inclusion axioms, and concept and role assertions of 
a decidable DL defining an ontology. LPK  consists of a finite set of (fuzzy) hybrid rules and (fuzzy) 
facts. 

A hybrid rule r  in LPK  is of the following generalized form (we use the BNF choice bar, |):  

1 1 1 1( ) & ( ) ( ), , ( ) ,& ( ), ,& ( ) /( | ) l l n nH y H z B y B y Q z Q z c←
G G GG G G" "  (4) 

Here, ( ), ( ), ( ), ( )i i j jH y H z B y Q zG GG G  are atoms, &  precedes a DL atom, , , ,i jy z y zG GG G are vectors of 
variables or constants, where yG  and each iyG  have arbitrary lengths, zG  and each jzG  have length 1 
or 2, and (0,1]c∈ . Also, &  atoms and / c  degrees are optional (if all &  atoms and / c  degrees 

are missing from a rule, it becomes a classical rule of Horn Logic). 
Such a fuzzy hybrid rule must satisfy the following constraints: 
(1) H  is either a DL predicate or a rule predicate ( T RH ∈∑ ∑∪ ). H  is a DL predicate with the 

form &H , while it is a rule predicate without the &  operator. 
(2) Each iB  (1 i l< ≤ ) is a rule predicate ( i RB ∈∑ ), and ( )i iB y  is an LP atom. 
(3) Each jQ  (1 j n< ≤ ) is a DL predicate ( j TQ ∈∑ ), and ( )j jQ z  is a DL atom. 
(4, pure DL rule) If a hybrid rule has head &H , then each atom in the body must be of the form 

& jQ (1 j n< ≤ ); in other words, there is no iB ( 0l = ). A head &H without a body ( 0l = , 0n = ) 

constitutes the special case of a pure DL fact.  
Example 5.1. The rule & ( , ) ( , ) /CheapFlight x y AffordableFlight x y c←  is not a pure DL rule 

according to (4), hence not allowed in our hybrid knowledge base, while 
( , ) & ( , ) /CheapFlight x y AffordableFlight x y c←  is allowed. 

A hybrid rule of the form & ( , ) & ( , ) /CheapFlight x y AffordableFlight x y c←   can be mapped 
to a fuzzy DL role subsumption axiom AffordableFlight CheapFlight c=� . 

Our approach thus allows DL atoms in the head of hybrid rules which satisfy the constraint (4, pure 
DL rule), supporting the mapping of DL subsumption axioms to rules. We also deal with fuzzy 
subsumption of fuzzy concepts of the form C D c=�  as shown in Example 5.1.  

An arbitrary hybrid knowledge base cannot be fully embedded into the knowledge representation 
formalism of RIF with uncertainty extensions. However, in the proposed Fuzzy DLP subset, DL 
components (DL axioms in LP syntax) can be mapped to LP rules and facts in RIF. A RIF-compliant 
reasoning engine can be extended to do reasoning on a hybrid knowledge base on top of Fuzzy DLP by 
adding a module that first maps atoms in rules to DL atoms, and then derives the reasoning answers 
with a DL reasoner, e.g. Racer or Pellet, or with a fuzzy DL reasoner, e.g. fuzzyDL [31]. The 
specification of such a reasoning algorithm for a fuzzy hybrid knowledge base hfKB  based on Fuzzy 
DLP and a query q  is treated in a companion paper[32]. 
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6. Conclusion 

In this paper, we propose two different principles of representing uncertain knowledge, encodings in 
RIF-BLD and an extension leading to RIF-URD. We also present a fuzzy extension to Description 
Logic Programs, namely Fuzzy DLP. We address the mappings between fuzzy DL and fuzzy LP within 
Fuzzy DLP, and give Fuzzy DLP representations in RIF. Since handling uncertain information, such as 
with fuzzy logic, was listed as a RIF extension in the RIF Working Group Charter [18] and RIF-URD 
is a manageable extension to RIF-BLD, we propose here a version of URD as a RIF dialect, realizing a 
fuzzy rule sublanguage for the RIF standard. 

Our fuzzy extension directly relates to Lotfi Zadeh’s semantics of fuzzy sets and fuzzy logic. We do 
not yet cover here other researchers’ semantics, for example, Jan Lukasiewicz’s. Nor do we cover other 
uncertainty formalisms, based on probability theory, possibilities, or rough sets. Future work will 
include generalizing our fuzzy extension of hybrid knowledge bases to some of these different kinds of 
uncertainty, and parameterizing RIF-URD to support different theories of uncertainty in a unified 
manner.  

Complementing the RIF-URD presentation syntax, XML elements and attributes like <degree>, 
@mapkind, and @kind, following those of Fuzzy RuleML, can be introduced for the RIF-URD XML 
syntax. Another direction of future work would be the extension of uncertain knowledge to various 
combination strategies of DL and LP without being limited to DL queries. 
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