
  

 

Transcript of Episode #254

What We'll Do for Speed 

Description: This week Steve and Leo examine the amazing evolution of microprocessor 
internals. They trace the development of the unbelievably complex technologies that 
have been developed over the past 25 years to wring every last possible cycle of 
performance from an innocent slice of silicon.  

High quality  (64 kbps) mp3 audio file URL: http://media.GRC.com/sn/SN-254.mp3  
Quarter size (16 kbps) mp3 audio file URL: http://media.GRC.com/sn/sn-254-lq.mp3

Leo Laporte: This is Security Now! with Steve Gibson, Episode 254, recorded June 
23, 2010: What We'll Do for Speed. 

It's time for Security Now!, the show that covers your security, your privacy, and 
what you need to know to keep yourself safe on the interwebs. And here he is, the 
king of security, our very own Steve Gibson, man about town, man about GRC.  

Steve Gibson: Normally people think that I'm over-caffeinated. But in this case, Leo...

Leo: I'm only on my second cup of coffee.

Steve: Nah, I'm just kidding.

Leo: How are you today?

Steve: Great. We have a great episode. I'm always excited when I'm able to bring 
something that I think is really going to be interesting to our listeners. One of the things 
that I constantly hear in our feedback is that people come away with something new that 
they didn't know every single podcast.

Leo: We like that.

Steve: Pretty much no matter what. And so it makes it worth their while, and it makes it 
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worth our while.

Leo: It certainly does.

Steve: Today I think we're going to - I've been projecting the completion of the series on 
the fundamentals of CPU technology...

Leo: Yeah. It's never done.

Steve: ...for quite a while. I think I'm finally running out. But before we switch to a 
number of things that we've got in backlog, and then once those are cleared out, plow 
into the fundamentals of networking, which is going to be our next big series...

Leo: Oh, yum.

Steve: ...I wanted to talk about, and that's what we're going to do today, what has 
happened over the course of the last 25 years in the internal design of microprocessors 
being pushed to unbelievable technology for the sake of speed. There's stuff in our 
micros which I think by the end of this podcast everyone is going to be thinking, I had no 
idea that's what they had done, that that's what was in there. It's just - it is truly 
remarkable what technology has been brought to bear that we've never touched on. 
When you and I first started talking about this as we fired up our connection, you were 
saying, well, you mean, like caching? It's like, oh, no, my friend. This is just unbelievable 
stuff. So...

Leo: Oh, I can't wait. It is a miracle, really. And it's such a commonplace miracle, as 
is often the case, that we take it for granted. And yet...

Steve: Well, exactly. Well, it's hidden.

Leo: Right.

Steve: And in fact, much of this is proprietary. And it's only from people scrutinizing 
patent documents and actually performing tests on the micros to see how they perform 
that what's been put into them has been reverse-engineered or has been gleaned from 
looking at patents that we go, aha ho, that's what this thing is doing. And it's just, well, 
remarkable. So, yeah, we've got a really great episode today.

Leo: Oh, I can't wait. All right, Steve. Do we have any security updates?

Steve: Well, we have - it's been a blessedly quiet week...
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Leo: Yay.

Steve: ...after many weeks of a great deal of torturous, tumultuous news. I did want to 
mention something that I saw picked up in the news, which I had independently verified 
and dealt with myself, which was that this recent Mac OS X update, which we talked 
about last week, which was 313MB for me and various sizes depending upon what 
version and so forth, that it brought back the older, vulnerable version of Flash.

Leo: Oh, you're kidding. Now, they've done that before, and that's very infuriating. 
That's so bad.

Steve: Yeah. So it retrograded people who may have updated by putting - remember 
that we were at 10.0.45.2. And we went up to 10.1, which is now the official Adobe 
release. We had recommended that people jump ahead and use that 10.1 even when it 
was not yet official, when it was in prerelease, because it was known not to have the 
problem, which is now being very actively exploited on the Internet. There's lots of buzz 
about this big Flash problem. So...

Leo: Now, typically these exploits give the bad guy root access. But then usually the 
software he's using is not Mac software. It's Windows. So it's less, I mean, it's 
absolutely a threat to Mac users. But they're not prone to a lot of these online hacks 
right now.

Steve: Right. Well, the new model, of course, is a different threat model. It's this notion 
of as now is the term "weaponized email," which is sort of a version of spear phishing. 
And so we are beginning to see Mac exploits and Mac malware. I mean, it's beginning to 
happen. It's certainly lagging way behind where Windows is. And people with Windows 
are the larger target. But I just, sort of out of curiosity, I went through, under Safari - I 
also normally use Firefox on my Mac, but for some reason I was using Safari. Oh, I know, 
some reader had written that under HTTPS the lock had disappeared, and it was no 
longer possible to check your security certificate under Safari 5. And I said, oh, okay. So 
I fired up my Mac and fired up Safari 5. And it still is. It's a very tiny little lock in the far 
upper right corner which you have to click on, and then you can do everything. You can 
see what your security certificate is and so forth. 

But while I was there I went through and looked at the add-ons that I had, the additional 
browser features. And I noted that, sure enough, Flash was back at 10.0.45.2. So I went 
to Adobe, downloaded it. Anyway, so just wanted to let Mac people know that they ought 
to check again to see what their version of Flash Player is. You can just go to Adobe.com, 
and right there is a little icon that says "Get Adobe Flash Player." Or you can go to 
get.adobe.com/flashplayer, which takes you immediately to the page where you 
download it and install it. And you do have to restart your browser in order for it to see 
the new version. And the good news is that Firefox's version of the Flash Player was 
updated at the same time. So just doing that for either one will take care of it for both. 

Leo: Apparently some of the people in the chatroom are saying it didn't set theirs 
back if they'd already upgraded. So it may depend. But certainly worth checking to 
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make sure that you have the latest version.

Steve: Yeah, I'm sure I was updated. But, so, I guess...

Leo: Yeah, yeah, just something to be aware of.

Steve: Yup. Worth checking.

Leo: Don't be disappointed if it didn't downgrade you.

Steve: The only other real news is this - I just wanted to update our listeners because 
that's why we call ourselves "Security Now!," is what I guess I would refer to now as 
GoogleGate. This ongoing kerfuffle over Google's inadvertent collection of unencrypted 
wireless data. The most recent news is that Richard Blumenthal, who's the attorney 
general for the U.S. State of Connecticut, has now stated that attorneys general from 30 
states have expressed an interest in joining them, that is, Connecticut, into an 
investigation into Google's collection of personal information over their unsecured WiFi 
collection. Which is continuing to be annoying. 

And then what popped up in the news also this week is that the French data protection 
agency, it's called CNIL, their chairman, Alex Turk, has made the comment that in their 
early look at the data that Google turned over to them, which had been collected in 
France, he's quoted as saying that "data that are normally covered by ... banking and 
medical privacy rules" were found in the data. And IDG news also reported that CNIL had 
spotted passwords for email services and chunks from text messages.  

And so my reaction is, yeah, I mean, we understand that's what's happening in 
unencrypted WiFi. Eric Schmidt, Google's CEO, he's saying, look, "No harm, no foul. Who 
was hurt?" Name a single person. And his point is that, yes, they recorded this on hard 
drives. They did it because the software that they use had defaulted in its default 
settings for doing so. But they never used the data. They never intended to. They didn't 
process it. And nobody was damaged by this. 

Leo: I'm not a lawyer, but I know that intent is significant in criminal law, your 
intent.

Steve: Well, and suing for damages is - many of these random individuals who wanted 
to fire up a class-action lawsuit, the good news is you have to show damage.

Leo: Right.

Steve: And being annoyed is not damage.
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Leo: So that's going to be the nub, is can you prove that you were damaged. Is it 
credible, given what we know, that Google - that this was an accident, or that 
Google didn't...

Steve: Yes.

Leo: It is.

Steve: It is entirely credible. They've shown the source code. They've turned that over. 
They've had it analyzed by a third party. I've looked at it myself and seen that the 
defaults that Kismet uses, which is a well-known open source WiFi collection tool, the 
defaults that it uses make sense. And they are record unencrypted payloads; don't 
bother to record encrypted payloads. As we know, encrypted WiFi payload is just 
pseudorandom noise. I mean, unless you go to huge extents to decrypt it, which Google 
wasn't doing. All Google wanted was the header information. As we understand, they 
wanted the MAC address and the SSID. That's all they wanted. 

And then at the same time they were adding metadata, that is to say the current GPS 
coordinates and the signal strength, which Kismet does also add because that's one of 
the things that Kismet records in its own metadata. So they were just streaming all that 
stuff onto hard drives as they wandered around town, wandered around the globe 
actually, the whole world, sucking this stuff in. And, I mean, I don't have a single bit of 
doubt that this was inadvertent.  

And I'm just wishing, what frustrates me is the wrong lesson is being learned here. I 
mean, people are all upset that Google recorded something that people were 
broadcasting. People have a responsibility for the fact that they're broadcasting this data. 
I mean, we understand this data is in the clear on this podcast, and that it's being 
broadcast. I read some interesting conversation in the security community with people 
saying, is it illegal for you overhearing your neighbors having a heated argument? No. I 
mean, they're shouting at each other out loud. You can't help but to hear it. Is it 
impolite? Well, maybe it's impolite to listen. But if it's being broadcast, as is a shouting 
match, then you're going to hear it.  

I mean, and so, I mean, this is - what really frustrates me is unencrypted wireless is a 
massive problem. I mean, there's no bigger security issue today, I think. And the world 
could be learning an important lesson, which is unfortunately so far not being - it's not 
surfacing. What's surfacing is Google is bad for doing this, and that's ridiculous. So 
anyway.  

Leo: Although we know, I mean, from case law we know that, for instance, if you 
are sitting out on a curb using somebody's unencrypted WiFi, just because it's 
unencrypted doesn't get you off the hook. People have been arrested for that, 
prosecuted for that, and even fined for that.

Steve: Which is entirely different than passively sniffing and not using.
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Leo: Right. Yeah, I think, I mean, it's clear Google's going to turn back these 
lawsuits. But there is a public relations hit to this, and it mostly comes with people 
who aren't listening to this show. I'll try to do my best on the radio to talk about it. 
But I think that it's inevitable that, unfortunately, this state attorney general in 
Connecticut is doing Google a lot of damage and is really grandstanding, I think.

Steve: Yes, yes. Well, in fact, I had been meaning to ask you, Leo. I'd, if you're 
interested, like to come onto your...

Leo: Please do.

Steve: ...Saturday and Sunday show...

Leo: Please do.

Steve: ...because middle of next week Starbucks is going wireless and unencrypted.

Leo: Yeah. That's a bigger story. That's more important.

Steve: Yes. And so I thought that would - it would be good just to talk to all of the 
listeners of your Tech Guy show and say, look, yes, this is free. Yes, this is going to be 
nice, open WiFi. But understand the consequences.

Leo: Why don't we record that right after this show because I'm going to be at Foo 
Camp, and so we're recording the show ahead of time. In fact, this will be great. It'll 
give me another segment. You've got 12 minutes. You could do it twice, on Saturday 
and Sunday. So we'll record it right after this show because that is an important 
message. And we could mention this Google thing.

Steve: Oh, it would be perfect to mention it because it sort of ties into it because here's 
what - France is saying Google was recording people's email passwords. Well, they were.

Leo: Because people were sending them in the clear.

Steve: Exactly.

Leo: And I think we should probably also - I mention on the radio show all the time, 
but also mention this very simple thing, which is turning on WPA2 encryption is all 
you need to do. It's the one and only thing to do with a WiFi access point to secure 
it.
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Steve: Yup. In fact, I did see a little blurb saying that the Wi-Fi Alliance, which is the 
formal standards body for WiFi, was going to be removing WEP encryption from the 
standard.

Leo: Good. Hallelujah.

Steve: Which as we know is, I mean, it's better than in the clear, but it's certainly not 
secure. There's technology, we've done podcasts about this that talk about in detail how 
it's now possible to crack the WEP key in about a minute.

Leo: Fantastic. That's really about time they dump that piece of junk.

Steve: Yeah. It was, as we know, it was an early standard that was designed with no 
consultation by cryptographers. And as the cryptographers began looking at it, the 
"security" of it just collapsed under scrutiny. So the lesson was learned. And WPA, the 
good technology, was designed correctly. So, and I think early on there was a problem 
with not - with in some cases using WPA because there were still devices and technology 
that was WEP only. But that's been years now. And, I mean, this is years old. And so I 
think it does make sense to retire it. The problem is, people are still just using no 
security. And I've used the term before, "the tyranny of the default."

Leo: Right.

Steve: I like the phrase because it says that most of the time people leave things in their 
default settings. Unfortunately, since the wireless access point and the wireless router 
people don't want a heavy tech support burden, they ship their access points and 
wireless routers defaulting to open, defaulting to no encryption. And so what happens is 
your typical user plugs it in, turns on their laptop, it finds it, and they go, wow, that was 
really easy. Uh-huh. Unfortunately it was too easy.

Leo: A little too easy.

Steve: Yeah.

Leo: I think that's changing. I know Linksys and others are starting to walk you 
through a secure process. Some of these companies are putting big buttons on their 
router that say "press this to be secure" and stuff like that.

Steve: Good.

Leo: So I think there's - of course they understand it's going to add to their tech 
support costs. They're going to get more calls. People are going to be confused. But 
I think that they realize they've got to - they can't just leave people out in the open 
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in the clear like that.

Steve: The good news is, in my own neighborhood, on some of my WiFi radios, I can see 
maybe 10 or 11 or 12 different WiFi nodes. Every single one of them now has a padlock.

Leo: Good.

Steve: And that was not the case a couple years ago.

Leo: No. Yeah, no, I remember going and doing a Netstumble - and I should try this 
again on my way to work - and recording hundreds of Linksyses. I mean, not even 
renamed. Let along WEP or WPA. I mean, they were called "Linksys." I'm sure the 
default password would work. So even if they turned on WPA I could just log in and 
turn it off. Crazy. Do you have any errata you'd like to...

Steve: I don't. I just have a short, very short and sweet little note from a listener of 
ours, John Levell, who's in the U.K. He said, "Steve, I'm a regular listener to Security 
Now!, so very familiar with the sort of feedback you receive for all your work, but just 
wanted to add some more. I just bought SpinRite. Five hours later my dead XP system is 
alive again. Many thanks for the quality of both your software and your podcast. J."

Leo: Isn't that nice.

Steve: So thank you, John, for sharing.

Leo: Isn't that nice.

Steve: He sent that from his iPhone.

Leo: Aw.

Steve: Yeah.

Leo: I feel the need, Mr. Gibson, for speed.

Steve: Well, so we've established sort of the original technology of computers, looking at 
the way, for example, early minicomputers like my favorite old PDP-8 operate, where 
memory is a bunch of words, and the words are broken into fields of bits, and the bits 
specify, for example, the opcode, the operation code, what the word of instruction is 
going to cause the hardware of the machine to do. And even then, even though the 
machine went from one instruction to the next, the execution of that instruction 
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internally took several phases. 

You would fetch the instruction from main memory into the - we talked about the IR, the 
Instruction Register, where the machine would then look at the opcode to determine 
what this instruction was telling it to do. So there was a fetch of the instruction. Then 
there was a decode, where you'd decode what it is that you fetched.  

Then comes to execute the instruction, whether it's incrementing the accumulator or 
adding a register to another, maybe jumping to somewhere else. And then in some cases 
you would be writing the results back, maybe writing the result of incrementing the 
accumulator back into the accumulator, or writing it back into main memory, if you were 
storing.  

So from the programmer's view, the programmer sees this as atomic events, one 
instruction per word. The engineer who's designed the computer to do this sees that 
there's more going on. A single execution of an instruction actually requires many 
different phases - fetch, decode, execute, and then write back the results. So machines 
were being produced like that. And people naturally wanted them to go faster.  

And what the engineers saw was that, well, you know, we fetched an instruction. Then 
we're decoding it, and we're executing it. But while we're doing those things we're not 
using main memory. That is, it's waiting for the next fetch. And so the concept dawned 
on them, and this actually happened on the mainframe level in the late '60s, this notion 
of sort of overlapping things. And the best example, sort of I think the model that's 
clearest is, because we've all seen examples of it, is the automobile assembly line - 
which, as I understand it, Ford invented to create his cars, the idea being...  

Leo: Just a side note, by the way, we're going to be going to visit the Ford assembly 
line on July 30th.

Steve: Who, "we"?

Leo: Me. Who, "me."

Steve: Oh, cool.

Leo: Yeah, and I'm going to bring the live camera, and we're going to actually show 
the state of the art in modern assembly, which I can't wait, their Dearborn plant.

Steve: I would love to see that because you only get little snapshot snippets of...

Leo: I know.

Steve: ...pictures with robot arms swinging stuff around in the air.
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Leo: I know, I'm so excited.

Steve: That will be really cool.

Leo: I'm going to go see where my Mustang was born. Anyway, sorry, didn't mean 
to interrupt, go ahead.

Steve: So the idea with an assembly line is that, at every stage of assembly, you do a 
little bit of work towards producing a finished car. The time required to produce one car 
is the time it takes to go the length of the assembly line. But once the assembly line is 
full of partial cars being assembled, the rate at which cars come out is much faster than 
the total time it takes for a car to move through the assembly line. So...

Leo: Wait, now, let me think about that. The cars come out faster than it takes for a 
car to go through the assembly line.

Steve: Yes. So say that you had an assembly line of 10 stages.

Leo: Yeah.

Steve: And that each stage took a minute.

Leo: Okay.

Steve: Well, when you start making a car...

Leo: It takes 10 minutes.

Steve: It's going to take 10 minutes for that car to go all the way through the assembly 
line.

Leo: Oh, but then cars will come out one every minute.

Steve: Exactly.

Leo: Cool.

Steve: Once the assembly line is full, then they come out every single minute.
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Leo: Got it, okay. I'm glad - sorry. I'm stupid, but I needed to understand that. 
Okay.

Steve: And so in processor technology we call this a "pipeline." And virtually every 
machine now being made, and actually made for the last two decades, has been 
"pipelined" to one degree or another. So let's first apply that to the very simple model of 
this machine which fetches the codes, executes, and writes back. The idea with a pipeline 
there would be that you fetch an instruction, then you start decoding it. Well, while 
you're doing that, memory is free. You're not using memory. So most instructions, most 
code is sequential. That is, we know that after normal instructions are executed, the 
program counter is incremented by one for the next word, which is then fetched. And the 
one after that and so forth. 

That changes in the case of jump instructions, which jump us to somewhere else; or 
branch instructions, which may or may not branch to somewhere else. But in general it's 
a safe bet that we're going to be moving forward. So the engineers who wanted more 
performance out of the system basically - and this will be a recurring theme through this 
podcast. You look at the various components of your system and think, how can we keep 
them busy all the time? How do we get the most performance out of it? Well, it's by 
keeping all the pieces busy.  

So if, while we're decoding an instruction we just fetched, we assume that we're going to 
be executing the next one here in a while, well, go ahead and fetch it. Get it read from 
memory. And similarly, after that first instruction's been decoded, then it's time to 
execute it. Well, meanwhile, at that point the decoder is not busy because it just did its 
work on the first instruction. Well, now we've got the second instruction that we fetched 
while the first one was being decoded. It can now be decoded.  

And so the analogy is exactly similar to the assembly line where instructions move 
through several stages. And once they get going, rather than an instruction having to go 
all the way through before you even start on the next one, you're able to make some 
assumptions that allow you to basically create an assembly line for computer 
instructions, just like you do for cars.  

Now, it gets, from that simple sort of start, then things really get interesting because one 
of the things that happens is that instructions may interact with each other. That is to 
say, if we were to add two registers - say that we had a machine with multiple registers, 
as all contemporary machines have now. Back, you know, that PDP-8 had just the one 
accumulator, which you sort of ended up using as a scratchpad. Now we've got 8, 16, 32, 
lots of registers. So say that an instruction that you read was adding two registers 
together, that is, adding one into another, and that the instruction that followed took the 
value from that add and stored it. Well, so now we have a problem because we have 
instructions in this pipeline which interact with each other.  

So over time engineers have made these pipelines longer because they'd like to get as 
much simultaneity going as possible. But they've also had to deal with the fact that there 
can be interactions, and often are, between instructions that are in the pipeline at the 
same time. So the first thing that's done is that instructions are broken into smaller 
pieces. They're called "micro ops" (uOps).  

So, for example, say that we had a simple instruction. We've talked about how the stack 
works; how, for example, when you push something on the stack, what happens is the 
stack pointer is decremented to point to a new, lower location in memory. And then the 
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value that you're pushing is written to the location where the stack pointer is pointing, 
sort of in this scratch pad. So that operation, a single instruction, "push a register," can 
actually be broken into two micro operations. The first one is decrement the stack 
pointer. The second one is copy the register to where the stack pointer is pointing.  

And imagine another instruction, like adding a register to what's in memory. Well, to do 
that you have to read out what's in memory. Then you have to add the register to what 
you read out and then write that sum back to that same location in memory. Well, that's 
three micro operations. So what the processors do now is they take these sort of what 
look - the programmer sees them as instructions, but they're actually complicated 
enough that they require - they can be broken down into smaller pieces. So the 
processor fragments these single instructions into multiple micro operations and then 
basically pours them into this pipeline, which is getting increasingly long, in some cases 
as long as, like, 20 stages of, like, staging of instructions.  

Now, one of the things that engineers noticed was that some instructions, like this - 
imagine the instruction I talked about where we're wanting to add a value to something 
in memory, where we're having to read the thing out of memory, then sort of into some 
internal temporary location that isn't even named. Then we add a register to that and 
then write it back out. Well, so we've taken that single instruction and broken it into 
these three micro operations.  

Now imagine that there's an instruction behind it, that is, it actually is later in the code, 
that's doing something else entirely. It's adding two registers that aren't related to these 
micro operations. What the engineers realized was, while the computer was out fetching 
the value to be added to, it had already fetched more instructions behind. And the ones it 
had behind were independent of the outcome of the instructions that it was working on 
currently. And, for example, while fetching something from memory, the machine's 
adder, the ALU, the Arithmetic Logical Unit, was idle.  

So the processors of today are able to realize that they've got other things they can be 
doing which are independent of the outcome of earlier instructions. So why not execute 
them out of order? That is, literally rearrange these micro operations in the pipeline so 
that things that are taking longer can literally be passed by instructions which can take 
advantage of resources in the chip which are not currently in use.  

And so what we've ended up with is this amazing technology which pours instructions in 
the front end of the pipeline, fractures them into smaller sort of individual granules, 
which need to be executed in order for that to happen. Then logic which is sophisticated 
enough to look at the interdependencies between these micro operations and reorder 
them on the fly so that the assets that the chip has, like Arithmetic Logical Units, like a 
floating point processor, like instruction decoders, all these assets are being maximally 
used.  

And in fact one of the things that happened was that processers went so-called 
"superscalar." What I've described so far is a scalar processor. A superscalar one is one 
which is actually able to execute more than one instruction per cycle. That is, normally 
you would be retiring instructions when you're done out of this pipeline, sort of at a given 
speed.  

Well, if you have enough assets to execute instructions, there's no reason you can't go 
faster than a hundred percent. And so superscalar processors go faster than a hundred 
percent. They've got, for example, there are some that have four ALUs and two Floating 
Point Units. And so they're literally able to be doing four additions at once. Sometimes 
those are part of a very complex instruction, or sometimes they're part of different 
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instructions.  

The point is, the processor has become smart enough to break all of these down into 
little subfunctions and then sort through them, analyzing the interdependencies among 
these subfunctions and taking advantage of anything that might require a delay in order 
to say, oh, wait a minute, we've got a guy back further here who isn't dependent upon 
any of our outcomes. And we've got a free adder. Let's do that addition right now. And if 
you think for a minute about the logical complexity of any instructions which you might 
encounter, and having to, on the fly, I mean, we're talking - there's no time to do this, 
either. This is not slowing things down. The goal is to speed everything up.  

So there's no - you can't even catch your breath. This is all happening billions of times a 
second. At gigahertz speeds this is all being managed. So now we have a system which is 
able to do, literally, sucking instructions in, cracking them down, rearranging them on 
the fly, looking at interdependencies. Well, that wasn't enough for the engineers. 
Management said "faster, faster, faster." And so the engineers are like, wait a minute. 
We're going as fast as we can.  

Well, what they realized was that wasn't true because there was still a way they could 
get a little more clever. I used the word "retiring an instruction" before. And that's a term 
used in this art where you finally say - you, like, write the results of the instruction back 
out. So inside this pipeline you've got an amazing amount of resources. You've got 
unnamed registers. By that I mean they're not like the register 0, register 1, register 2, 
or AX, BX, CX. That is, they're not the registers that the programmer sees. These are like 
temporary scratchpad registers which are not visible to the outside world, not visible to 
the instruction stream. But they're used, for example, if you were adding something to 
memory where you've got to read that into somewhere in order to add something to it. 
So that's an unnamed register.  

So when you retire an instruction, you're sort of writing its results back out to, like, the 
real registers, to the programmer-accessible registers. But the engineers realized that in 
some cases they did have a result which a later instruction was waiting for, even though 
they hadn't yet retired the earlier instruction out to, for example, writing to, like, the AX 
register. They did have it in the pipeline.  

So they added a whole 'nother layer of nightmare by allowing results to be forwarded, 
and that's the term that's used, within the pipeline to, like, track this so that partially 
executed instructions which had not yet been retired could have their results sent sort of 
back into the future in order to allow instructions that had stalled because they were 
dependent upon an outcome which hadn't been resolved yet. And all of that exists also. 
So what we have now is something unbelievably complicated.  

Now, what happens if you hit a branch? Because branching, any change of linear flow is 
the worst possible thing that can happen. Think about it. We've got all this happening. 
We've got 20 instructions maybe that have been taken apart, all under the assumption, 
remember we made one fundamental assumption at the beginning, which was we're 
going to go linear. All of this sucking in things ahead of where we are assumes we're 
going to use them. All of this work says that we know where we're going.  

Except when we come to a conditional branch, or even a jump that's going to go 
somewhere, suddenly everything changes. We now don't know whether we're going to 
keep going or go somewhere else until later in that instruction's phasing. Remember, 
now instructions are being cracked apart. They're being decoded. They're being 
executed. There's, like, all this work being done before the outcome of the instruction is 
known.  
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The problem is, if it's a branch instruction that might change the sequence, if it does 
change, if it's branching us to somewhere else, well, everything behind that instruction 
has to be scrapped. So the entire pipeline has to be dumped. And we stall until we are 
able to then load a series of instructions from the new location and sort of get all this 
going again.  

Leo: And that's what screwed up Prescott because I think their prediction wasn't 
good, or their pipelines were too long, and they got a lot of dumps.

Steve: Well, yes. So having developed this amazing complexity for dealing with, I mean, 
like, just incredible acceleration of performance, as long as you go straight, the second 
you change away from that, that linear execution, you're in serious trouble. So engineers 
realized that branch prediction was crucial, that is, literally being able to guess without 
knowing what a branch was going to do. 

Well, the way they've come up with doing this, there was a first level. You can imagine a 
simple-minded way which says, okay, let's assume that the branch that we encounter, if 
we've ever encountered it before, is going to do the same thing. So that sort of makes an 
assumption that branches generally do whatever they're going to do. In fact, 
microprocessor designers realized that many branches that are branching backwards are 
at the bottom of a loop, sort of a loop of code which tends to get executed a lot, and then 
finally isn't executed. So the branch, a branch backwards tends to be taken, as opposed 
to a branch forward. So there was some simple-minded sort of branch guessing that way. 

Then they said, well, wait a minute. Let's record the last outcome of the branch and 
assume that it's going to do the same thing again. So an early branch predictor simply 
did that. And the idea was that you would take a chunk of the lower address bits, so like 
the least significant address bits in the instruction counter; and you would, for every one 
of those address bits, you'd create a table that had a single bit in it, which recorded a 
branch at this location did the following thing last time. It was taken or it wasn't taken.  

Now, we're not talking about having a bit for every branch in the computer. We're saying 
that we're going to have sort of a bit, maybe 256 bits, for, like, the lowest byte of the 
instruction. So branches could collide with each other. A branch that was exactly 256 
words further down would end up having the same least significant byte of address. So 
its bits would collide with each other. There's nothing we can do about that. But the 
probability of that is relatively low. And so there was always this cost versus performance 
tradeoff that's being made.  

But the engineers weren't happy with just using a single bit because imagine that you 
had a branch which, in the code, literally alternated what it did every other time. It turns 
out that's also very common. Well, that would literally mean that every prediction you 
would make was wrong. If you remembered what it did last time, and you assumed it 
was going to do it again, and the logic in this branch was in every other logic, then you'd 
always be guessing wrong. And so the performance would just be abysmal. You'd get no 
benefit from your pipeline. You'd be constantly dumping the pipeline and then needing to 
refill it.  

So the developers came up with a two-bit branch predictor, which they call a saturatable 
or a saturating counter, the idea being that - so two bits could obviously have four 
states. You could be zero zero. And then if you count up, you go to zero one. You count 
again, you go to one zero. And again, you go to one one. So those are the possible 
values. So the idea of a two-bit branch predictor was that, if you took the branch, you 
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would increment this two-bit counter, but never more than one one. So that's the 
saturating part. It would saturate, it would go to one one and then just stay there. If you 
did not take the branch, you would decrement the counter down to zero zero, but then 
you never go below zero zero. It saturates at the bottom end also.  

So what this gave you was a better, sort of more of a probability. You could, if you 
generally took the branch, but not always, this counter would - it would still make a 
mistake, but it wouldn't change its mind completely. So if you generally took a branch, 
even if you occasionally didn't, it would still remember that you generally took it. So it 
would, again, it would generally be guessing correctly. And so that increased the 
performance of branch prediction substantially. But there was still a problem, which was 
that there were patterns of branching which this simple-minded two-bit predictor couldn't 
handle.  

And so in real-world applications it was better than nothing, way better than nothing. But 
some other engineers realized, hey, we can do something even more clever. We can do a 
two-level prediction. So what they created was a shift register of bits which was whether 
the branch was taken or not, in history. And it wouldn't be very long. Maybe let's say for 
a discussion that it's only four bits long. So the shift register is remembering whether 
branches actually were taken or not. And every time we come to a branch, we first of all 
look at the least significant byte of the address to choose one of 256 whole worlds.  

So each possible location in memory, with this 256 cycle, has its own entire little branch 
prediction world. Okay, so within that world is a four-bit shift register that remembers for 
that branch, or branches at that location in memory, whether the branch was taken or 
not. Okay, those four bits, we know that four bits gives us 16 possibilities. Those four 
bits are used to choose one of 16 of our little two-bit saturating counter predictors.  

And what we end up with is literally pattern recognition, where over time this acquires a 
knowledge of any sequence of up to four long of branches and not branches being taken. 
That will be recorded in the two-bit predictor which will tell the computer with very good 
probability whether the branch will be taken again or not. And these predictors have 
grown in length and in size. And so remember that there's one of these whole predictors 
for each of a number of different locations in memory where these branches could fall.  

So now what we've done is we've got this pipeline sucking in instructions, cracking them 
down, looking at their interdependencies, reorganizing them on the fly, taking it - we've 
decoupled the Arithmetic Logical Units and the floating point processors and the 
instruction decoding and all of this so that those are all now separate resources which are 
being assigned and used as soon as they can. As soon as we're able to see that we know 
enough to allow one of these micro operations to proceed, we do.  

At the same time, the system is filling up the pipeline at the top using the results, 
assuming we're going linearly, unless we hit a branch or a jump, and then recording the 
history and literally learning the pattern of the past sequence of branches in the code and 
sort of heuristically developing an awareness of pattern recognition of whether - I mean, 
so that it's able to guess with as much as, it turns out, 93 percent probability whether a 
given branch will be taken or not, only missing about 7 percent of the time. And when it's 
wrong...  

Leo: Is that the average for all processors, or...

Steve: Yes, state-of-the-art prediction now.
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Leo: That's amazing.

Steve: I know. It's just incredible.

Leo: Just amazing. It's like that old joke, how do it know? It's like predicting the 
future, really.

Steve: It's like 6.75 percent misprediction, so about 7 percent misprediction. 93 percent 
of the time they're able to guess right.

Leo: Wow.

Steve: And so making a mistake is expensive in prediction because we have to flush all 
the work we were doing, and then go somewhere else. But 93 percent of the time we're 
able to get it right.

Leo: Somebody's asking in the chatroom, this isn't security. Well, in a way it is. This 
is a series Steve's been doing all along on the basics, the fundamentals of 
computing. In fact, from day one on Security Now! you've really done a great job, I 
think, of getting people up to speed with these fundamentals, things you have to 
understand to understand security; right? These are not completely incidental to 
security.

Steve: It certainly is the case that everything is interrelated. For example, I'm thinking 
as I'm working toward getting going on CryptoLink, the VPN product that I'm going to do 
next, well, encryption performance and decryption performance is very important. And 
understanding the internals of what the chip is doing really does allow a developer who 
wants to truly optimize their code to arrange the instructions so that the logic in the 
chips have the most latitude for working. And certainly performance has been something 
that we've been questing after forever.

Leo: Yeah. And we're getting it with this amazing pipelining and parallelism and so 
forth.

Steve: So the engineers have got this incredible pipeline built. They've got now this 
amazing branch prediction system. And then they realize that they've still got a problem 
because they suck in a return instruction into the top of the pipeline. Well, we know from 
having discussed this before what a subroutine return does. When we call a subroutine, 
we're using the stack. We decrement the stack pointer and put the address of the 
instruction after the call on the stack so that later, once that subroutine has finished, it's 
able to do a return instruction which looks on the stack for where to return to, which has 
a beautiful effect from a programmer's standpoint of bringing us right back to the 
instruction following the one which invoked a subroutine. 

Well, one of the first things a subroutine does, because most subroutines don't want to 
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mess up what was going on when they were called, they'll push a bunch of registers 
value onto the stack themselves so that they can be popped off the stack and restored 
prior to returning. That allows them to have sort of those registers to work with and then 
not mess up what was going on in the main code that called the subroutine. Okay, so 
with that in mind, visualize what's going on in the processor now with the pipeline, where 
the pipeline is full of instructions toward the end of the subroutine, and then the 
subroutine is finished, and it does a return.  

Now, the problem is that the return uses the value on the stack. But the thing that the 
subroutine is doing just before it returns is cleaning up its registers, getting their values 
off the stack in order to restore them to what they were. And this is happening further 
down in the pipeline. Which means the stack pointer is going to be changing a lot, and 
there's no way we can use, there's no way we can execute any of the return instruction 
until literally we get - we know what the stack pointer's going to be. And then we have to 
go read where it's pointing, get that value. That tells us where to return to.  

So then we start fetching instructions from there. Which means a return instruction is 
deadly. It literally brings everything to a halt because we don't - we don't know where 
the stack pointer will be because the instructions typically occurring, all of those 
instructions just before the return are changing the stack pointer as they pop the values 
of the registers back off the stack into the registers so that they're restored when we go 
home.  

So the engineers scratch their head for a while, and they say, wait a minute. What we 
need is an internal call stack. We need our own private stack because we know that, 
more often than not, subroutines nest perfectly. That is, some code calls a subroutine, 
which will return. Or maybe that subroutine calls a subroutine, but that one returns to 
the one that called it, and then it returns to the one that called it. In other words, there's 
a nesting which is almost always followed. Which means that this incredible execution 
unit in the processor now maintains its own call stack. When it sees that it has been 
jumped to a subroutine, it records internally the address of the instruction after that call 
on its own little stack. There's no instructions to get to it. Programmers can't see it. It's 
completely invisible.  

The call stack ranges from 4 to 32 entries in modern processors now. And so what 
happens is, since the internal pipelining miracle has recorded this, the second a return 
instruction is seen, which is just a byte, for example, in an Intel instruction is just a 60 
hex, a six zero hex, the second that byte is seen, the system says, ah, that's a return 
instruction. We don't have to wait for anything. We can immediately pull where we know 
it's ultimately going to return to off of our own internal stack and continue without 
interruption sucking in more data from the point we're going to be returning to, without 
missing a beat. So that's another level of what was added.  

Now, once all of this was finished, and this was maybe, oh, about a decade ago we had 
this level of technology, there was still some unhappiness with the contention for 
resources. That is, there was still not what's called "instruction-level parallelism." There 
still was, like, the ALUs and the Floating Point Units. They were sitting around not being 
used all the time. The engineers weren't able to get them busier because there was still 
too much interdependence among these micro operations that they were just - they 
couldn't get enough, they weren't able to use the resources fully.  

Well, this is when this notion of simultaneous thread execution occurred to them, which 
Intel calls "hyper-threading." I mentioned it a couple weeks ago in passing. I couldn't do 
it justice because we didn't have enough foundation to understand what hyper-threading 
is. Well, we do now, after the last 45 minutes of this. What hyper-threading is, is the 
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recognition that there is what's called "register pressure." There is not enough freedom 
of value assignment among registers. There's just too much interdependency. But if we 
had a whole second set of registers, if we duplicated everything, then where some 
microinstructions are fighting with each other, too interdependent, where they're having 
to wait for results to finish before the later ones can start, therefore assets like the 
Arithmetic Logic Unit and Floating Point Unit are sitting around being unused, if we have 
another physical thread, that is, we have another whole set of registers, well, there, 
because it's a different thread, they're logically disconnected from the first thread's 
registers. There is no conflict at all possible between these separate banks of registers.  

So what hyper-threading does is, I mean, and this - talk about it being confusing already. 
This literally pours instructions from two entirely different threads of execution down into 
the same pipeline, breaking them all up, keeping them all straight, realizing that these 
micro ops and these registers are actually different from those micro ops and those 
registers. So now we have - we've doubled the opportunity for exploiting these fixed 
assets, the Arithmetic Logical Unit and the Floating Point Unit, being able to keep them 
busy much more of the time, which is what hyper-threading does. Essentially, it doesn't 
duplicate the entire system, but it allows us to pour two different threads of execution 
into the same pipeline and get a tremendous boost, I mean, it's not like doubling. We 
don't get double because the resources weren't that underutilized. Typically it's about a 
25 percent gain, which in this quest for performance is better than a kick in the head.  

So, lastly, with all of this, sort of with this much industry having been expended in order 
to satisfy essentially CISC, that is, Complex Instruction Set Computers, the guys 
designing the RISCs were just dizzy. They said, okay, wow. Do we want to do the same 
thing? Are we going to basically duplicate this insanity? RISC architecture is different in a 
number of ways. Fundamentally, the RISC concept was designed to prevent there from 
being a lot of this kind of like available performance boost because the instruction design 
just doesn't get itself into trouble so much.  

One of the very clever things that RISC instructions do is there's something called 
"conditional instructions" and something called an "explicit condition code update." Now, 
what that means is that, notice that we have a stream of instructions that are being 
executed by the processor, and then a branch instruction is often skipping over some. 
There'll be something that, like, you don't want to execute in this certain case. So you 
jump ahead 10 instructions or five instructions or something. You're skipping over them. 
Which is many times what a branch will do.  

What the RISC designers realized was, at the expense of some more bits in the 
instruction word, and it does widen the instruction word a bit, they could make what's 
called "conditional instructions" instead of branches, that there are still branches and 
jumps, and those are being optimized still very much the way they are in CISC 
instructions, with branch prediction and so forth. There's no way around that. But 
essentially the RISC guys said, wait a minute. If we just want to skip over five or six 
instructions, for example, if the result of an add was zero, or if the result did not overflow 
and the carry bit was set, why not add to any instruction some additional bits that say 
"execute this unless the condition code is zero." Which means that we've saved ourselves 
a branch. We don't have to branch over those instructions. We can make the instructions 
themselves just sort of skip over themselves. The instruction says "only execute me in 
this certain case," that is, the case where we wouldn't have taken the branch.  

So what this did was, this allowed a very aggressive forward-fetching pipeline to go in a 
straight line. And we understand why pipelines like to go in a straight line. We were 
talking about that before. This allows the pipeline to fetch ahead. And even though it 
may not be executing instructions, it saves all of the possibility of a branch misprediction 

Page 18 of 20Security Now! Transcript of Episode #254



because we don't have a branch at all.  

Now, the other trick is, if you had a group of instructions which you collectively wanted to 
execute or not in a certain case, if you were executing them, you wouldn't want them to 
change, like, the state of the carry bit or the zero bit or any of the condition codes 
because then that would mess up the conditional execution of the instructions that 
followed. So the other thing that was added, in addition to this notion of a conditional, 
conditionally executed instruction, is the ability for the instruction not to modify the 
condition code when normally it would. You might be, like, doing some addition. And 
normally the add instruction will set a flag saying, oh, the outcome was zero, the 
outcome sent the carry bit, the outcome was not zero, you know, various condition code 
situations like that.  

So what was done was a bit was added that said, do the add, but don't change the 
condition code because we're wanting to continue the instructions afterwards along the 
same - to have the same effect as the one we just executed based on a condition code 
which was set deliberately earlier in the path. And so that was essentially the final 
optimization that the RISC guys brought into the design of the instruction set, which 
further made pipelines able to absorb this huge number of instructions, sort through 
everything, and perform really this just overwhelming job of making processors 
incredibly fast.  

Leo: It is such an amazing, mind-boggling thing, especially when you think that 
we're operating now at the microscopic - microscopic - at the level of a molecule's 
width, in some of these newer 45-nanometer processors. It's truly amazing.

Steve: Well, yeah, and I would imagine that probably everyone listening to the podcast 
has at one time or another seen one of those very cool photomicrographs just of a 
processor chip, sort of as if it was taken - it looks like a satellite photo of a city. And you 
look at that, and you think, my goodness, look at that, I mean, you can just tell by the 
level of detail in there that an incredible amount of something is going on. Well, what 
we've just described is what that something is. This technology is what has increased the 
power consumption, increased the size, increased the cost, but dramatically allowed the 
performance of these processors to increase. 

And this, what we described today, this kind of incredible, out-of-order execution, branch 
prediction, internal call stack, register renaming, all of this is in all of today's processors. 
It's just being taken for granted now. It's the way we have the kind of performance that 
we do. Without any of this stuff, we'd be back with an 8088 running at 4.77 MHz. 

Leo: There was a really good book, must be 10 years ago now, called "The Silicon 
Zoo," where they had those little pictures, the pictures of the stuff. Of course, it's so 
old now, it's changed a lot. But these photomicrographs, if you search for Silicon 
Zoo, they're still online. Some pretty amazing pictures. You can tell how old this site 
is, though, because it says "This is going to take a minute at 28.8." It's a big image. 
But you can do a little googling, and you'll find it. Fascinating stuff, Steve. Once 
again, you've done a great job of explaining how this stuff works. And networking 
next. But next week we're going to do a Q&A, I think; yes?

Steve: Yup. We have a Q&A, and then I'm going to - many listeners have said, hey, 
Steve, I thought you were going to tell us about LastPass. We're using it. We want to 
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know we should be and it's safe. So that's queued up for two weeks from now. We'll do a 
Q&A next week, and then I'm going to explain in detail the cryptographic protocols for 
LastPass and how the whole system works.

Leo: Oh, great. That's great. If you have Q&A questions, GRC.com/feedback is the 
place to go. He's got a feedback form there. GRC is a great place to go for not only 
SpinRite, the world's best hard drive maintenance and recovery utility, but also this 
show. 16KB versions are there for bandwidth-impaired fellas and gals. Of course I 
love the transcripts, it's a great way to follow along. And I suspect more than one 
teacher is using your lectures on computer fundamentals in their classes. So I think 
transcripts would be very helpful in that case, as well. You're more than welcome to 
do that. 

I hope that you understand you don't have to get our permission to use these 
podcasts. They're Creative Commons licensed. Attribution-Noncommercial-Share 
Alike is the license. You can find out more at TWiT.tv at the bottom of the page there 
about our license. And you're more than welcome to use these. In fact, I think it's 
great if you do in courseware. Somebody was asking in the chatroom.  

Steve is also the author of many great freebies which you'll find at GRC.com. And 
he's got a Twitter account now. Be careful. He's got more than one. He's got several. 
In fact, he's got the main account, which is @SGgrc. He's got the account - are you 
still posting articles about tablets?  

Steve: Haven't for a while, but when something comes up I will definitely do that.

Leo: That's @SGpad. And then the corporate account, @GibsonResearch. That's all 
on Twitter. And his new blog, steve.grc.com. Did I get that right?

Steve: You did.

Leo: All right, my friend. God, I love this stuff. Fascinating stuff. Thank you so 
much.

Steve: Talk to you next week, Leo.

Leo: Take care.
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