

Security Now! #1008 - 01-14-25
HOTP and TOTP

This week on Security Now!
Meta winds down 3rd-party content filtering. Is encryption soon to follow? Taking over
abandoned Command & Control server domains (strictly for research purposes only!). IoT
devices to get the “Cyber Trust Mark” – will anyone notice or care? “SyncThing” receives a
(blessedly infrequent) update. Government email is not using encryption? Really? Email relaying
prevents point-to-point end-to-end encryption and authentication. Just because Let's Encrypt
doesn't support email doesn't mean it's impossible. What Sci-Fi does ChatGPT think I (Steve)
should start reading next? To auto-update or not to auto-update? — is that one question or two?
And, until today, we've never taken a deep dive into the technology of time-varying 6-digit one
time tokens. Let’s fix that! (And last week’s uncaptioned picture is finally captioned!)

1

Some believe that, long ago, humans roamed this beautiful planet

That caption was inspired by a suggestion from listener Steve Kangas who wrote: “Caption
Contest: “Earth Abides” From a great book about life of a small number of survivors after a
devastating world wide pandemic.”

Security Now! #1008 (v1.2)
 2

Security News
Meta winds down content filtering for Facebook and Instagram
It wasn’t until I encountered Matthew Green’s comment about Meta’s announcement last week
that I decided to mention any of this today. So before we get to what Matthew Green posted,
here’s a brief update for those who may have been without any other source of news for the past
week:

Last Tuesday, Mark Zuckerberg posted a video in coordination with a Meta news release titled
“More Speech and Fewer Mistakes”. Part of what they wrote under the heading “Ending Third
Party Fact Checking Program, Moving to Community Notes” was...

When we launched our independent fact checking program in 2016, we were very clear that
we didn’t want to be the arbiters of truth. We made what we thought was the best and most
reasonable choice at the time, which was to hand that responsibility over to independent fact
checking organizations. The intention of the program was to have these independent experts
give people more information about the things they see online, particularly viral hoaxes, so
they were able to judge for themselves what they saw and read.

That’s not the way things played out, especially in the United States. Experts, like everyone
else, have their own biases and perspectives. This showed up in the choices some made about
what to fact check and how. Over time we ended up with too much content being fact checked
that people would understand to be legitimate political speech and debate. Our system then
attached real consequences in the form of intrusive labels and reduced distribution. A program
intended to inform too often became a tool to censor.

We are now changing this approach. We will end the current third party fact checking program
in the United States and instead begin moving to a Community Notes program. We’ve seen
this approach work on X – where they empower their community to decide when posts are
potentially misleading and need more context, and people across a diverse range of
perspectives decide what sort of context is helpful for other users to see. We think this could
be a better way of achieving our original intention of providing people with information about
what they’re seeing – and one that’s less prone to bias.

And a bit lower down in the lengthy posting, Meta says: “As part of these changes, we will be
moving the trust and safety teams that write our content policies and review content out of
California to Texas and other US locations.” So, with that preamble, Matthew Green, the well
known Cryptographer at Johns Hopkins University posted:

Security Now! #1008 (v1.2)
 3

What’s interesting is that our own CISA – Cybersecurity Infrastructure Security Agency – just
published a 5-page PDF titled “Mobile Communications Best Practice Guidance” and its first, #1
recommendation reads:

Use only end-to-end encrypted communications.
Adopt a free messaging application for secure communications that guarantees end-to-end
encryption, such as Signal or similar apps. CISA recommends an end-to-end encrypted
messaging app that is compatible with both iPhone and Android operating systems, allowing
for text message interoperability across platforms. Such apps may also offer clients for MacOS,
Windows, and Linux, and sometimes the web. These apps typically support one-on- one text
chats, group chats with up to 1,000 participants, and encrypted voice and video calls.
Additionally, they may include features like disappearing messages and images, which can
enhance privacy. When selecting an end-to-end encrypted messaging app, evaluate the extent
to which the app and associated services collect and store metadata.
https://www.cisa.gov/sites/default/files/2024-12/guidance-mobile-communications-best-practices.pdf

And there was another related piece of news about this Telecom hack: Reporting is that source
have told the Wall Street Journal the names of three additional American telcos that were
breached by the Chinese espionage group Salt Typhoon last year. They are Charter, Consolidated
Communications, and Windstream. As we know from previous reporting, the other four known
victims were AT&T, Lumen, Verizon, and T-Mobile. Given the count of breached firms that’s been
shared publicly, two more telcos remain to be named.

So the clear point being made here is that no one can rely upon the security of
telecommunications carriers to protect the privacy of anything that uses their bandwidth. This
begs the question: Who ever did believe that we could rely upon anyone else’s security? After
all, that’s the entire point of, and reason for, communicating consumers adding our own after-
the-fact pre-Internet encryption to everything we really care about – specifically so that we don’t
need to trust anyone else. TNS – Trust No One – has been the rule of the road from the start.

So this brings us to Matthew Green’s worries about encryption. And at this point that’s all they
are – worries – and I would suggest that it’s probably not worth worrying about. No one appears
to have any clear idea of what the incoming Trump administration plans to do – or will do. But
I’m certain that Elon Musk, who appears to have a great deal of technical sway with
president-elect Trump, certainly understands the pros and cons of any form of mandated
backdoor being forced into today’s exception-free end-to-end encryption. I’m certain that our
incoming president is well aware that the Chinese government appears to be behind much, if not
most, of the hacking into our nation’s critical infrastructure, and especially the government’s. Mr.
Trump’s feeling about China are well known, so I would be quite surprised if he wanted to, in any
way, open any doors – or backdoors – into our nation’s encrypted communications. I would,
therefore, be very surprised if anything were to change along the lines that Matthew fears.
Changes in content moderation are not even in the same world as changes that would weaken
our encrypted communications. I think that much should be clear to everyone.

Whose Command & Control Server is it Anyway?
Here’s an interesting story that everyone is sure to get a kick out of. I recall that we talked
about the security research group Watchtowr Labs not long ago. They’re memorable not only for
what they do, but because they drop the ‘e’ from the “tower” of “Watchtowr”. Here’s what they
posted last Wednesday about their latest escapade under the title “Backdooring Your Backdoors -
Another $20 Domain, More Governments”. They wrote:

Security Now! #1008 (v1.2)
 4

https://www.cisa.gov/sites/default/files/2024-12/guidance-mobile-communications-best-practices.pdf

After the excitement of our .MOBI research, we were left twiddling our thumbs. As you may
recall, in 2024, we demonstrated the impact of an unregistered domain when we subverted the
TLS/SSL CA process for verifying domain ownership to give ourselves the ability to issue valid
and trusted TLS/SSL certificates for any .MOBI domain. This resulted in significant
Internet-wide change, with Google petitioning the CAB Forum to wholly sunset the use of
WHOIS for ownership validation when issuing CA-signed TLS/SSL certificates.

As always, idle hands, idle minds - it was never going to be long until our ill-advised sense of
adventure struck again, and at this point, the only thing holding us back is our publishing
schedule.

This time, our sense of adventure struck again, in the same vein of expired and abandoned
infrastructure - but with a little twist. Today, we’re taking you through our adventures through
what we’ve affectionately termed - mass-hacking-on-autopilot.

Imagine you want to gain access to thousands of systems, but don’t feel like investing the
effort to identify and compromise systems yourself - or getting your hands dirty.

Instead, you commandeer abandoned backdoors in regularly used backdoors to effectively
‘steal the spoils’ of someone else's work, giving you the same access to a compromised system
as the person who put the effort into identifying the mechanism to compromise, and
performing the compromise of said system in the first place. Zero effort, same result - all for
the price of a domain.

So we’ve been hijacking backdoors (that were reliant on now-abandoned infrastructure and/or
expired domains) that themselves existed inside backdoors, and we’ve been watching the
results flood in. This hijacking allowed us to track compromised hosts as they ‘reported in’, and
theoretically gave us the power to commandeer and control these compromised hosts.

Over 4,000 unique and live backdoors later (a number which continues to grow), we decided
this research would never be finished, and it would be interesting to share the results in its
current state.

So we can report that across those 4000 unique and live backdoors, we now have access to:

● Multiple compromised governments including Bangladesh, China and Nigeria.
● Compromised universities/higher education entities across Thailand, China, South Korea

and more
● and, much much more (we’ve so far recorded over 300MB of logs to trawl through).

As always, we’re quick to remind everyone - we’re not the first to track hackers for fun, we no
doubt won’t be the last. But, we have enjoyed continuing to exploit what truly appears to be a
hugely underrated vulnerability class - abandoned and expired infrastructure - to basically give
ourselves ‘theoretical’ free access to thousands of systems for the cost of a few (yet again)
$20 domain names.

https://labs.watchtowr.com/more-governments-backdoors-in-your-backdoors/

I have a link to their much longer report containing much more detail. But what this amounts to
is that they found that some hacker gangs had allowed the domain names used by infiltrated
client malware to reach their command and control servers to expire. Who knows why? Perhaps
those particular hackers are now behind bars. But for whatever reason, those domains were
never renewed. This meant that the Watchtowr researchers were able to re-register those

Security Now! #1008 (v1.2)
 5

https://labs.watchtowr.com/more-governments-backdoors-in-your-backdoors/

previously abandoned domain names to establish their own IP for them, Then, the next time the
infiltrated malware performed a DNS lookup as the first step in reestablishing contact with the
malicious hacker’s mothership the IP the malware received would be the researcher’s.

So the Watchtowr folks registered those domains and pointed the domain’s IP address to their
incoming connection-monitor. What they found was that thousands – more than 4,000 –
machines scattered around the planet that had previously been infected were still, today, trying
to reestablish contact with their controllers. I’m sure that the Watchtowr folks were only
gathering data. But many of the incoming links were to remote web shells which would allow
anyone accepting such a connection to issue commands as if they were administrators of those
remote machines. Since the wayward domains were now under their control, the Watchtowr
folks felt free to list 31 domains they now control:

6634596.com flyphoto.us jbl86.com precision-gaming.com
aljazeera7.com guerrilladns.com library-ar.com rootshell-security.net
alturks.com h0ld-up.info ll4best.com shellci.biz
caspian-pirates.org h4cks.in localshell.net templatez.org
csthis.com hackru.info locus7s.com w2img.com
dcvi.net imhabirligi.com love-1-love.com waterski21.com
drakdandy.net nettekiadres.com lpl38.com yywjw.com
emp3ror.com ironwarez.info odayexp.com

Since they have control over those domains, they then obtained a big wildcard TLS cert covering
all of those domain roots and began accepting HTTPS webshell connections.

Just imagine how many long forgotten and unattended systems “out there” are hosting old
malware that gangs have moved on from and forgotten. But nevertheless that malware is still
faithfully attempting to contact home base to receive new instructions and commands. At this
point the only way such malware will ever disappear will be if those machines are eventually
shut down and decommissioned, reformatted and reinstalled with new software, or perhaps
updated if anyone ever stops to realize that the old machine is still technically alive and
definitely way way out of date – for whatever purpose it might have.

IoT devices get ‘Cyber Trust Mark’
Last Tuesday the U.S. government announced the
launch of the U.S. Cyber Trust Mark. This is a new
cybersecurity safety label for Internet-of-Things
(IoT) consumer devices. It’s unclear to me whether
any consumers will care or even notice. Today’s IoT
devices are often purchased online where any such
“marks” go unseen. And with so many certifying
standards bodies all weighing in with their own seals
of approval, what difference is one more going to
make?
But there may be reason to hope that the presence
of such a seal might mean something to IoT
companies that are seeking any edge they can get.
So, if changing their behavior, or the behavior of

their products in ways that enhance the privacy and security of the users means that they
qualify for yet another seal of approval, then this new FCC award may have been worth creating.

Security Now! #1008 (v1.2)
 6

In their announcement last week the U.S. Federal Communications Commission (FCC) said: “IoT
products can be susceptible to a range of security vulnerabilities.” [oh, really?] “Under this
program, qualifying consumer smart products that meet robust cybersecurity standards will bear
a label—including a new 'U.S Cyber Trust Mark.'"

So, as part of the effort, the logo will be accompanied by a QR code users can scan which will
take them to an information registry containing easy-to-understand details about the security of
the product, such as the support period and whether software patches and security updates are
automatic. So this seems like something that would be of tremendous interest to the audience of
this podcast... but I wonder how clued-in the typical consumer is today?

Still, the registry’s information will also contain details related to changing the default password
and the various steps users can take to configure the device securely. The initiative, which was
announced last summer in July of 2023, will involve the participation of third-party cybersecurity
administrators who will be in charge of evaluating product applications and authorizing use of
the label. Compliance testing will be handled by accredited and independent 3rd-party labs.

Eligible products that come under the purview of the Cyber Trust Mark program will include
internet-connected home security cameras, voice-activated shopping devices, smart appliances,
fitness trackers, garage door openers, and baby monitors. The “mark” does not cover medical
devices which are separately and already regulated by the U.S. Food and Drug Administration.
Nor motor vehicles and equipment regulated by the National Highway Traffic Safety
Administration (NHTSA); nor any wired devices and products used for manufacturing, industrial
control, or enterprise applications. So, our basic consumer electronics.

The program also does not extend to equipment added to the FCC's Covered List; and products
manufactured by companies added to other lists for national security reasons (Department of
Commerce's Entity List or Department of Defense's List of Chinese Military Companies), or any
banned from Federal procurement. So, again, basic consumer electronics.

In order to apply to use the U.S. Cyber Trust Mark, manufacturers who meet the eligibility
criteria must have their products tested by an accredited and FCC-recognized CyberLAB to
ensure they meet the program's cybersecurity requirements, and then submit an application to a
Cybersecurity Label Administrator with the necessary supporting documents.

For their part, last week the White House chimed in, saying: “The U.S. Cyber Trust Mark program
allows for testing products against established cybersecurity criteria from the U.S. National
Institute of Standards and Technology (NIST) via compliance testing by accredited labs, and
earn the Cyber Trust Mark label. This will provide an easy way for American consumers to
determine the cybersecurity of products they choose to bring into their homes.”

I searched around the various announcement pages from both last summer and more recently.
There’s very clearly a lot of movement on this front with various companies and individuals being
selected to fill key roles. But what I was unable to find at this point was any clear specification
for the criteria NIST will be setting for the behavior of complying devices. However, we’ve been
seeing a lot of good sounding policies coming from NIST and CISA. You know, things like
requiring long lifetime support and firmware updates, and in many cases requiring consumer
devices to be able to keep themselves updated and requiring that a physical button on the
device be pressed before any potentially dangerous configuration change will be applied. These
are all really hopeful changes in the right direction and a decade from now once all of our first
generation systems have been retired we could expect to see a very different terrain that we
have today.

Security Now! #1008 (v1.2)
 7

That’s all of the moderately interesting security news I was able to find. But I learned something
through my own recent work that I wanted to share because, though it wasn’t what I expected
or hoped for, in retrospect it’s sort of obvious. So let’s talk about the details of securing DNS by
tunneling our queries for the IP addresses of remote hosts

Miscellany
SyncThing moved to v1.29.2
What we want in software is reliability and stability, with infrequent discovery and repair of the
exceedingly rare obscure bug. What we don’t want are daily, weekly or even monthly updates
where we’re on the receiving end of the ongoing maintenance of software that advertises itself
as being feature complete and finished. As I’ve noted before, while I like the many features of
the Notepad++ editor for Windows, its author’s apparent inability to either leave it alone or get
it right has become a source of continual annoyance. If supporting his work means encouraging
him to keep changing it, I’m less inclined to do so.

All of that is a preamble to an event I can’t recall ever experiencing: Sunday morning I was
surprised by an instance of SyncThing, which I have open on a side monitor so that I’m able to
keep an eye on its synchronization with my other location, notified me of an available upgrade. I
can’t recall that ever happening before. And that’s exactly what you want. The bug that was
fixed by the release of v1.29.2 was obscure. The person who discovered it wrote: “By changing
the contents of a synced directory it seems that Syncthing crashes when scanning a subdirectory
name that contains an "ü".” The report of the problem two days ago generated some online
dialog as logs were exchanged and examined. And a resolution was produced Sunday morning,
two days later.

Since SyncThing has become a favorite solution for many of us – it’s what Leo and I both use
extensively to keep the working files on our various platforms synchronized – I wanted to let
everyone know that a tiny incremental improvement event had occurred, but I also wanted to
share the observation of how refreshing it is to see a highly complex and functional open source
software project, that’s finished, being largely left alone because it does everything it was
designed to do.

Security Now! #1008 (v1.2)
 8

Closing the Loop
Last week’s discussion of the persistence of unencrypted email-in-transit, and the fact that some
3.3 million email servers worldwide, most of them located within the United States, are still not
bothering to offer a TLS certificate that would allow for email encryption, triggered a lot of
feedback from our listeners. Here’s some of it, with my thoughts and reactions:

Philip Pedersen

Steve, After your piece on the non-use of TLS for SMTP, I looked at some of the email I’ve
received. I thought it might be small businesses that had not set up certificates, but found it to
be larger companies as well. The most troublesome one I found is that TreasuryDirect.gov
sends their one-time password notifications in the clear. It also seems like organizations with
multiple email servers don’t have all of them set up for TLS. ID.me sends the Welcome to
ID.me message from a non-TLS server, although the other messages sent while setting up an
account (to log into IRS.gov) were using TLS. Regards, Phil

Philip’s note is interesting because it hints at something I want to discuss in greater detail after I
share another piece of feedback. But here’s the part of what’s interesting: Philip wrote: “The
most troublesome one I found is that TreasuryDirect.gov sends their one-time password
notifications in the clear.” What’s tricky about diagnosing email’s use of TLS-encrypted
connections is that it mirrors today’s web browsing where the connecting-to server is the one
that’s offering to prove its identity to its caller. So, in the case of email, it’s not the sending SMTP
server that offers its TLS certificate, it’s the SMTP server on the receiving end that does so.

So, a sending SMTP server would always have the choice of refusing to send email to any
recipient SMTP server that wasn’t offering to prove its identity with a TLS certificate and encrypt
their conversation and any received email with a TLS connection. But, otherwise, whether or not
a sending server is able to protect the email it wishes to send, is up to the receiving server.
Either the sender or the receiver might elect to not send or receive messages over an
unencrypted connection, but it’s only the receiving server that’s able to offer the use of
encryption for both sides to then enjoy.

Let’s look at what Travis Hayes, another listener of ours, has to say:

Hi Steve, Enjoying this week's show, as always.

Regarding the TLS encryption of e-mail, the thought occurred to me that the reason we are
where we are with unencrypted transport of e-mail between gateways is because e-mail from
the beginning was always designed to be tolerant of multiple hops. Just like physical mail, if
something is to be sent confidentially, it's put into an envelope rather than on a postcard for
everyone handling it to read.

This is different from the design of the relative latecomer HTTP protocol, which was designed
to be point-to-point. The reason S/MIME, PGP (GPG), and the like were invented was to
address that; to handle the transfer of sealed packages over a system of untrusted, unknown
delivery gateways.

So even if widespread adoption of TLS between gateways was achieved, I still have to be
trusting that my mail host, your mail host, and any intermediate gateways are trustworthy.
Even if the mail exchangers talk between themselves over TLS connections, the only way to

Security Now! #1008 (v1.2)
 9

ensure confidentiality between us is to encrypt the payload itself-- and that's the piece that is
missing when all those one-time 6-digit PINs and "Forgot My Password" reset URLs are being
sent to me.

Until there is some way for my bank's automated systems and me to exchange public keys so
they can securely send those PINs to me, it doesn't matter if my bank's ISP and Gmail connect
over TLS. I think there's some interesting things that could be done with the DKIM system; we
are already digitally signing e-mail to show it's authentic; why are we not encrypting the
message body as well? Thanks again for the show! -Cheers, Travis

The point Travis made about email being a multi-point relaying technology is crucial because, as
he noted, TLS is only able to work with HTTP because users’ web browser clients directly connect
to the servers from which they wish to obtain web pages and other web application data.

If a web browser were to connect to any sort of intermediary server we would call that a man-
in-the-middle attack – which we go out of our way to prevent. The point is with TLS – Transport
Layer Security – we receive a certificate directly from the server we wish to trust which asserts
that server’s identity. There is no middleman mechanism.

One reason for this is that whereas web surfing is a real-time point-to-point activity, email was
never guaranteed to be immediate. These days it tends to be, but that’s mostly coincidence.
Email was deliberately designed to be a store-and-forward system where someone’s mail
message would be dropped onto an SMTP server with the address of its destination and that
SMTP server would then forward their email onward toward that destination. If the receiving
server was not answered at the moment, another server might be tried if the destination’s DNS
MX (Mail eXchange) records offered more than one, or the email would be queued for later
delivery. Having watched the delivery queue of my own email server when it’s sending more
than 15 thousand pieces of email weekly to those in this audience who have subscribed, I’ve
seen that it doesn’t all go through quickly or immediately. And I know that everyone has
experienced the occasional delay where someone says “Hey I just emailed that to you. You don’t
have it yet?” And then a few minutes later it shows up. This store-and-forward system was what
allowed the Internet’s email delivery to be extremely robust in the early days when connectivity
was far less robust and when receiving SMTP servers might be coming on or off the Internet for
whatever reason.

Things have changed dramatically since those early days. One of the things that has changed is
that connectivity is now pretty much “always-on” and servers are pretty much “always up”. But
“pretty much” is not 100%. From time to time I need to update and reboot GRC’s servers.
During those times, for a few minutes, GRC’s visitors will receive 404 messages about the site
being down, and any remote SMTP server that’s attempting to deliver email will find that they
need to queue it and retry in a few minutes. So the need to store and forward has not
disappeared.

But as I noted in thinking about Philip’s earlier note, any remote SMTP server that insists upon
sending email to GRC over a TLS connection, or if GRC were to insist upon only receiving email
over TLS connections, then that remote server would need to ask for a TLS connection which
GRC would offer, which would allow that remote server to authenticate GRC and for them to
bring up an encrypted tunnel. However, note that although we do get encryption for privacy, the
authentication is only one-way. GRC offers up its TLS certificate but the incoming connecting
SMTP server does not. So it is sort of a one-sided deal.

Security Now! #1008 (v1.2)
 10

What this all appears to represent more than anything else is laziness on the part of the
industry. We talked last week about how free certificates were not easily deployed using the
ACME protocol because it appeared to be myopically designed for web-only use.

But encryption, if that’s what we want, is easily obtained. As we’ve often discussed, standard
generic Diffie-Hellman key agreement allows two parties to publicly negotiate a secret key which
they could then use for their communication. This would protect email in transit from passive
eavesdropping. But since Diffie-Hellman style key agreement does not, itself, authenticate the
endpoints, this would not prevent an active attacker from intercepting email communications as
a man in the middle, then negotiating separate keys with each endpoint and being able to see
everything in the clear as it passes through this intercepting tap.

But we do have a potential mechanism that would solve the entire problem if anyone really
cared to, because although it’s not the default case for anonymous web browsing, it is possible
for both ends of a TLS connection to require the other end to provide a trusted TLS identity
certificate. So simultaneous mutual authentication is possible. But no one really appears to care
that much and there doesn’t appear to be any movement afoot to improve email security.

We do care about spam and spoofing. So those problems have been solved. SPF allows a domain
to specify which SMTP servers are allowed to originate its email and DKIM allows those SMTP
servers to cryptographically sign the email they send. In both cases, DNS is used to supply the
SPF record and the server’s matching DKIM public key. This is done to prevent others from being
able to originate spoofed email claiming to come from any source that has protected itself with
these measures. But even then, it’s up to the recipient to care enough to check.

I’m not sure where all of this leaves us. We definitely have the tools today to bring up mutually
authenticated and fully point-to-point encrypted email. But if we were to insist upon doing,
before we could insist upon doing that, all email servers would need to have current and
maintained certificates — just as all web servers do today.

And this brings us to our listeners who have arranged to do so. For example:

Josh Caluette in Austin, TX

Hi Steve, I was just listening to last week's podcast and I heard you mention that let's Encrypt
does not support email services. However, I have been using Let's Encrypt on my mail servers
for a few years now.

The certbot app has some plug-ins that make this possible even without a web server. One of
the plug-ins is for nginx and apache which will allow it to spin up a temporary webserver for
the verification process, then takes it down again.

The other plug-in is for DNS TXT verification. There is a RFC-2136 Dynamic DNS plugin which
allows for dynamically updating a DNS zone with the necessary TXT record, waiting for
propagation, completing verification and then deleting the record. This works with any servers
that support and are configured to allow Dynamic DNS updates securely using private keys.

There's a similar plug-in which I use specifically for cloudflare. It does the same thing but it
works with the Cloudflare API to dynamically update the DNS zone with the correct TXT record.

Security Now! #1008 (v1.2)
 11

Once the certificate has been generated or renewed, it can be used in the config of anything
that accepts certificate private/public keys. Because the file names do not change, you can
easily configure services to point to the let's Encrypt managed files and then configure certbot
with a post-script to restart the necessary service(s) in order to begin using the new
certificate. I have been using this for the past couple of years and it has worked great with no
intervention.

I have some monitors setup that monitor all of the certs used by services and alerts me if any
of them get within 28 days of expiration, as that indicates a problem, since they should be
renewed by or before reaching the 30 day mark. But anytime there has been a failure it has
been due to my own errors (firewall changes, bad configuration changes, etc.)

Thanks for all you do. I look forward to the podcast during my 2-days-a-week commute to and
from work.

I think Josh’s note illustrates two things perfectly: First, yes, it’s possible and second, no, it’s
neither automatic nor easy. And, not surprisingly, many of our listeners who are technically
sophisticated and capable of rolling their own kludges have similarly done so. And a kludge it is.
That’s the proper term for arranging to create a temporary web server to satisfy a port 80 only
certificate-issuing service, or dynamically edit DNS and wait for propagation, then copy the
resulting certificate around and restart all dependent services nightly so that the updated
certificates are recognized.

That’s the very definition of a kludge, and as I mentioned last week, I fully intend to do
something similar – I’ll have no choice – if the lifetimes for all certificates are forced to drop
below one year.

Given that long certificate lifetimes appears to be an entirely made up problem, the more I’ve
thought about this the more it seems that web browser certificates should be members of a
separate elite class, if that’s what they want. Let them expire every six days so long as anyone
offering the ACME protocol will keep them fresh. But then leave everyone else alone. Let non
web servers use good old reasonable lifetime 3-year certificates for our Internet appliances,
email servers, and other things. Don’t force this nonsense down everyone’s throat. Or allow
those of us who wish to obtain an identity asserting certificate – for which we’re paying good
money – to decide for ourselves how long that certificate should last.

Every time I talk about this I get myself all worked up, so let’s change the subject...

Doug Curtis in Waukesha, Wisconsin

Steve, Thanks so much for your overview of the current state of the art on AI. It prompted me
to use ChatGPT to get some recommendations for more sci-fi books. I've really enjoyed some
of the recommendations that you have made over the years in various Security Now episodes.
I received a gift (for Christmas) of several credits toward Audible, so I wanted something new
to listen to. I started by asking ChatGPT about two of my favorite scifi series, the Bobiverse
and the Giants series, then I asked it, based on those two series, if it could make
recommendations based on my preferences. It made quite a few. I'm starting with something
called the Murderbot Diaries by Martha Wells. So far, a few Chapters into the first book of the
series, I'm liking it very much. The next book that I'm going to try after this one is one called
Old Man's War by John Scalzi. I've read another of his books, called Starter Villain, which was
very interesting. Thanks again for all that you and Leo do with the Security Now podcast and

Security Now! #1008 (v1.2)
 12

for your SpinRite program. I have a license and have used it several times.
Regards, Doug

I’ve not looked at the Murderbot Diaries but I’ve definitely heard of them and other of our
listeners have recommended them to me. And the same goes for John Scalzi’s “Old Man’s War”
novel. It’s been recommended, too.

Taking Doug’s clue of asking ChatGPT for some recommendations, I logged into my own ChatGPT
account, selected the full-strength o1 model, and asked the following question:

I enjoy reading science fiction novels, and my favorite author is Peter F. Hamilton. I also
enjoyed the Silver Ships series and Ryk Brown's Frontier's Saga series. Can you recommend
other authors whose science fiction novels may be similar?

This gave it some pause while it worked through what I was asking. The o1 model shows you the
various phases of its work as it’s going along. After cogitating for a full 10 seconds, it replied:

If you’re a fan of large-scale space opera (like Peter F. Hamilton’s Commonwealth or Night’s
Dawn universes) and long-running series with plenty of interstellar adventure (like S.H.
Jucha’s Silver Ships or Ryk Brown’s Frontier’s Saga), here are some authors/series that
capture a similar feel:

1. Alastair Reynolds

● Recommended starting point: Revelation Space
● Why you might enjoy it: Reynolds is known for sweeping, galaxy-spanning storylines

that blend astrophysical plausibility with far-future imagination. If you like Hamilton’s
big ideas, Reynolds’ Revelation Space universe offers a similar sense of scale and
mystery.

2. Neal Asher

● Recommended starting point: Gridlinked or The Skinner (both set in the “Polity”
universe)

● Why you might enjoy it: Asher’s Polity novels deliver gritty, action-packed stories in a
post-scarcity future run by powerful AIs. The cast includes enhanced humans, alien
threats, and a lot of “big tech” ideas, echoing the grand technology vistas in Hamilton’s
work.

3. James S.A. Corey

● Recommended starting point: Leviathan Wakes (Book 1 of The Expanse)
● Why you might enjoy it: The Expanse is a multi-volume series known for its realistic(ish)

physics, gritty political drama, and deep space exploration. While it starts in our solar
system rather than spanning galaxies, it still provides epic storytelling and intense space
conflicts.

4. Jack Campbell

● Recommended starting point: Dauntless (Book 1 of The Lost Fleet)

Security Now! #1008 (v1.2)
 13

● Why you might enjoy it: Campbell’s Lost Fleet series focuses on large-scale fleet
engagements, strategy, and leadership under pressure—perfect if you like space opera
with a strong military twist, intricate battles, and a big overarching plot.

5. David Weber

● Recommended starting point: On Basilisk Station (Book 1 of the “Honor Harrington”
series)

● Why you might enjoy it: While the Honorverse is definitely military sci-fi, it features
expansive world-building across numerous star systems, detailed technology, and a
strong continuity across a large number of books—much like Hamilton’s broad
universe-building.

6. Elizabeth Moon

● Recommended starting point: Trading in Danger (Book 1 of the “Vatta’s War” series)
● Why you might enjoy it: Moon’s style blends space opera, military SF, and strong

character development. The Vatta’s War series follows Kylara Vatta and her family in an
interstellar trading empire—so you get both epic space battles and corporate/political
intrigue.

7. Glynn Stewart

● Recommended starting point: Starship’s Mage (Book 1 of the “Starship’s Mage” series)
or Duchy of Terra series

● Why you might enjoy it: Stewart’s series often combine space opera tropes—like
starship crews, alien empires, and grand-scale warfare—with a smooth, action-driven
narrative. They’re fast-paced, entertaining reads that grow into multi-book arcs.

8. Michael Cobley

● Recommended starting point: Seeds of Earth (Book 1 of the “Humanity’s Fire” trilogy)
● Why you might enjoy it: Cobley’s Humanity’s Fire features multiple human colonies

struggling after Earth’s near-destruction, alien civilizations, and galaxy-scale conflict. If
you enjoy multi-threaded plots and epic storytelling, this trilogy is worth a look.

A Few More to Consider

● John Scalzi – Known for his blend of humor and military SF, especially Old Man’s War
series.

● Lois McMaster Bujold – The Vorkosigan Saga is character-driven, swashbuckling space
opera with great political intrigue.

● Ian Douglas – Star Carrier series delivers military-heavy action with a cosmic scope.
● Joel Shepherd – The Cassandra Kresnov novels have a cybernetic twist, though they’re

a bit more focused on special-ops drama.

Summary:
If you love the grand, interstellar scale of Peter F. Hamilton’s books and the long, connected
story arcs found in Silver Ships and The Frontier’s Saga, these authors deliver similar epic
space-operatic adventures. Whether you lean more toward military sci-fi or more traditional
space opera, there’s sure to be a new universe here to explore!

Security Now! #1008 (v1.2)
 14

Wow. Doug, thank you. It had not occurred to me to consult with our Silicon Oracle for its
recommendations, given my own penchant for long-story-arc multi-novel series and expansive
space operas. Our long-time Sci-Fi interested listeners will have immediately recognized that
ChatGPT recommended Jack Campbell’s “Lost Fleet” series that was one of my earliest favorites
which I’ve read twice. And right under it was David Weber’s “Honor Harrington” series which was
another of my favorites – which I read at least twice. And, of course, James S.A. Corey’s “The
Expanse” series. There was even an honorable mention of John Scalzi’s “Old Man’s War” series.
The good news is that I’m completely unfamiliar with any of those others, so I’m anxious to dig
in and see about them.

It occurs to me that it’s somewhat fitting that after finishing the first novel in Peter Hamilton’s
newest two-book series, I plowed into the research to understand how ChatGPT and similar
Large Language Models operate. And having done so, that technology has just recommended
how I might best resume my previously interrupted work and return to Science Fiction. I believe
that’s what’s known as closure.

Bob

Hi Steve: I wanted to supply some feedback to your last show regarding auto updates of
hardware. I don’t agree with your comment that enterprise level network security appliances,
firewalls, routers and switches should be set up with automatic updates. History has shown
that automatic updates can cause devastating outages for businesses. I find it doubtful that
you would turn on automatic updates on any of your systems.

Uh… Okay. He’s got me there. I’m not at all certain that I would take my own advice in that
regard. Bob continues:

Maybe the point here should be if a person’s company does not have the staff, knowledge,
experience or money to have test systems that can be used to install updates and confirm that
they are working as expected, then and only then using automatic updates makes sense
since at least that way they would be protected from unpatched vulnerabilities. But again,
they would probably be better served with a managed service partner taking care of their
systems.

Meaning that smaller enterprises should perhaps outsource the responsibility for managing the
infrastructure which, on one hand they need, but which on the other hand they don’t have the
staff, focus or care to maintain for themselves. I think Bob makes a good point even though we
have seen the MSP route go very wrong when the MSP’s network was compromised, which
allowed bad guys to get into the networks of all of their clients. Bob continues:

I retired from a multi-national transaction processing company. After a security breach they
implemented tightened security procedures that I am surprised more companies don’t. This
company has more than 50,000 employees:

● We used network segmentation, and the office network was not able to directly connect to

the transaction processing network without going through a Bastion Server which was
fortified, locked down, and had separate 2 factor authentication.

● All new servers had to have a defined owner contact and business unit owner.

Security Now! #1008 (v1.2)
 15

● All firewall rules had to be justified and these rules needed to be reviewed by the business
unit owner quarterly to ensure that the rules were still needed.

● All hardware and software had to be supported by the manufacturer.

● Patches needed to be installed within 2 weeks (sooner if the issue was critical), allowing
time for testing, production beta testing, and full roll out. We had redundant data centers,
so we’d first install into the production data center and if the updates caused issues we’d
fail over to the unpatched backup systems.

● All software being run on any systems needed to be white listed. Any exceptions needed to
be reviewed and approved.

● No personal devices could be used on any networks.

I won’t get into the DDOS and WEB APP firewalling we used.

My point is: “Security is tough” and employees hate it. I know, because they kept complaining
to me how much harder their jobs were once we implemented [the clearly required] security
measures. My comment back to them was they were being paid very well, and if we were
breached they likely wouldn’t have a job because clients would drop us and move to a
competitor.

Love your show. / Happy New year / Bob

Bob’s note is a perfect case in point for the tradeoff of convenience vs security. And you might
imagine the sour comments of an employee who relocates from a company with very little
security and lax useless controls, to one with strong and useful security. Such an employee
might well be grousing about how they didn’t need to do this or that at their last company.

And finally, our listener Patrick Beemer who runs a 15 year old Managed Service Provider
(MSP) shares some background on SonicWALL:

Hey Steve, I'm listening to your commentary about SonicWALL exploits, and I wanted to
provide some additional thoughts about why over 10% of the installed base is still vulnerable
to an exploit from August 2024.

I run a 15-year-old Managed Service Provider and have been a SonicWALL partner from the
beginning. SonicWALL firewalls were mandatory for all our clients. (We're slowly moving our
clients away from "big iron" at the edge for reasons that aren't relevant to SonicWALL as a
company or this message).

SonicWALL is a very popular firewall for small businesses and MSPs. These aren't large
companies with IT departments but are typically orgs with 10 - 75 staff that rely on an MSP or
maybe a solopreneur to support them.

Worse, many companies this size choose not to maintain a relationship with a support partner.
These firewalls are just sitting there, waiting to be exploited. And there’s A LOT of them.

Security Now! #1008 (v1.2)
 16

Secondarily, Leo asked why SonicWALL doesn't just push the firmware updates. Two reasons.
First is concern about impact, responsibility and liability. Sitting at the edge of a business a
firewall with a bad update immediately becomes a hair-on-fire emergency. As an MSP, I
wouldn't want SonicWALL pushing updates at my client's firewalls. That is not their job. The
risk here for SonicWALL is too great.

The other reason is that SonicWALL sells features. And the feature that enables cloud-based,
scheduled firmware updates costs extra. A cost many budget conscious businesses are
unwilling to invest in. (we make it mandatory).

I hope that provides a little context about why this is still a thing...

Finally, I want to take a moment to thank you and Leo for the expert guidance I’ve received
over the years. I've been following Leo since the 90's. I started using SheildsUp almost as
soon as it came out, and have been following you both ever since. Though it wasn’t until I got
my CISSP in 2019 and needed a reliable source of CPEs that I started listening regularly. And
I’m also a member of Club TWiT. The information you provide each week keeps me informed
and makes my job easier. Thank you. Cheers, Patrick Beemer

I thought Patrick’s information was great. At first I thought I had spotted a contradiction, since
he noted the potentially catastrophic danger that automatic updates posed. Then he later noted
that automatic updates were actually available for an extra fee. So which is it? They’re either a
danger or they’re a benefit? But the way out of this conundrum is that SonicWALL makes their
customers pay for the privilege of these automatic updates, doubtless on an ongoing
subscription basis. And I’m sure that part of the agreement with SonicWALL is that keeping one’s
firewall updated is a good thing – thus the reason for offering the service in the first place – but
if something happens as a result, we did the best we could and, after all, you paid for us to do
that to you because it’s what you wanted.

Security Now! #1008 (v1.2)
 17

HOTP and TOTP

As I mentioned at the top, today’s topic was inspired by feedback from one of our listeners.

Max Feinleib sent two notes two weeks apart. I collected his two questions, which I initially
started out answering as part of our regular listener feedback. But as my answer’s length grew I
realized that not only had we somehow never – in any of our 1,007 prior episodes – talked in
details about something that probably every one of us is using, but I believed that the details of
the technology that’s going on would be something everyone would enjoy thinking about.

So, to get us started, here are the two pieces of feedback that Max provided:

Hi Steve, I've been noticing lately that the 6-digit codes I get for 2-factor authentication
almost always seem to include one or more repeated digits. Of course, you'd expect some
repeated digits. Nearly 85% of 6-digit numbers have 6 unique digits. However, my sense is
that there are more repeats than there should be. I see a lot of codes that only use 3 or 4
unique digits (like, say, 906090 or 131327). It feels like the codes are being biased toward
numbers with repeating patterns to make them easier to type.

Have you (or any other listeners) observed this? If 2FA codes are truly being dumbed down in
this way, how much of a concern is that? (Maybe it's not a big deal because the 30-second
rotation makes brute-forcing 2FA codes difficult enough.)

To note: I use Cisco Duo for my personal accounts and Microsoft Authenticator for my work
accounts. Both apps seem to give me these dumbed-down codes.

Thanks! Max

And then two weeks later:

Hi Steve, I wanted to follow up on this question. Over the past several weeks since I sent you
this, I’ve continued to note my 2FA codes. I’ve continued to get much below 15% of my codes
with 6 unique digits, and it’s more common to have 2 repeats or a tripled digit. My mom has
been doing the same, and she’s only told me about two occasions when she got a code with 6
unique digits. So I still believe that 2FA codes are being dumbed down for easy typing. Would
love to hear if you can find anything on this.

Before we examine Max’s observation, his question does point out that in none of our previous
1007 podcasts have we ever taken the time to examine exactly how and where these time-
varying digits are generated. Since that bears upon Max’s observation, as the saying goes,
there’s no time like the present.

But even more, this provides the perfect setup for one of our theoretically pure deep dives into
fundamental computer architecture and technology. So let’s all have some fun!

TOTP, which is the abbreviation for the algorithm that all time-based authentication uses, stands
for “Time-Based One-Time Password” algorithm. It was standardized and specified in RFC 6238
back in 2011. It builds upon HOTP the “HMAC-Based One-Time Password” algorithm which was
standardized and specified by RFC 4226 in 2005.

Security Now! #1008 (v1.2)
 18

We positively know that these standards are what everyone must be uniformly using
everywhere, otherwise there would not be, and could not be, the universal agreement we
obviously all have about the proper 6-digit code at any point in time. So that’s established.
These are the governing standards and specifications. So this allows us to dispassionately
examine those two RFCs to see what they say, knowing that they must be operative.

Of the two, the only one that matters is the earlier HOTP since it’s the standard that’s used to
generate the digit sequence with TOTP just being used to feed a new time-based value into HOTP
every 30 seconds.

HMAC (H. M. A. C.) stands for Hash-based Message Authentication Code where the HOTP
standard uses the long-proven well known to be cryptographically secure HMAC-SHA-1 hash
algorithm. As we’ve discussed many times on this podcast, any cryptographic hash function,
such as SHA-1 in this case, takes an input plaintext of any length and “digests” it into a
fixed-length output. That’s all any hash function does. So we can imagine that we are wanting to
somehow hash the current time of day and date to produce and then display a random’ish result.
The problem is, if that’s all we did, everyone’s authenticator would be producing the same
random’ish result at the same time. What we need to do is introduce the idea of a secret key so
that we can create a collection of these time-varying random’ish outputs.

Once again, our cryptographic toolkit provides a perfect tool, known as the HMAC. The long-
established and well-proven HMAC algorithm uses any given cryptographic hash at its heart, but
it also adds the provision of a key. So it essentially takes an unkeyed and unkeyable generic
hash function and turns it into a family of hash functions where the particular hash function
performed is determined by the HMAC’s key.

So now we have what we need. A remote server randomly generates a secret key to be used for
authentication for a specific user. It converts that secret key into a QR code and presents it to
the user as part of their identity sign-up. The user’s authentication app scans the QR code to
capture and retain that key. And the remote server stores that key with their account.

Subsequently, at any point in the future, with each endpoint having the same shared secret to
key their respective HMAC functions, they’re each able to “HMAC” the current time of day and
date which will result in an identical output. And since the output will only be identical if both
HMACs are identically keyed, this allows the re-authenticating user to prove that they still have
the previously shared secret key without ever divulging what it is. And since this correct output
is based upon the time of day and date with 30 seconds of granularity, anyone who might
arrange to intercept or capture the authenticating conversation will not have obtained anything
that they can use in the future... since they won’t ever have the secret key. So we have an
extremely elegant solution that is working well today. I wanted to first establish this foundation
for those who may not have been with us from the start so that we’re not missing any critical
pieces for what comes next.

At the heart of every HMAC lies a hash function and in the case of the TOTP and HOTP functions,
which were standardized back in 2005, that hash function is the vulnerable SHA-1. The SHA-1
hash takes whatever is fed into it and hashes that into a fixed-size 20-byte, 160-bit hash digest.

What we know about any cryptographically secure hash is that the bits produced by this hash
are all – every one of them – completely pseudo-random. The SHA-1 hash has been in use for
decades and its bits have never shown any discernible pattern that would weaken it. The only
reason SHA-1 has been deprecated over time is that, these days, the world has much more
processing power available for hacking and cracking than it once did. So we’d prefer to have
more bits of hash output just for the sake of more is better and makes us feel more secure.

Security Now! #1008 (v1.2)
 19

Consequently, the world has moved to the newer family of SHA-2 hashes, typically using
SHA-256 to give us 256 bits or 32-bytes of hashed output.

Now, I can hear some of our more informed listeners grumble that this old SHA-1 hash was
found to have some weaknesses. That’s true. But none of those ever related to the use of the
hash for the generation of high-quality pseudo-random data. There were some so-called pre-
imaging attacks against SHA-1 where it was being used to generate a cryptographically secure
signature for a document. We never want to be able to manipulate the input of a signature’s
hash so that we’re able to design a modified document that winds up having the same hash –
and thus signature – as a target document. That would completely break the guarantee that
document signing provides. Over time, SHA-1 was found to have some weaknesses there.

As junior cryptographers, the important takeaway lesson for us is that just saying “SHA-1 is
broken” is a simplification that is untrue. The “brokenness” of a cryptographic function almost
always depends upon how that function is being used. And SHA-1 remains a perfectly good and
cryptographically strong pseudo-random number generator. For that application it needs no
upgrade or replacement. This is why the entire industry has remained standardized upon it, even
today in 2025.

Okay, so with 30-second granularity, the UTC time – as in the current time and date – along with
a secret key, is fed into this SHA-1 HMAC which converts it into a cryptographically strong
pseudo-random set of 160 bits, which is 20 bytes.

So we have what is essentially 160 pseudo-random bits. This can be viewed as a single very
very large decimal number ranging from 0 to 2 raised to the power of 160, which is:

1,461,501,637,330,902,918,203,684,832,716,283,019,655,932,542,976

A 49 digit decimal number. So now let’s explore the various ways that we might go about
converting this humongous 160-bit, or 49-decimal-digit, or 20-byte SHA-1 based HMAC output
into those six digits that we want our fancy authenticator to produce.

Thinking of this as a very large and long binary number, let’s first say that we wanted to extract
digits only ranging from 0 to 7, which is to say any one of eight possible values. One approach
would be to shift the entire large number three bits to the right. In binary math, shifting a binary
number to the right divides its value by two and the bit that’s shifted off the right end is the
remainder of the division by two. So if we shift the large value three bits to the right, that
divides it by eight – because it’s divided by 2, three times – and the three bits that would be
shifted off the right end would be the remainder of the division by eight. That would give us a
binary number ranging from 0 to 7 and when converted to decimal, a single digit between 0 and
7.

So, by dividing the massive number by eight we’re able to “extract” a digit ranging from 0 to 7.
And we could do this again and again as many times as we need to extract as many digits from
the large number as we need.

But we do not live in an octal world, presumably because we do not have eight fingers and toes.
We have ten fingers and toes, so we count in decimal with a ten-digit alphabet ranging from 0
through 9. And it’s a ten-digit alphabet that we need our TOTP and HOTP to produce.

And here’s the coolest thing: Since our fingers- and toes- friendly authenticator wants to
produce one-time passcodes containing all ten digits ranging from 0 to 9, instead of dividing the

Security Now! #1008 (v1.2)
 20

very large number by 8, we divide it by 10.
Dividing any large number by ten will give us a remainder ranging from 0 to 9. The solution is
clean, simple and elegant. If it had been left to me to design the digit extraction algorithm for
the HOTP algorithm, I would have done exactly that. I would have simply successively performed
a very long division of that very large 160-bit number – by 10 – taking the remainder from each
division, which would have resulted in an extremely uniformly distributed digit ranging from 0 to
9. And that simple long division could have been repeated as many times as needed to
successively extract as many pseudo-randomly determined digits as would be needed.

And if we generalize this a bit, just for the sake of cool math and theoretical computer science,
what’s so cool about this approach is that it’s wonderfully generic. If the size of one’s alphabet
happens to be exactly some power of two, then dividing any binary number by that is as simple
as shifting the binary bits of that number to the right and grabbing the bits that fall off the end.
They form the choice for the item extracted from the larger number.

But having a practical alphabet size that’s exactly some exact power of 2 would mostly be a
coincidence. The usual case is that the size of the alphabet is whatever it is. If we want to
extract decimal digits we divide by 10. But if we wanted to extract evenly distributed English
alphabetic characters, we could perform long division by 26 then map the resulting remainder,
which would range from 0 to 25 to the letters of the alphabet ‘A’ through ‘Z’. Or if we wanted
both upper and lower case alphabetic characters, we’d divide by 52 to get a remainder that
could be mapped to both the lower and upper case alphabet. And if we wanted upper and lower
case plus decimal digits, we’d divide by 62, and so on.

This is exactly what I did with the design of the Perfect Paper Passwords system which we talked
about during Security Now! Episode #115 which Leo and I recorded on October 25th, 2007. The
Perfect Paper Passwords system successively performs long division of a very very long number
by the size of the alphabet the user wishes to use. This generates successive division remainders
of exactly the alphabet size which is used to enumerate successive items in the alphabet.

So in the case of something like HOTP, this clean and simple approach of the long division of the
entire 160-bit SHA-1 number by 10, would allow any number of digits to be extracted from that
very long value to satisfy the need for a maximum quality pseudo-random decimal number
having any number of digits.

But I said that’s what I would have done if I’d been given this task. It’s what I did do, back in
2007. But the group who designed the HOTP algorithm didn’t ask me, and that’s NOT what they
chose to do two years earlier in 2005. Looking at what they choose to do makes me want to
scratch my head. The only rationale I can come up with for what they designed – which, being
kind, would be termed “ad hoc” – was that it was good enough and that perhaps they didn’t
trust coders who would be implementing their standard to be able to divide a long binary
number by 10. So they went out of their way to avoid that.

I wanted to first explain, as I have, the cryptographically optimal way of solving this simple
problem of computer science so that everyone would have a reference point against which to
judge what actually happened. So get a load of the universal HOTP algorithm that we all wound
up with, for better or worse:

Once again we start with the output of the SHA-1-based HMAC. But this time, rather than
viewing it as a large (and apparently intimidating) 160-bit binary number, we view it as an array
of 20, 8-bit bytes. The bytes of this array would be numbered 0 through 19.

The officially standardized HOTP algorithm instructs us to take the last byte of the array, byte

Security Now! #1008 (v1.2)
 21

number 19, and mask off or ignore the upper four bits of that last byte. Thus, we’ll pay attention
to only the lower four bits. These four bits will thus have a binary value ranging from 0 to 15. So
we use that 0 to 15 value as an offset into the entire 20-byte array, where, starting at that
offset, we take four successive bytes – thus 32 bits. So, if after masking off the upper four bits
of the last byte and retaining only the lower four, we wound up with a 0, we would obtain the
four-byte, 32-bit value from bytes 0, 1, 2 and 3 of the array. And at the other end of the range,
if the last four bits had their maximum value of 15, we would obtain the four-byte, 32-bit value
using bytes 15, 16, 17 and 18.

Okay. So this kludge (which appears to be my word of the day) results in us having extracted
32-bits somewhere from within the first 19 bytes of the 20-byte SHA-1 hash value, where the
lowest four bits determine where within those 19 bytes we grab 32 bits.

Next, believe it or not, the implementer is then instructed to set the most significant bit of those
32 bits to zero. This creates a 32-bit value which, if it were to be treated as a signed integer,
would be guaranteed to be positive because signed integers use the high bit as their sign where
that high bit set to ‘1’ means that the number is negative.

So now we have what is, essentially, a very tame 31-bit positive number ranging between 0 and
2,147,483,648 which fits handily into a CPU’s 32-bit register or the integer of pretty much any
higher-level computer language. This makes division as simple as a single machine instruction.
So the HOTP algorithm next instructs us to divide that 32-bit, guaranteed to be positive integer,
by one million because the remainder of that division, when converted into a decimal number,
will give us all possible 6-digit numbers from 000,000 to 999,999.

Does it work? Yes. And what it sacrifices in elegance – which is to say pretty much everything –
it doubtless gains in ease of proper implementation using any high level language. I’m sure
anyone could write it in BASIC and obtain the correct answer. It would be very difficult to screw
that up. And since interoperability among all HOTP generators, all arriving at the same 6 digits,
is paramount, I guess I can see why the designers chose the kindergarten design that they did.

Now you might ask “Kindergarten? Really? Isn’t that being too critical?” Well, let’s look at it.
From a cryptographic standpoint the algorithm itself is really quite crappy because very little of
the SHA-1 hash’s entropy winds up being used. The last byte’s top four bits are completely
ignored. And the lower four bits select just four out of the remaining 19 bytes – completely
ignoring all of the other 15 (which is 120 bits ignored out of the total 160). Then, adding insult
to injury, of the precious 32 bits that were selected, one of those is discarded because
whomever is implementing this might not know how to perform unsigned division. So the
dividend is forced to be positive just to be sure. So we wind up using the entropy contained
within just 31 bits of the HMAC function.

By comparison, my approach of successively taking the entire 160-bit hash output, dividing it by
10 and using the remainder, takes advantage of every one of the available bits of the HMAC
output for the determination of each successive decimal digit.

But I will also be the first to conceded that interoperability of implementation matters here, far
more than cryptographic perfection. Dividing the extracted 31 bit value by one million to obtain a
value ranging from 0 to 999,999 will absolutely provide a completely useful and highly pseudo-
random result. One of the features of a high-quality cryptographic hash function such as SHA-1
is that every single bit of its result has an exactly even, 50/50 chance of being a 0 or a 1. So
taking any sufficiently large set of them and dividing by one million will give us a good result.

However, if our priority – as it appears to be – is to create a super-simple, easy to implement

Security Now! #1008 (v1.2)
 22

and highly interoperable solution, then why all the low 4-bit nibble nonsense to select the set of
four bytes to use? As we all know, the definition of any cryptographically strong hash function,
which lies at the heart of the HMAC, is that every single one of its many bits are treated equally.
They each have that algorithmically guaranteed 50/50 chance of being either a 0 or a 1, so if
we’re going to go the route of using a 32-bit positive integer as our dividend, it absolutely and
truly doesn’t matter at all which 31 bits out of the SHA-1 hash’s 160 bits we select to be the
dividend for our division by one million. In fact, it CANNOT matter or we don’t have a truly
strong cryptographic hash function to begin with.

This means that an exactly equivalently strong HOTP algorithm could have told us to just take
the first four bytes of the SHA-1 HMAC output, set the high bit to 0, divide the result by one
million, convert the remainder from the division to an unsigned decimal number... and we’re
done. Period. So why all the additional, totally pointless, rigmarole?

All of the additional nonsense of using the last four bits to select which bytes to use is worrisome
since it begs the question: Why? Did the designers of HOTP not understand how hash-based
HMAC functions operate? If so, while it doesn’t matter, it does mean that we’re now stuck with a
needlessly complex system that provides zero additional security over a simpler alternative.

The only additional observation I’ll make is that it is only when the dividend is an exact even
multiple of the divisor that we obtain a truly evenly distributed remainder. And the corollary to
that is that the larger the dividend is than its divisor the more evenly distributed are the values
of the remainder. More than anything else, this is why I prefer my approach: Because it uses the
largest possible value for the dividend.

What am I talking about? Let’s use a super simple example to clarify the point. Say that we want
to extract a decimal digit from a 4-bit source. We know that we can do that by dividing the
source dividend by 10. So now let’s look at the result we obtain from all 16 of the source’s
possible values:

0 divided by 10 gives us a remainder of 0. 1 divided by 10 results in 0 with a remainder of 1. 2
divided by 10 is 0 with a remainder of 2. And so on upward where 9 divided by 10 is 0 with a
remainder of 9. Next, 10 divided by 10 will be 1 with a remainder of 0, 11 divided by 10 will be 1
with a remainder of 1, and so on up to 15 – the maximum value of 4 binary bits. Dividing 15 by
10 gives us 1 with a remainder of 5.

So look at what happened: We were asking our 4-bit source to give us 10 possible output values.
But because 4 bits has 16 values, it cannot be evenly mapped into 10 results. So, taking the
remainder of the divisions by all possible source values, we wind up with two instances of
remainders of 0, 1, 2, 3, 4 and 5, but only single instances of remainders 6, 7, 8 and 9. In other
words, we do not wind up with a perfectly even distribution of all possible output values.

Our HOTP algorithm divides a 31-bit dividend – having 2,147,483,648 possible values – by one
million. And since that total number of possible input values is not evenly divisible by one
million, this means that not all possible 6 decimal digit values produced by the industry standard
HOTP algorithm will occur with exactly the same frequency.

Now, in practical terms am I splitting hairs here? Definitely. It absolutely doesn’t matter at all. It
won’t result in the final decimal output, which will change again in 30 seconds anyway, being
usefully any more guessable. The case of generating 10 values from 16 was so horrible only
because 16 was so very close to 10. By comparison HOTP’s dividend is 2.147 billion which is
much much larger than the one million. In fact, it’s more than 2,147 times larger than 1 million.

Security Now! #1008 (v1.2)
 23

But, that said, computer science is computer science, and all of this makes for intriguing
questions. If nothing else, these questions must be examined if only to be able to judge their
size and impact and to make certain that their effects will be negligible.

From me, you will only ever get long division of all possibly available bits of entropy, not because
it necessarily matters to you, but because it’s the most correct solution, which means that it
matters to me.

Okay. So now let’s return all the way back to Max’s original question of any perceivable bias in
the resulting numbers that might cause more “identical digits” than we would expect. Knowing
what we now know, is that possible?

No.

It’s not possible.

We’ve examined the algorithm. At its heart it takes a sufficiently large, entirely pseudo-random
binary value from which we take one of 2,147,483,648 values and divide that number by one
million. The dividend of the division, while not an even multiple of the divisor, is enough larger
than the divisor that the remainder of that division will be an extremely evenly distributed value
ranging between 0 and 999,999. And that, in turn means that when converted into a decimal
number, the value’s individual constituent digits, will also be extremely evenly distributed
without any interaction or relationship to one another.

I, too, have observed the same illusion that Max and his mom have. But I’m certain that this
must be classic observational bias, where we tend to notice much less all the times when the
digits do not form any sort of pattern and tend to notice more those times when they do.

But that aside, it is provable – and we’ve just proved it – that there cannot be any non-uniform
pattern and we know that all authenticators must be using the same algorithm which we’ve just
examined, otherwise they would not be producing the expected result.

I asked ChatGPT: “Is there a term for the tendency of we lowly humans to perceive a pattern
where none actually exists?”

And it replied: “Yes. The general term for this is apophenia—the tendency to perceive
meaningful connections or patterns between unrelated things. A more specific example of this
phenomenon, limited primarily to visual or auditory stimuli (like seeing faces in clouds or hearing
hidden messages in music), is called pareidolia.”

One thing I am quite certain of, Leo ... is that there is definitely a pattern to these podcasts.
They routinely appear every Tuesday, come rain or shine. So everyone should expect another
one next week!

Security Now! #1008 (v1.2)
 24

	1. Alastair Reynolds
	2. Neal Asher
	3. James S.A. Corey
	4. Jack Campbell
	5. David Weber
	6. Elizabeth Moon
	7. Glynn Stewart
	8. Michael Cobley
	A Few More to Consider

