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Semantic structure and finite-size saturation in scale-free dependency networks of free software
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A continuum model has been proposed to fit the data pertainingto the directed networks in free and open-
source software. While the degree distributions of links inboth the in-directed and out-directed dependency
networks follow Zipf’s law for the intermediate nodes, the most richly linked nodes, as well as the most poorly
linked nodes, deviate from this trend and exhibit finite-size effects. The finite-size parameters make a quantita-
tive distinction between the in-directed and out-directednetworks. Dynamic evolution of free software releases
shows that the finite-size properties of the in-directed andout-directed networks are opposite in nature. For the
out-degree distribution, the initial condition for a dynamic evolution also corresponds to the limiting count of
rich nodes that the mature out-directed network can have. The number of nodes contributing out-directed links
grows with each passing generation of software release, butthis growth ultimately saturates towards a finite
value due to the finiteness of semantic possibilities in the network.
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I. INTRODUCTION

Scale-free distributions in complex networks have been
very well studied by now [1–6]. The ubiquity of scale-free
properties is quite remarkable, and spans across vastly diverse
domains like (to name a few) theWorld Wide Web [1, 7] and
the Internet [1], the social, ecological, biological and linguis-
tic networks [5], income and wealth distributions [8, 9], trade
and business networks [10], highway networks [11] and syn-
tactic and semantic networks [12–14].

It should hardly occasion any surprise, therefore, that fur-
ther developments have led to the discovery of scale-free fea-
tures in electronic circuits [15] and in the architecture ofcom-
puter software as well [16]. A recent work has shown that the
structure of object-oriented software is a heterogeneous net-
work characterised by a power-law distribution [17], and con-
tinuing on this theme, software fragility has been explained
naturally on the basis of scale-free networks in software [18].
Keeping more closely with the objectives of the present paper,
a previous work on complex networks in software engineer-
ing [19] has found evidence of power-law features in the inter-
package dependency networks in free and open-source soft-
ware (FOSS), while there have also been indications that mod-
ifications in this type of a software network follow a power-
law decay as a function of time [20, 21].

It is a matter of common knowledge that when it comes
to installing a software package from theDebian GNU/Linux
repository, many other packages — the “dependencies” — are
also called for as prerequisites. This leads to a dependency-
based network among all the packages, and each of these
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packages may be treated as a node in a network of dependency
relationships. Each dependency relationship connecting any
two packages (nodes) is treated as a link (an edge), and ev-
ery link establishes a relation between a prior package and a
posterior package, whereby the functions defined in the prior
package are invoked in the posterior package. This enables
reuse (economy) of functions and eliminates duplicate devel-
opment. As a result the whole operating system emerges as a
coherent and stable semantic network, with an unambiguous
flow of meaning, determined by the direction of the links.

Semantic networks have, in their own right, become a
subject of major research interest, especially where small-
world structures and scale-free aspects of networks are con-
cerned [14]. Scale-free patterns of connectivity in semantic
networks hold out the promise of revising conventional mod-
els of semantic organisation, which are based on hierarchical
principles and arbitrarily structured networks. However,un-
like other semantic networks with power-law features [14],
the presently studied semantic network of nodes in theDe-
bian repository is founded on one single relation spanning
across all its nodes:Y depends onX ; its inverse,X is re-
quired forY . In other words, the semantic network so formed
is a dependency-based network only. This is the one most cru-
cial point for understanding all subsequent arguments in this
paper, although it will not be out of place to mention here that
dependency-based relations can also be viewed from a much
wider perspective [22–25].

Considering any particular node in a directed network, its
links (the relations with other nodes) can be found to be of
two types — incoming links and outgoing links — as a re-
sult of which, there will arise two distinct kinds of directed
network [5]. For the network of incoming links in theEtch
release ofDebian, an earlier study [26] has empirically tested
the occurrence of Zipf’s law in theGNU/Linux distribution.
One may note with great curiosity that over the years there has
been a widespread emergence of Zipf’s law, discovered origi-
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nally in studies of word frequencies in natural languages [27],
in various diverse phenomena [26] ranging from city size dis-
tributions [27–31] to the frequency distribution of signs in un-
deciphered scripts from antiquity [32].

Carrying along these very lines, the present work affirms
the existence of Zipf’s law as a universal feature underlying
the FOSS network. Both the networks of incoming and out-
going links have been seen to follow Zipf’s law. However,
it has also been realised that simple power-law properties do
not suffice to provide a complete global model for directed
networks. There is a general appreciation that for any system
with a finite size, the power-law trend is not manifested in-
definitely [33–35], and in the context of theFOSS network,
this is a matter that is recognised as one worthy of a more
thorough investigation [26]. Deviations from the power-law
trend appear for both the profusely linked and the sparsely
linked nodes. The former case corresponds to the distribution
of a disproportionately high number of links connected to a
very few special nodes — the so-called “hubs” (alternatively
termed as rich nodes or top nodes), making the importance of
these nodes, a self-evident fact. The particular properties of
all these outlying nodes, as well as any distinguishing char-
acteristic of the two directed networks can only be found by
modelling the finite-size effects (equivalently the saturation
properties) in the respective networks , and to study how these
effects are related to the underlying semantic structure inthe
network. These are the principal objectives of this paper.

II. A NONLINEAR CONTINUUM MODEL

The mathematical modelling of theFOSS network has been
carried out primarily with the help of data collected from the
two latest stableDebian releases,Lenny (Debian GNU/Linux
5.0) and Etch (Debian GNU/Linux 4.0).1 The networks of
both the incoming links and the outgoing links span about
18000 nodes (software packages) in theEtch release, while in
theLenny release, the corresponding number of nodes is about
23000. For this work, the chosen computer architecture sup-
ported by both the releases isAMD64. The dynamic features
of the model have further been grounded on the first three gen-
erations ofDebian releases, i.e. Buzz (Debian GNU/Linux
1.1), Hamm (Debian GNU/Linux 2.0) and Woody (Debian
GNU/Linux 3.0), all of which are supported by the architec-
ture i386. While the retrospective compatibility of the model
with the early releases has been gratifying, moving forwardin
time, the model has also behaved in full consonance with the
features shown by the latest unstableDebian release,Squeeze
(Debian GNU/Linux 6.0), which is again based on theAMD64
architecture. The graphical results presented in this paper
pertain mostly to the three latest releases,Etch, Lenny and
Squeeze, all of which have a substantial number of nodes and
links, and are, therefore, well suited for the kind of quantita-
tive analysis that is needed for an accurate model building.

1 http://www.debian.org/releases

For developing the model it will be necessary first to count
the actual number of software packages,φ, which are con-
nected by a particular number of links,x, in either kind of
network. This gives an unnormalised frequency distribution
plot of φ ≡ φ(x) versusx. Normalising this distribution in
terms of the relative frequency distribution of the occurrence
of packages would have yielded the usual probability density
function. To bring forth a continuum model for any power-
law feature in this kind of a frequency distribution, one might
posit a general nonlinear logistic-type equation [36] going as

(x+ λ)
dφ

dx
= αφ (1− ηφµ) , (1)

with α being a power-law exponent,µ being a nonlinear sat-
uration exponent,η being a “tuning” parameter for nonlinear-
ity andλ being another parameter that will be instrumental in
setting a limiting scale for the poorly connected nodes. The
motivation behind this mathematical prescription can be eas-
ily followed by noting that whenη = λ = 0, there will be
a global power-law distribution. However, when the distribu-
tion is finite, the power-law trend fails to hold true beyond in-
termediate scales ofx. Such deviations from a full power-law
behaviour is especially prominent for high values ofx (related
to the very richly connected nodes) and, therefore, it becomes
possible to argue that finiteness in the distribution is connected
to saturation in the system. This type of saturation behaviour
is frequently modelled by a nonlinear logistic equation [36–
39], which, given the stated aims of this study, continues to
serve as an effective mathematical instrument here as well.
And so in order to understand the saturation properties of the
highly connected nodes (arguably the more important nodes)
in the Debian network, determining the influence of nonlin-
earity, expressed mathematically byµ andη in the nonlinear
model, assumes great significance.

It should also be pertinent here to stress that as opposed to
the practice of analysing data with a cumulative distribution
function, the modelling for this study has been based directly
on the unprocessed (noisy) data taken from both the releases.
The operative argument behind this method is simple: As re-
gards theDebian network the existence of a power-law degree
distribution (specifically Zipf’s law) is not a matter of doubt
anymore [26]. The objects worth investigating beyond this
point are the saturation properties of the system, and then in-
terpreting the related finiteness of the network as a straight-
forward consequence of the limit to the semantic possibili-
ties that the network can accommodate. These questions can
only be addressed by analysing the noisy data, and grounding
the mathematical model self-consistently in terms of numbers
that convey direct information about the network as it actually
is. Quantities indicated byη andλ attend exactly to this ne-
cessity. And ultimately the most convincing justification for
analysing the noisy data in this work is seen to come from the
values of the parametersα, µ, η andλ, as they have been cali-
brated from the data. Not only do some of these quantities re-
main consistent with the findings of previous authors [26], but
collectively they also allow a new insight to be had into the
finite-size properties and dynamic aspects of theFOSS net-
work.
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FIG. 1: For the network of incoming links in theEtch release, the
degree distribution shows a good fit in the intermediate region with
a power-law exponent,α = −2 (as indicated by the dotted straight
line), which validates Zipf’s law. However, for large values of x,
there is a saturation behaviour towards a limiting scale that is mod-
elled well with the parameter,η = −8. On the other hand, whenx
is small, the fit is good forλ = 1.5. The global fit becomes possible
only whenµ = −1, which turns out to be a universally valid number.
For this specific plot, the data are fitted byc ≃ 190.

Integration of Eq. (1), which is a nonlinear differential
equation, can be carried out by making the appropriate sub-
stitutions,ξ = φµ andy = x+ λ, followed by the application
of the method of partial fractions. An intermediate solution in
ξ andy is then obtained as

(y

c

)αµ

=
ξ

1− ηξ
, (2)

in which c is an integration constant. Resubstituting Eq. (2)
back to the variablesφ andx, will finally deliver the integral
solution of Eq. (1) as (forµ 6= 0)

φ(x) =

[

η +

(

x+ λ

c

)−µα
]−1/µ

. (3)

It is quite obvious that whenη = λ = 0 (with the for-
mer condition implying the absence of nonlinearity), there
will be a global power-law distribution for the data, going as
φ(x) = (x/c)α, regardless of any non-zero value ofµ. The
situation becomes quite different, however, when bothη and
λ have non-zero values. In this situation, the network will ex-
hibit a saturation behaviour on extreme scales ofx (both low
and high). For the high values ofx, this can be easily appreci-
ated from Eq. (1) itself, wherefrom the limiting value ofφ is
obtained asφ = η−1/µ.

III. MODEL FITTING OF THE FOSS NETWORK

The parametersα, µ, η, λ andc in the solution given by
Eq. (3) can now be fixed by the distribution of links and nodes
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FIG. 2: For the network of outgoing links in theEtch release, the
degree distribution of intermediate nodes are again modelled well by
a power-law exponent,α = −2, which is Zipf’s law (as the dotted
straight line shows). However, the saturation behaviour ofthe top
nodes is very different from that of the network of incoming links.
There is a clear convergence ofφ towards a limit given byη = 1

(with µ remaining unchanged at−1). For the poorly linked nodes
the convergence is attained forλ = 0.25. Thus, whenα andµ

remain the same, the value and the sign ofη, as well as the value of
λ, distinguish the type of a dependency network. The data are fitted
for c ≃ 80. A solitary top node is to be seen forx = 9025.

obtained from theDebian repository. In Fig. 1 the degree
distribution for incoming links in theEtch release has been
plotted. The dotted straight line in thislog-log plot indi-
cates the pure power-law behaviour. While this gives a satis-
factory description for the distribution on intermediate scales
of x, there is a clear departure from the power law both as
x −→ 0 andx −→ ∞. The solution given by Eq. (3) fits
the power law, as well as the departure from it, at both the
small-connectivity and the high-connectivity ends, for the val-
uesα = −2, µ = −1, η = −8, λ = 1.5 andc ≃ 190. It
would be very interesting to note here that the values ofα and
µ remain unchanged when it comes to giving a model fit to
the degree distribution of outgoing links (once again for the
Etch release), as shown in the plot in Fig. 2. The obvious
implication ofα = −2 in both the cases is that Zipf’s law
universally underlies the frequency distribution of the inter-
mediate nodes and links in both kinds of network. The only
quantitative measure to distinguish between the two networks
are the values ofη, λ andc, set atη = 1, λ = 0.25 andc ≃ 80
for the distribution of outgoing links in Fig. 2.

Similarly, data from theLenny release have been plotted in
Figs. 3 & 4. The former plot gives the in-degree distribution
of the nodes, while the latter gives the out-degree distribution.
The in-degree distribution in theLenny release changes from
the previous release,Etch, in the valuesη = −15,λ = 1.6 and
c ≃ 210. The saturation properties in this case, therefore, un-
dergo a significant quantitative change at the highly connected
end with a new generation ofDebian release. In contrast, for
the out-degree distribution the changes across a new genera-
tion of Debian release are calibrated byλ = 0.35 andc ≃ 90,
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FIG. 3: For the network of incoming links from theLenny release,
the intermediate nodes (fitted with a power-law exponent,α = −2)
uphold Zipf’s law once again. For large values ofx, however, the
saturation behaviour towards a limiting scale ofφ is modelled by
the value,η = −15. On the other hand, whenx is small, the fit
continues to be good forλ = 1.6. Once againµ = −1, but for this
particular plot,c ≃ 210. It is clear that the richly linked nodes here
are generally less connected than what they are in the case oftheEtch
release, as Fig. 1 indicates.
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FIG. 4: For the network of outgoing links from theLenny release, the
distribution of intermediate nodes obeys Zipf’s law, as thepower-law
exponent,α = −2, shows. The saturation behaviour of the top nodes
remains the same as it is for theEtch data. The convergence ofφ
towards a limit set byη = 1 is quite obvious, withµ = −1, as usual.
For the poorly linked nodes, the convergence is given byλ = 0.35.
The other value that distinguishes the out-degree distribution in the
Lenny release, from that in theEtch release, isc ≃ 90. A solitary top
node is to be seen forx = 10446.

which implies that the saturation properties remain unchanged
at the richly linked end, but changes at the poorly connected
end. Changes in the value ofc for a particular type of degree
distribution, causes a translation of the model curve in thex–φ
plane. And, as Figs. 1, 2, 3 & 4 indicate, Zipf’s law continues
to prevail in all the cases.

It should also be instructive here to make a theoretical anal-

ysis of the value ofµ obtained from the data, and its accompa-
nying consequences. Elementary algebraic manipulations on
Eq. (3), followed by a power-series expansion will lead to the
infinite series

φ(x) =

(

x+ λ

c

)α

−
η

µ

(

x+ λ

c

)α(µ+1)

+
µ+ 1

2

(

η

µ

)2(
x+ λ

c

)α(2µ+1)

+ · · · , (4)

from which it is not difficult to see that a self-contained and
natural truncation for this series can only be achieved when
µ = −1. It is remarkable that theDebian data conform to this
fact, and in consequence of this value ofµ, Eq. (1) is reduced
to being a linear, first-order, nonhomogeneous equation,

dφ

dx
−

(

α

x+ λ

)

φ = −

(

ηα

x+ λ

)

, (5)

in whichη plays the role of a nonhomogeneity parameter.
With the measured values ofα = −2 andµ = −1, as de-

rived from the data for both the in-degree and out-degree dis-
tributions in theEtch andLenny releases, the saturation prop-
erties in the network (for any value ofη andλ) can, therefore,
be abstracted in a compact form from Eq. (3) through the so-
lution

φ(x) = η +

(

c

x+ λ

)2

. (6)

The implications of the foregoing result are noteworthy. One
of these is that nonhomogeneity in the system sets a firm lower
bound to the number of rich nodes in the saturation regime,
regardless of any arbitrarily high value ofx, i.e. φ −→ η
asx −→ ∞. In other words, nonhomogeneity defines a finite
lower limit to the discrete count of the rich nodes. This evident
deviation from the power-law model enables a few top nodes
in the network of outgoing links to get disproportionately rich,
as shown in Figs. 2 & 4. All the links from these top nodes are
outwardly directed towards the dependent nodes, making the
presence of these richly linked nodes an absolute necessity,
and burdening them with the responsibility of maintaining full
functional coherence in the semantic system structured by the
FOSS network. That the value ofη remains unchanged with
increasing values ofx across two generations ofDebian re-
leases, shows that the primacy of the top nodes continues to
remain unshaken. A general scale for the onset of the satura-
tion effects in the network of out-degree distributions canalso
be ascertained by requiring the two terms on the right hand
side of Eq. (3) to be in rough equipartition with each other.
This will set a scale for the saturation of the number of links
in the frequency distribution as

xsat ∼ |η|
−1/µα

. (7)

For the network of outgoing links, theDebian data indicate
that approximately the top1% of the nodes falls within this
scale, with the packagelibc6 seeming to be the most profusely



5

connected node (having9025 links in the Etch release, and
10446 links in theLenny release) in the entire network.

The situation is quite the opposite for the network of incom-
ing links, as Figs. 1 & 3 show. Here the nodes draw in links
to themselves, with all links being inwardly directed towards
the nodes. It is quite evident that this network of incoming
links is complementary in character to the network of outgo-
ing links. As a result, the richly linked nodes of the latter net-
work are poorly connected in the former. In contrast to Figs.2
& 4, which indicate that the rich nodes serve the network to
an extent that is disproportionately greater than what a simple
power-law behaviour would have required of them, one may
discern from Figs. 1 & 3 that the most richly linked nodes in
the in-degree distribution display a behaviour that falls short
of what might be expected of a fully power-law trend (the
top nodes here ought to have accreted more links if a pure
power law were to have been followed). In fact, the value of
η decreases across two generations ofDebian releases, mak-
ing it clear that the ability of the top nodes to acquire links
becomes generally more enfeebled (and so it is that the devia-
tion from the power-law behaviour becomes sharper). Beyond
this qualitative observation, one may note that saturationin the
network can be quantitatively determined by the parameterη,
which, whenµ = −1, appears as a nonhomogeneity condition
in Eq. (1). The value and especially the sign ofη afford a pre-
cise quantitative means to differentiate between the directed
networks of incoming and outgoing links. The difference in
the respective degree distributions in Figs. 1 & 2 (or Figs. 3
& 4) underscores this fact.

Considering the other extreme of finite-size effects at small
values ofx, the very poorly linked nodes are also seen to devi-
ate noticeably from the power-law solution. This is especially
true for the in-degree distribution in Figs. 1 & 3. Apropos of
this, it might be mentioned here as an aside, that the present
literature in the domain of econophysics, where all relevant
data distributions are nearly the same as what has been shown
here, indicates that the distribution of such feeble nodes might
be modelled by a Boltzmann-Gibbs or a log-normal distribu-
tion [8, 40–43], below a certain lower cut-off value ofx (the
lower limit of the range of the power-law regime). On the
other hand, for small in-degree and out-degree distributions in
theWorld Wide Web [44], an improved fit can be obtained by
a simple modification in the global power-law model [1, 35].
This kind of modification can also be engineered in Eq. (6)
itself to obtain a similar fit for the weakly linked nodes. In the
limit of small degree distributions for both the in-directed and
out-directed networks, whereη ceases to have a quantitative
significance, and wherex ∼ 1 (which, in the discrete count of
links, is the lowest value thatx can assume practically), one
can find an upper bound to the number of the very sparsely
linked nodes. This bound is given as

φub ≃

(

c

1 + λ

)2

, (8)

with the full range ofφ, therefore, going asη ≤ φ . φub.
While dwelling on various properties of theFOSS network,

it will also be worthwhile to bear in mind that if this net-
work is to operate ideally as a coherent and stable semantic

system, then it will be desirable to have parsimony in the
creation of the nodes (enforcing reuse of functions in pack-
ages), and elimination of duplicate development and ambi-
guity (multiple packages with identical purpose) — a con-
dition suggesting absolute interpretation, whereby the oper-
ational context of each node is understood with complete dis-
ambiguity. These requirements thus enjoin that if aFOSS
network were to be unambiguously interpreted, then no two
software packages belonging to it, should be exactly alike in
their functionalities and dependencies. This adheres to the
conventional wisdom about the growth of semantic networks
— structures which grow by semantic differentiation of exist-
ing nodes (concepts) [14]. The meaning of a new node derives
from a well-defined variation on the meaning of an already ex-
isting node, and, therefore, each newly created node acquires
its own very specifically determined set of links within the
network, to suit its particular purpose for having come into
existence. For every node, the neighbourhood consequently
becomes a unique structure. Now structure always affects
function [14, 45]. Taking this fact in conjunction with the
semantic viewpoint that meaning is inseparable from struc-
ture [14], it is not difficult to appreciate that the meaning or
the functionality of a particular node is defined uniquely only
by the way in which the dependency neighbourhood of the
node is structured. Equipped with a large array of such unique
nodes, the network thus becomes enabled to accommodate a
large variety of semantic possibilites. Extending these argu-
ments it also becomes possible to suggest by way of an anal-
ogy that if an unequivocally determinedFOSS network could
be viewed as a single “quantum state”, then the packages in
the network would have to accord to an “exclusion princi-
ple” in order to maintain disambiguity of operations in the
network and create a fully interpreted semantic system (par-
tial interpretation implies ambiguity). And continuing onthis
“quantum” theme, the nodes might be understood to assume
the character of fermions, with the full range of semantic pos-
sibilities of each package (an exclusive node in the network)
being characterised as a unique set of “quantum numbers”.
From this perspective it can be said that in the single “quan-
tum state” of a fully interpretedFOSS network, no two nodes
will have an identical set of “quantum numbers”, i.e. when
the semantic relationship in the network is only of dependen-
cies, no two nodes will have an identical set of dependencies.2

The term “nodes” here implies software packages. Now it has
to be noted that software packages are “coarse-grained” struc-
tures, defined by the preferences of the programmer and the
exigencies arising in the operating system. The actual objec-
tive unit of the operating system is, however, the function,
which lies deep within a software package. So the quantum
analogy is expected to hold much more robustly if one does a

2 In the case of theDebian GNU/Linux repository, it is indeed a fact that
each node is identified by a unique label, and serves some unique function
in the whole network. Of course, one has to be cautioned that there is no
physical principle inherent in theDebian network that actually enforces
this “exclusion principle”, unlike what happens in a real quantum system
with fermions.
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“fine-grained” tracing of the semantic flow and the associated
dependency network at the scale of the functions, rather than
at the scale of packages. In passing one may also note that in
the context of complex networks in general, the analogy with
a quantum system is not entirely stretched, because some ear-
lier studies [46, 47] have in fact modelled the convergence of
a macroscopic fraction of links onto any particular top node
in terms of Bose-Einstein condensation, with the links being
interpreted as bosons, and the nodes (to which the links attach
themselves preferentially) as energy levels.

A very significant difference between the degree distribu-
tions of theWorld Wide Web and theFOSS network is that the
frequency histograms pertaining to one appear to be exactly
the converse of the other. And so what looks like an in-degree
distribution for one, is the out-degree distribution for the other,
and vice versa [1]. An explanation for this difference can be
offered. In theFOSS network, the dependency relationships
follow precise rules, with out-degree dependencies preponder-
ating over the in-degree ones. The existence of a lesser node
is dependent on having a link directed to this node from a top
node. For theWorld Wide Web, however, the situation is qual-
itatively different. To be relevant in this network, a weak node
contributes a directed link from itself to a top node (a case
of preferential linking) in a manner that becomes the domi-
nant mode of establishing links. In any case, the network in
theWorld Wide Web is not based on dependency relationships,
unlike what it is in theFOSS network.

It happens not very infrequently that in a functioningFOSS
network taken from theDebian repository, there are some
packages which are not compatible with one another. The
relationship among these packages is, therefore, not of de-
pendencies, but of what is technically known as “conflicts”.
One could collect data on these nodes (the conflicted pack-
ages), and unearth any possible degree distribution that might
govern the network. Their frequency distribution (for boththe
Etch andLenny releases) looks like what has been shown in
Fig. 5. The intermediate scale-free part of this distribution
has been fitted well by a power law exponent ofα = −4.
This makes the frequency distribution here much steeper than
what it is for the dependency distributions in Figs. 1 & 2 (or
Figs. 3 & 4), both of which have been fitted by Zipf’s law.
Consequently the approach towards the saturation state at the
highly linked end (set byη = 1) is much more rapid in this
case. And as one might expect of any conflict-ridden system,
this “network” of dysfunctional relationships is sparselypop-
ulated. The stability of the distribution in this case is also
a matter of concern, because it is well known [34, 48–50]
that power-law distributions can only be stable over the Lévy-
stable regime of0 < −α ≤ 2.

IV. MODELLING EVOLUTION AND SATURATION

This study, based principally on two generations (Etch and
Lenny) of a standardFOSS network (Debian), has shown that
the saturation properties in the in-degree and the out-degree
distributions are differently affected through the passage of
time (marked by new releases ofDebian). The degree distri-
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FIG. 5: For the sparsely populated network of conflicts, the power-
law exponent ofα = −4 makes for a much steeper approach to the
saturated state at the highly linked end, calibrated byη = 1. The
value ofµ = −1 continues to hold true here. The continuous curve
gives the theoretical fit to theEtch data (indicated by the+ points)
for c ≃ 19, while the dotted curve gives the theoretical fit to the
Lenny data (indicated by the× points) forc ≃ 20. For small values
of x, the shift away from the power-law solution is fixed byλ = 1.6

for both theEtch andLenny releases.

bution of the network of outgoing links shows no change at all
when it comes to model fitting for the top nodes (η continues
to have the same value). This is in fact to be expected entirely
of these nodes. They are the foundation of the entire network,
and their prime status continues to hold. In a semantic sense,
meaning flows from these nodes to the derivative nodes. The
very poorly linked nodes in the outgoing network, on the other
hand, are fitted by changing values ofλ (as shown in Figs. 2
& 4). Again this is expected. In a mature and robust network,
the possibility of semantic variations is much more open in the
weakly linked derivative nodes, as opposed to the primordial
nodes (which are like parent nodes, where genesis of meaning
takes place, and in which all the axioms are founded).

For the in-degree distributions, the situation is nearly the
opposite. What Figs. 1 & 3 show is that the model fitting can
be achieved properly by changing the value ofη significantly.
Further, with a new release ofDebian, η actually decreases,
a fact whose import can only be that the most richly linked
nodes in the in-degree distribution (which are also the most
dependent nodes) acquire less links than what they might have
done, if the power-law trend were to have been adhered to in-
definitely. So, from the dynamic perspective, there is a termi-
nal character to the extent upto which these dependent nodes
continue to be linked.

In view of these observations, it becomes pragmatic to ap-
preciate that theFOSS network is not a static entity. Rather it
is a dynamically evolving network, as any standard software
network is known to be [51, 52], undergoing continuous ad-
ditions (even deletions) and modifications across several gen-
erations ofDebian releases, contributed by the community of
free-software developers. So any realistic model should ac-
count for this evolutionary aspect of the network distribution.
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And indeed, by now many theoretical models [53–56] have
afforded varied insight into the general question of dynamic
evolution of networks. It has also been demonstrated conclu-
sively that scale-free networks can only emerge through the
simultaneous operation of dynamic growth and preferential
attachment [53, 57]. The limiting features in such a scale-
free distribution, regardless of the abundance of the linksthat
these nodes may acquire, ought also to manifest itself natu-
rally through the long-time dynamics.

It has been reasoned that the number of the top nodes in
the out-degree distribution form the irreducible nucleus of the
FOSS network. These nodes are by far the most influential in
the network, when it comes to determining the future destiny
of the network. It will be useful, therefore, to take a closer
look at the dynamic features and the saturation properties of
the out-degree distribution. From the perspective of a contin-
uum model, one could envisage the frequency distribution of
the nodes in the network of outgoing links, as a field,φ(x, t),
evolving continuously through time,t, with the saturation in
the number of nodes for high values ofx, emerging of its
own accord from the dynamics. In keeping with this need,
an ansatz with a general power-law feature inherent in it, may
be framed as

φ(x, t) =

(

x+ λ

c

)α

+ ϕ(x, t) , (9)

in whichϕ −→ η, ast −→ ∞. This prescription would be
compatible with what Eq. (3) indicates whenµ = −1. So,
under this requirement, one may describe the temporal evolu-
tion of the network by a first-order, linear, nonhomogeneous
model equation, going as,

τ
∂φ

∂t
=

∂φ

∂x
−

α

cα
(x+ λ)

α−1
, (10)

in which τ is a parameter that indicates a representative time
scale on which theFOSS network evolves appreciably. It
should be important to emphasise that Eq. (10) already has
an explicit presence of a power-law property built in it, and
is expected, upon being integrated under suitable initial con-
ditions, to make the saturation features of the top nodes ap-
pear because of nonhomogeneity. This is the exact reverse of
Eq. (5), which has nonhomogeneity explicitly stated in it, and
upon being integrated, leads to a power-law behaviour. The
general solution of Eq. (10) can be obtained by the method of
characteristics [58, 59], for which the pertinent equations are

−
dt

τ
=

dx

1
=

dφ

α(x+ λ)α−1c−α
. (11)

The solution of thedφ/dx equation is

φ−

(

x+ λ

c

)α

= a , (12)

while the solution of thedx/dt equation is

x+
t

τ
= b , (13)

with both a and b being integration constants. The general
solution is to be found under the condition that one character-
istic solution of Eq. (11) is an arbitrary function of the other,
i.e. a = f(b), with f having to be determined from the initial
conditions [58, 59]. So, going by the integral solutions given
by Eqs. (12) and (13), the general solution ofφ(x, t) will be

f

(

x+
t

τ

)

= φ−

(

x+ λ

c

)α

, (14)

which, under the initial condition thatφ = η at t = 0 for
any value ofx, will characterise the profile of the arbitrary
function,f , as

f(z) = η −

(

z + λ

c

)α

. (15)

Hence, the specific solution can be obtained from Eq. (14) as

φ(x, t) = η +

(

x+ λ

c

)α

−

[

1

c

(

x+ λ+
t

τ

)]α

, (16)

and this, under the condition thatα = −2, will converge to
the distribution given by Eq. (6), fort −→ ∞. In this regard
the initial condition and its import are worth stressing. For
any given value ofx, the evolution starts att = 0 with an
initial node count ofφ = η, which, under all practical circum-
stances, will be set atη = 1. This is tantamount to saying
that a node appears in the network withx number of links,
where, previously, there existed no node with this particular
number of links. As the network evolves, two things continue
to happen: First, new nodes are added to the network, and sec-
ondly, already existing nodes accrete greater number of links
and strives to gain a status of greater importance. The most
richly linked among the latter kind of nodes are primordial in
nature, and att = 0, their number defines the minimum num-
ber of independent packages that are absolutely necessary for
the FOSS network to evolve subsequently (fort > 0) into a
robust semantic system. So the initial condition can be argued
to have an axiomatic character, and the mature network bur-
geons from it on later time scales. And during the evolution,
the entire network gets dynamically self-organised in sucha
manner, that the eventual static out-degree distribution has its
saturation properties at the highly connected end (arguably the
more important end) determined by what the initial field was
like at t = 0.

At this stage it should be instructive to examine the asymp-
totic properties of Eq. (16), both in the limit oft −→ 0 and in
the limit of t −→ ∞. In the former case, the evolution ofφ
will be linear int for a given value ofx, and will go as

φ(x, t) ≃ η − α
(x+ λ)

α−1

cα

(

t

τ

)

, (17)

in which growth is assured only whenα < 0. This linearity
of early growth is perfectly in consonance with the standard
assumption of the linear growth of the number of nodes with
time [60], withη giving the initial number of nodes.
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While the temporal evolution obeys linearity on early time
scales, in the opposite limit oft −→ ∞, the evolution shifts
asymptotically to a power-law trend going as

φ(x, t) − η −

(

x+ λ

c

)α

≃ −
1

cα

(

t

τ

)α

. (18)

Naturally, convergence towards a steady state, as it has been
given by the condition on the left hand side of the foregoing
relation, will be possible only whenα < 0, a requirement that
is eminently satisfied by Zipf’s law (α = −2). It is certainly
intriguing that the model should indicate that the power-law
convergence towards a steady state solution should follow an
exponent given in particular by Zipf’s law, although in a gen-
eral sense, open-source software has been known to have its
dynamic processes driven by power laws [20, 21], which is a
clear sign that long memory prevails in this kind of a system.

Now examining the steady state form of the degree distribu-
tion, as it has been suggested by Eq. (3), one can set down, for
µ = −1, a similar kind of a relation for the time-dependent
field,φ ≡ φ(x, t), as,

φ(x, t) = η +

(

x+ λ̃

c̃

)α

, (19)

where λ̃ and c̃ are “dressed” parameters, defined asλ̃ =
λν(x, t) and c̃ = cζ(x, t), respectively. The scaling form of
the two functionsν andζ can be determined by equating the
right hand sides of Eqs. (16) and (19). This will lead to
(

x+ λ̃

c̃

)α

=

(

x+ λ

c

)α

−

[

1

c

(

x+ λ+
t

τ

)]α

. (20)

For scales ofx ≫ λ (typically x & 10), a converging power-
series expansion of increasingly higher orders ofλ/x can be
carried out with the help of Eq. (20). The zeroth-order condi-
tion will deliver the scaling profile ofζ as

ζ(x, t) =

[

1−

(

1 +
t

xτ

)α]−1/α

. (21)

This function bears time-translational properties, and ata
given scale ofx, it causes the degree distribution to shift
across thex–φ plot through the passage of time. But it is
also not difficult to see that whenα = −2, there is a con-
vergence towardsζ = 1 (the steady state limit) ast −→ ∞.
On the other hand, whenx −→ ∞, for any finite time scale,
ζ −→ 0. This explains why the count of the most heavily
connected nodes (for whichx has a high value) stays nearly
the same (φ = η) at all times, a fact that is quite evidently
borne out by the out-degree distributions in Figs. 2 & 4. The
saturation scale ofx for such behaviour is given by Eq. (7).
A related fact that also emerges is that time-translation ofthe
degree distribution becomes steadily more pronounced as one
moves away fromx ∼ xsat towards the limiting value of
x = 1 (the lowest possible number of links that a node can
possess). Consequently, as the temporal evolution progresses,
the out-degree distribution assumes a slanted appearance with

a negative slope in thex–φ plane, something that has been
shown very clearly once again in Figs. 2 & 4. The model fit-
ting in these two plots indicates that the value ofc increases
with time. This is exactly how it should be, going by the form
of the scaling functionζ(x, t), if one is careful enough to ob-
serve thatc in both the plots is to be viewed rather asc̃, to
comprehend fully its time-dependent variation.

Gaining a clear understanding of the time-translational
properties of the poorly connected nodes is not quite as
straightforward. Information regarding this matter is con-
tained in the scaling functionν(x, t). However, a look at the
left hand side of Eq. (20) will reveal thatν is coupled toζ, and
it is this nonlinear coupling that causes complications. Going
back to the power-series expansion inλ/x, as it can be ob-
tained from Eq. (20), one may be tempted to think that just
as the zeroth-order in the series has yielded a proper scaling
form for ζ, the higher orders in the series will bring forth a
similar form forν. And indeed one does obtain such a solu-
tion, going asνk = ζα

[

1− (1 + t/xτ)α−k
]

, with k being

the order of the expansion in the power series. But this re-
sult is misleading because the parameterλ, and in connection
with it, the scaling functionν(x, t), make an effective imprint
only whenλ & x, with x assuming arbitrarily small values in
the continuum model. Therefore, the correct approach here is
not to take a series expansion inλ/x, but rather inx/λ, with a
proper convergence of the series taking place for higher orders
in x/λ. The zeroth-order term of this series gives the scaling
form να = ζα [1− (1 + t/λτ)

α
]. The primary difficulty with

this result is that the true functional dependence ofζ in this
case is not known. This is certainly not going to be the func-
tion that is implied by Eq. (21), because this form ofζ is valid
only on scales wherex ≫ λ (where the scale-free trend in the
degree distribution holds, or whenx ∼ xsat).

For all that, the unequivocal message that is conveyed by
the common pattern exhibited by the two generations of out-
degree distributions is that the value ofλ does have a signifi-
cant bearing on the number of the preponderant but sparsely-
connected nodes, a fact that is described by Eq. (8). In the
continuum picture of the degree distribution,λ is the theoret-
ical lower bound of the number of links that the most weakly
linked nodes may possess (which savesφ from suffering a di-
vergence asx −→ 0, going by what Eq. (6) states). Through
the evolutionary growth of the network, an increase in the
value ofλ suggests that these poorly linked nodes become
incrementally relevant to the system by contributing more
links in the out-directed network. Now these very poorly con-
nected nodes in the out-degree distribution are concomitantly
the most richly linked nodes in the in-directed network. A
look at Figs. 1 & 3 will show that for these nodes the value of
η decreases with the evolution of theFOSS network. So, as
regards these nodes it stands to reason that while they become
progressively more relevant as members of the out-directed
network (a condition quantified by increasing values ofλ),
as members of the in-directed network they become incre-
mentally less dependent (quantified by decreasing values of
η). Analysing the data gathered from all the six generations
of Debian, what one sees is that in the out-directed network,
the value ofλ hovers around0.25 for the first four releases
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FIG. 6: The out-degree distribution of the latest unstable release,
Squeeze, is in agreement with what the dynamic model predicts. The
values ofλ andc increase, as expected, toλ = 0.45 andc ≃ 110.
The richest node in this distribution has12524 links.

(uptoEtch), but grows noticeably thereafter for the next two
releases,Lenny (λ = 0.35) andSqueeze (λ = 0.45), of which,
the latter has its out-degree distribution shown in Fig. 6. On
the other hand, in the in-directed network, the value ofλ
grows quickly for the early releases (starting withλ ≃ 0.5)
and then saturates towardsλ = 1.6 for theLenny andSqueeze
releases. Remembering that in the in-directed network the
most poorly linked nodes are actually the parent nodes of
the entire network (both the in-directed and the out-directed),
one can conclude that even these nodes become dependent on
other nodes to a small extent. Taken as a whole, with the un-
folding of time, the interdependency character of the entire
network becomes more firmly established, with even the rela-
tively unimportant nodes showing a tendency to contribute an
increasingly greater number of out-directed links.

Quantitative support in favour of this claim comes from a
different quarter. In the out-directed network (by far the more
important network, when it comes to understanding the se-
mantic flow taking place through the evolution of aFOSS net-
work), the total number of nodes,Nout(t), at any given point
of time,t, can be obtained by evaluating the integral

Nout(t) =

∫ xm

1

φ(x, t) dx . (22)

The limits of this integral are decided by the limits on the
number of links that the nodes may possibly possess —1 be-
ing the lower limit andxm being the upper (maximum) limit.
The integral in Eq. (22) can be solved by taking the profile of
φ(x, t) given by Eq. (16), forα = −2. Noting thatxm ≫ 1
(typically xm ∼ 104) for the out-directed network, the total
number of nodes at any given point of time can, therefore, be
estimated as,

Nout(t) ≃ ηxm +
c2

1 + λ
− c2

(

1 + λ+
t

τ

)−1

. (23)

On moderate time scales, the last two terms on the right hand

side in Eq. (23) are roughly equal. So the dominant contri-
bution comes from the first term (interestingly enough, thisis
actually the saturation term), as a consequence of which, one
could set downNout ∼ xm (sinceη = 1 according to the
model fit). This argument becomes progressively more cor-
rect for large values ofxm, i.e. for later releases ofDebian.

For the out-degree distribution in theEtch release,xm ≃
9000, while in theLenny release, the corresponding number
is about10000. Using these values from both the releases of
Debian, the respective count ofNout can be made very eas-
ily for the two successive generations. Both of these values
of Nout represent the number of nodes that contribute at least
one link in the out-directed network. These estimates compare
very favourably with what the actualDebian data indicate. In
the case of theEtch release, the number of software packages
contributing to the out-directed network is counted to be about
7000 (which is closely comparable to the theoretical value of
Nout ≃ 9000), and in the case of theLenny release, the to-
tal count of the out-directed nodes is about9000 (which can
be favourably compared once again toNout ≃ 10000). As a
fraction of the total number of nodes, these actual counts indi-
cate that the number of nodes in the out-directed network in-
creases by1% from theEtch release to theLenny release. This
certainly validates the quantitative contention that witheach
passing generation, the network becomes incrementally more
robust in terms of out-degree contributions coming from an in-
creasingly greater number of nodes. The values pertaining to
the latest unstable releaseSqueeze, also support these findings
handsomely. In this case the actual count of the out-directed
nodes is about11500, a number that is in fact much closer to
the theoretical estimate ofNout ≃ 12500, when one consid-
ers the corresponding match in the two earlier releases,Etch
andLenny. One may also note with curiosity that in these last
threeDebian releases —Etch, Lenny andSqueeze — the total
number of software packages, spanning both the in-directed
and out-directed networks, is roughly twice the value ofxm in
the out-directed network.

The overall growth of the network, however, slowly grinds
to a halt on long time scales. This is a conclusion that cannot
be missed in Eq. (23), which suggests that the total number
of nodes increases with time, but approaches a finite station-
ary value whent −→ ∞, unlessxm becomes infinitely large
(something that is not very likely). This inclination of thenet-
work to saturate towards a finite-sized end can be explained in
terms of the finite semantic possibilities associated with each
of the nodes. The extent of making creative use of the ex-
isting semantic possibilities of even the most intensely linked
of the top nodes is limited. Since most of the nodes in the
network depend on such top nodes, there must be a satura-
tion scale in the network. Unless novel creative elements in
semantic terms are continuously added to the top nodes, the
value ofxm will remain finite, and saturation cannot be pre-
vented. Therefore, saturation in this semantic network is the
inevitable consequence of the limit to which original axioms
(functions deriving from the top nodes) can be made avail-
able. An emphatic illustration of this line of argument is tobe
seen in Fig. 7, which makes use of actual values taken from
all the Debian releases. The lower curve in this plot tracks



10

 100

 1000

 10000

 1

N
od

e 
co

un
t

Generation number

FIG. 7: The upper curve plots the growth of the number of “termi-
nal” nodes (which do not contribute any out-directed link) in the in-
directed network, while the lower curve plots the growth of the total
number of nodes,Nout, in the out-directed network. Both curves in-
dicate a very closely correlated saturation behaviour withevery pass-
ing generation ofDebian release (marked along the horizontal axis).
Data for this plot have been taken from all the six releases ofDebian.

the growth of the total number of nodes in the out-directed
network. All the members of this network contribute at least
one out-directed link, and so meaning (the semantic context)
is seen to flow out of these nodes. Therefore, to a greater (es-
pecially as regards the top nodes) or lesser extent, these nodes
are the bearers of original axioms. That the growth of this en-
tire out-directed network saturates towards a limiting value for
the later releases ofDebian (marking increasingly longer time
scales) is quite obvious from the trend indicated by the lower
curve in Fig. 7. A corollary of the saturation of the network
of these axiom-bearing nodes (which contribute out-directed
links) is that the network of in-directed nodes will also satu-
rate in tandem. This is shown by the upper curve in Fig. 7,
which plots the growth of the number of nodes which con-
tribute no out-directed links, but only draws in links towards
themselves. The semantic flow in the network terminates at
these nodes, and as such the network of these “terminal” nodes
is an appropriate indicator of the effect of saturation. Onecan
see from the two curves that there is a very strong correlation
between the saturation in the out-directed network, and the
saturation in the number of terminal nodes.

Finally, it is worth a passing thought that the network of
conflicts, whose degree distribution, taken from theEtch and
Lenny releases, as Fig. 5 shows it, bears a qualitative resem-
blance to the out-degree distribution of dependencies, appears
so sparsely populated because, withα = −4, the temporal
drive towards the static end is very rapid, leaving not much
occasion for the network to flourish.

V. CONCLUDING REMARKS

The significance of finite-size effects and saturation at the
extremities of the degree distribution has been cogently ar-
gued for. The mathematical model that has been developed
here gives a clear quantitative characterisation of the incoming
and outgoing distribution in theDebian GNU/Linux network.
Similar features are known to exist in the degree distribution
of other scale-free networks, and it should become quite pos-
sible to study the saturation properties and the specific direc-
tional characteristics of such general systems of scale-free net-
works, with the mathematical model that has been used here.
In the context of semantic systems in particular, the scope of
this study holds out interesting possibilities. Given thatthe
entire network of functional packages in a free-software op-
erating system can be construed to be a cognitive (albeit non-
autonomous) system, its general character can help construct a
model that can shed light on much more complex but realistic
autonomous cognitive systems, such as the human society or
even the human mind (with all their creative possibilities that
may unfold eventually). Of course, it is easy to appreciate that
there can be no single approach to these highly intricate issues,
but this very diversity of modelling, as it frequently happens
while studying the development of complex structures [61],
can indicate a precise direction to be adopted and allow for a
clear view to be obtained.
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[3] A. Barrat, M. Barthélemy, and A. Vespigniani,Dynamical
Processes on Complex Networks (Cambridge University Press,
Cambridge, 2008).

[4] S. N. Dorogovtsev and J. F. F. Mendes, cond-mat/0106144.
[5] R. Albert and A.-L. Barabási, Rev. Mod. Phys.74, 47 (2002).

[6] M. E. J. Newman, SIAM Review45, 167 (2003).
[7] R. Albert, H. Jeong, and A.-L. Barabási, Nature401, 130

(1999).
[8] P. Richmond, S. Hutzler, R. Coelho, and P. Repetowicz,Econo-

physics and Sociophysics, Pg.131 (Eds. B. K. Chakrabarti, A.
Chakraborti & A. Chatterjee) (WILEY-VCH Verlag GmBH &
Co. KGaA, Weinheim, 2006).

[9] A. K. Gupta,Econophysics and Sociophysics, Pg.161 (Eds. B.
K. Chakrabarti, A. Chakraborti & A. Chatterjee) (WILEY-VCH
Verlag GmBH & Co. KGaA, Weinheim, 2006).



11

[10] A. Chatterjee and B. K. Chakrabarti(Eds.),Econophysics of
Markets and Business Networks (Springer-Verlag Italia, Mi-
lano, 2007).

[11] P. R. V. Boas, F. A. Rodrigues, and L. da Fontoura Costa,
arXiv:0903.3010.

[12] R. F. i Cancho, R. V. Solé, and R. Köhler, Phys. Rev. E69,
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