

Lecture Notes in Artificial Intelligence 7735

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Heather D. Pfeiffer Dmitry I. Ignatov
Jonas Poelmans Nagarjuna Gadiraju (Eds.)

Conceptual Structures
for STEM Research
and Education

20th International Conference
on Conceptual Structures, ICCS 2013
Mumbai, India, January 10-12, 2013
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Heather D. Pfeiffer
Akamai Physics, Inc., Las Cruces, NM 88005, USA
Email: hdp@cs.nmsu.edu

Dmitry I. Ignatov
National Research University Higher School of Economics
Moscow 109028, Russia
E-mail: dignatov@hse.ru

Jonas Poelmans
Katholieke Universiteit Leuven, Leuven 3000, Belgium
E-mail: jonas.poelmans@econ.kuleuven.be

Nagarjuna Gadiraju
Tata Institute of Fundamental Reseach
Mumbai 400088, India
E-mail: nagarjun@gnowledge.org

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-35785-5 e-ISBN 978-3-642-35786-2
DOI 10.1007/978-3-642-35786-2

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012954289

CR Subject Classification (1998):
I.2.3-4, I.2.6, I.2.8, G.2.2, H.2.4, H.2.8, H.3.4, I.5.4, I.5.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 20th International Conference on
Conceptual Structures (ICCS 2013), the latest in a series of annual confer-
ences that have been held in Europe, Asia, Australia, and North America since
1993. Details of these events are available at www.conceptualstructures.org, and
www.iccs.info points to the current conference in this prestigious series. ICCS
focuses on the useful representation and analysis of conceptual knowledge with
research and business applications. It brings together some of the world’s best
minds in information technology, arts, humanities, and social science to explore
novel ways that information and communication technologies can leverage tangi-
ble business or social benefits. This is because conceptual structures (CS) harmo-
nize the creativity of humans with the productivity of computers. CS recognizes
that organizations work with concepts; machines like structures.

ICCS advances the current theory and practice in connecting the user’s con-
ceptual approach to problem solving with the formal structures that computer
applications need to bring their productivity to bear. Arising originally out of
the work of John Sowa while at IBM and his work on conceptual graphs, over
the years ICCS has broadened its scope to include a wider range of theories and
practices, among them formal concept analysis (FCA), description logics (DL),
the Semantic Web, the pragmatic Web, ontologies, multi-agent systems, con-
cept mapping, relationships to uses in STEM education and more. Accordingly
CS represent a family of approaches that builds on the successes of artificial
intelligence (AI), conceptual modeling, information and Web technologies, and
knowledge management.

The theme for this year’s conference was “Knowledge Representation for
STEM Research and Education.” Science, technology, engineering, and mathe-
matics (STEM) have, in recent decades, emerged as a lively new research areas.
More and more data are being captured in these areas (particularly through the
Web) and how to represent these data for useful research, searching, and educa-
tion is a real challenge. These data now represent our business, economic, arts,
social, and scientific endeavors to such an extent that we require smart applica-
tions that can discover the hitherto hidden knowledge and how to represent this
mass of data. By bringing together the way computers work with the way hu-
mans think, conceptual structures align the productivity of computer processing
with the ingenuity of individuals and organizations in addressing these highly
mathematical data. The representation of these data can be used for both re-
search areas and for collecting data for improved teaching techniques in these
areas.

The ICCS papers that appear in this volume represent the rich variety of
topics on CS. There were 43 submitted papers that were rigorously reviewed anony-
mously by at least three members of the Program Committee. An Editorial Board

VI Preface

member oversaw each paper processed, and worked together with the organizers
on making the final decisions. About 50% of submitted papers deemed relevant
to the conference were accepted as both long and short papers. There were also
three invited papers. As is evident in this volume, the number of accepted papers
reflects the high quality of submissions, and the proceedings appear as volume
LNAI 7735 of Springer’s Lecture Notes in Artificial Intelligence, a subseries of the
LNCS series. In addition to the ICCS 2013 main conference, there was an associ-
ated workshop—Workshop on Modeling States, Events and Processes (MSEPS).
The papers from this workshop appear in their own proceedings.

We wish to express our thanks to all the authors of the submitted papers, the
speakers, workshop organizers, and the members of the ICCS Editorial Board
and Program Committee. We would like to thank Simon Andrews and Simon
Polovina, who organized the anonymous reviewers of papers submitted by the
ICCS Chairs. We wish to express our gratitude for the support we received
from the Homi Bhabha Centre for Science Education, TIFR, by hosting the
event and providing the facilities. With special thanks to the Dean of Science
Education, Chitra Natarajan, and several personnel, Jayashree Ramadas, Mad-
havi Gaitonde, Rashmi Shrotri, Sumana Amin, Smitha Burli, Manoj Nair, Anil
Kumar Shankhwar, and V.P. Raul. We also extend our thanks to the Local Or-
ganizing Chair, Meena Kharatmal, and to the staff of the Homi Bhabha Centre
for Science Education, TIFR, for managing the production of the workshop pro-
ceedings. Lastly, we thank the very helpful people at Springer, to whom we owe
our gratitude.

October 2012 Heather D. Pfeiffer
Dmitry I. Ignatov

Jonas Poelmans
Nagarjuna G.

Organization

Conference Chair

Nagarjuna G. Homi Bhabha Centre for Science Education,
TIFR, Mumbai, India

Local Organizing Chair

Meena Kharatmal Homi Bhabha Centre for Science Education,
TIFR, Mumbai, India

Program Chairs

Heather D. Pfeiffer Akamai Physics, Inc., USA
Dmitry I. Ignatov Higher School of Economics, Russia
Jonas Poelmans Katholieke Universiteit Leuven, Belgium

Workshop and Tutorial Chair

Dmitry I. Ignatov Higher School of Economics, Russia

Editorial Board

Simon Andrews, UK
Galia Angelova, Bulgaria
Madalina Croitoru, France
Frithjof Dau, Germany
Harry Delugach, USA
Bernhard Ganter, Germany
Ollivier Haemmerlé, France
Pascal Hitzler, Germany
Mary Keeler, USA
Sergei O. Kuznetsov, Russia

Peter Øhrstrøm, Denmark
Heather D. Pfeiffer, USA
Simon Polovina, UK
Uta Priss, Germany
Sebastian Rudolph, Germany
Henrik Scharfe, Denmark
John Sowa, USA
Rudolf Wille, Germany
Karl Erich Wolff, Germany

VIII Organization

ICCS Program Committee

Babak Akhgar, UK
Jean-François Baget, France
Radim Belohlavek, Czech Republic
Peggy Cellier, France
Dan Corbett, USA
Aldo De Moor, The Netherlands
Juliette Dibie-Barthélemy, France
Pavlin Dobrev, Bulgaria
Florent Domenach, Cyprus
Gerard Ellis, Australia
Paul Elzinga, The Netherlands
Boris Galitsky, USA
Jan Hladik, Germany
John Howse, UK
Adil Kabbaj, Morocco
Mikhail F. Khoroshevsky, Russia
Markus Krötzsch, UK
Leonard Kwuida, Switzerland
Jérôme Lang, France
Ivan Launders, UK

Michel Leclère, France
Natalia Loukashevitch, Russia
Dickson Lukose, Malaysia
Philippe Martin, France
Carlo Meghini, Italy
Guy Mineau, Canada
Khalil Ben Mohamed, Malaysia
Bernard Moulin, Canada
Dmitry I. Mouromtsev, Russia
Sergei Obiedkov, Russia
Yoshiaki Okubo, Japan
Anne-Marie Rassinoux, Switzerland
Eric Salvat, France
Jeffrey Schiffel, USA
Dominik Ślȩzak, Poland
Iain Stalker, UK
Francisco Valverde-Albacete, Spain
Martin Watmough, UK
Igor Zagorulko, Russia
Gq Zhang, USA

External Reviewers

Jim Burton, UK
Aidan Delaney, UK

Weng Onn Kow, Malaysia
Nikolay V. Shilov, Russia

Sponsoring Institutions

Homi Bhabha Centre for Science Education, TIFR

Table of Contents

Invited Talks

Conceptual Structures for STEM Data: Linked, Open, Rich
and Personal . 1

Su White

Relating Language to Perception, Action, and Feelings 22
Arun K. Majumdar and John F. Sowa

PurposeNet: A Knowledge Base Organized around Purpose 29
Rajeev Sangal, Soma Paul, and P. Kiran Mayee

Accepted Papers

Classical Syllogisms in Logic Teaching . 31
Peter Øhrstrøm, Ulrik Sandborg-Petersen, Steinar Thorvaldsen, and
Thomas Ploug

A Model to Compare and Manipulate Situations Represented
as Semantically Labeled Graphs . 44

Micha�l K. Szczerbak, Ahmed Bouabdallah, François Toutain, and
Jean-Marie Bonnin

Analyzing Clusters and Constellations from Untwisting Shortened
Links on Twitter Using Conceptual Graphs . 58

Emma L. Tonkin, Heather D. Pfeiffer, and Gregory J.L. Tourte

Taking SPARQL 1.1 Extensions into Account in the SWIP System 75
Fabien Amarger, Ollivier Haemmerlé, Nathalie Hernandez, and
Camille Pradel

System Architecture to Implement a Conceptual Graphs Storage
in an RDF Quad Store . 90

Khalil Ben Mohamed, Benjamin Chu Min Xian, and Dickson Lukose

Medical Archetypes and Information Extraction Templates in
Automatic Processing of Clinical Narratives . 106

Ivelina Nikolova, Galia Angelova, Dimitar Tcharaktchiev, and
Svetla Boytcheva

Using Conceptual Structures in the Design of Computer-Based
Assessment Software . 121

Uta Priss, Nils Jensen, and Oliver Rod

X Table of Contents

Modeling Ontological Structures with Type Classes in Coq 135
Richard Dapoigny and Patrick Barlatier

Parse Thicket Representation for Multi-sentence Search 153
Boris A. Galitsky, Sergei O. Kuznetsov, and Daniel Usikov

FCA-Based Models and a Prototype Data Analysis System
for Crowdsourcing Platforms . 173

Dmitry I. Ignatov, Alexandra Yu. Kaminskaya,
Anastasya A. Bezzubtseva, Andrey V. Konstantinov, and
Jonas Poelmans

Toward a Peircean Theory of Human Learning: Revealing the
Misconception of Belief Revision . 193

Mary Keeler and Uta Priss

The First-Order Logical Environment . 210
Robert E. Kent

Designing Learning to Research the Formal Concept Analysis
of Transactional Data . 231

Martin Watmough, Simon Polovina, and Simon Andrews

Cross-Domain Inference Using Conceptual Graphs in Context of Laws
of Science . 239

Shreya Inamdar

Summarizing Conceptual Graphs for Automatic Summarization Task . . . 245
Sabino Miranda-Jiménez, Alexander Gelbukh, and Grigori Sidorov

Logical Form vs. Logical Form: How Does the Difference Matter
for Semantic Computationality? . 254

Prakash Mondal

Model for Knowledge Representation of Multidimensional
Measurements Processing Results in the Environment of Intelligent
GIS . 266

Alexander Vitol, Nataly Zhukova, and Andrey Pankin

Transformation of SBVR Business Rules to UML Class Model 277
Stuti Awasthi and Ashalatha Nayak

Representation of the Event Bush Approach in Terms of Directed
Hypergraphs . 289

Cyril A. Pshenichny and Dmity I. Mouromtsev

Concept Lattices of a Relational Structure . 301
Jens Kötters

Table of Contents XI

Representing Median Networks with Concept Lattices 311
Uta Priss

Txt2vz: A New Tool for Generating Graph Clouds 322
Laurie Hirsch and David Tian

Author Index . 333

Conceptual Structures for STEM Data:

Linked, Open, Rich and Personal

Su White

Web and Internet Science,
ECS, University of Southampton, UK

saw@cs.soton.ac.uk

Abstract. Linked and open data is increasing being used by govern-
ments, business and administration. Awareness of the affordances and
potential utility of open data is being raised by the emergence of a host
of web-based and mobile applications.

Across the educational and research communities applications apply-
ing the principles linked data principles have emerged.

Systems developed and used by researchers and academics are most
likely to be predominantly in the hands of the early adopters and cur-
rent developments found in higher education tend to be atomized, yet
there is potentially considerable advantage in associating and integrating
applications for organisational, educational and administrative.

This paper presents an argument for how we can move from early
adopters to early majority, and at the same time presents a roadmap
which will outline some of the significant challenges which remain to be
addressed.

Keywords: linked data, open data, semantic annotation, higher educa-
tion, organizational change.

1 Introduction

A strong thread of the use patterns which have accompanied technological ad-
vances of computational machines has been their use for data processing. The
classic history of computers will inevitably acknowledge the use of Holerith Ma-
chines for the US census and the development of LEO to handle administration
for Lyons (a company famous in Britain for its chain of corner tea houses). It
will refer to the development of COBOL in response to apply computing power
to the problems of provisioning the US Navy and the subsequent widespread
growth of computer use for all aspects of business administration and record
keeping.

Universities, like any other large organisation, made use of computers for
administration and like the rest of the business world universities have integrated
the use of personal computers into their business processes over the past thirty
years. Further transformations in business and personal interactions with and use
of computers followed on from the introduction and subsequent refinements of

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 1–21, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 S. White

the World Wide Web during the 1990s. It is common to refer to three generations
of the Web.

– The vanilla web: early implementations, the web as a publishing device—a
basic web of documents

– The social web: an enhanced web of documents, the read write web intro-
ducing blogs and wikis

– The semantic web: “an extension of the current web in which information is
given well-defined meaning” [1],

Following this was much discussion of what was meant by the Semantic Web and
how it could be realised. The discussion was between the purists who preferred
the path of hard semantics to the more pragmatic approach of soft semantics.
Beliefs and attitudes shifted and changed [2]. Five years on from the original
publication in ‘The Semantic Web revisited’ Shadbolt et al [3] asserted

The Semantic Web we aspire to makes substantial reuse of existing on-
tologies and data. It’s a linked information space in which data is being
enriched and added. It lets users engage in the sort of serendipitous reuse
and discovery of related information that’s been a hallmark of viral Web
uptake. We already see an increasing need and a rising obligation for
people and organizations to make their data available. This is driven by
the imperatives of collaborative science, by commercial incentives such
as making product details available, and by regulatory requirements.

Alongside the debate as to the instantiation of the semantic web, Berners-Lee
was considering the nature of change which was inherent in the way that the
web worked. Evolving the principle that the semantic web was concerned with
better enabling computers and people to work in co-operation, he began to refer
to the ‘two magics’.

Fig. 1. Berners-Lee’s science and engineering approach with magic modified to show
complexity and collaboration

Conceptual Structures for STEM Data 3

‘Two magics’ incorporates a generative interaction between social activity
with the web and technological development. This model goes some way to
explaining the way in which use and applications have taken off [4,5]. This was
first described by Berners-Lee et al and then subsequently developed into the
graphical form presented to the Web conference in 2007.

Alongside the changes related to the engineering of the web, the wider pop-
ulation were developing a conception of, relationship with, and reliance upon
the web and its artefacts. Clay Shirky discusses the social web in his 2003 blog,
and defines the social web as “software that supports group interaction’ [6]. Ev-
idence of the social web and social internet have a long history in discussion
forums and Usenet groups. The social web, along with O’Reilly’s observations
of web 2.0 which can be formally dated from a 2005 blogpost and a 2007 pa-
per [7,8] have become intermingled in the minds of the casual observer. This is
of interest because if applications are to move from the early adopters to the
early majority then they are more likely to succeed through the use of familiar
metaphors (which are understandable and accessible).

In some ways we have been observing sets of memes being adopted by the gen-
eral public. Just like the recommender systems deployed by Amazon and other
commonplace shopping companies, everyday folk understand that applications
which behave like applications you know and love are also likely to become
applications which you know and love. Everyday folk may not understand the
implications of big data, but they can begin to gain an idea of the mechanisms
if they participate in citizen science, or see a news item featuring health benefits
which have accrued from a massive genome data set collaboration. People are
learning: learning from the technology—what it does and how it does it; learning
from the people—what they do, how they use the technology. In academia we call
it learning from good practice; gradually the concepts of open and linked data
are seeping into the everyday consciousness. Alongside this comes some under-
standing of ontologies and semantic annotations. Concepts like domain models,
reasoning and analysis may be more difficult to understand, but awareness is
being raised. The educational domain is ready for change. It is being pressured,
like so many other businesses, to streamline its processes. Academics are gaining
hands-on experience of workplace tools in their research and are becoming ready
to generalise these processes across their institutions. It will be interesting to see
how these changes affect teaching and administration.

In the rest of the paper that follows, the Background section introduces an anal-
ysis of the means by which we can interact with a web of data rather than a web of
documents, considering the scope of hard and soft semantics. These ideas form an
important conceptual backbone to our understanding of the ways in which STEM
data can be harnessed in university education. Through generic examples of im-
plementation of open and linked data in 2.1 it will analyse current approaches
and consider how everyday experience of open data shapes expectations and may
therefore drive future developments. 2.2 presents a brief account of big data. The
specific cases of linked and open data usage in Higher Education have been derived
from the work of a number of communities, which are identified in 2.3. Specific

4 S. White

educational approaches are examined in subsection 4 and the subsections which
follow. The future directions of STEM education and the role played by concep-
tual structures in that future are then examined. The final section discusses the
implications of the previous section in the light of challenges and opportunities in
the educational domain and suggests some conclusions.

2 Background

The historical partnership between technology and administrative processes was
traced in the introduction. The World Wide Web Consortium (W3C) and strong
leadership from Tim Berners-Lee have been strongly influential in emerging stan-
dards for the Web. At the same time they have been taking forward the debate
on ways in which infrastructure can be used and further developed. Much aca-
demic effort has been expended on the semantic web, following the 2001 article
by Berners-Lee et al in Scientific American [1]. Widespread use of the Web has
confronted users with the reality of shortcomings of the early systems. The early
web was criticised as being a library where all the books had been thrown on
the floor. As people used the web, understanding of what it could and could not
achieve began to surface. The initial implementation was only a small part of
the specification envisaged by Tim Berners-Lee and he has continued to work
with W3C to realise the broader potential which he wanted to achieve.

Table 1. The Scope of hard and soft semantics

Hard semantics pure Soft semantics pragmatic

Machine readable Human readable
Rigorous modelling Lightweight modelling

The story of the web is a story of engineering; it is a realisation of the dif-
ference between a model or proposal and the actual implementation. The web
as we experience it has had structure imposed, after the fact. It is overlaid and
there are many inconsistencies. As usage has developed in an ad hoc manner,
although there are standards, they are many and varied. Early solutions to the
combinatorial explosion which will surely follow any attempt to create a rich
interlinked hypertext were mostly focused on abandonment of hyperlinking, and
resorting to backend databases which serve pages engineered for delivery, but
not for interaction. The social web went some way to creating a read-write web
of the original conception. The social web has become a place for conversations
and discourse. But it is the spam bots which demonstrate the power of machine
processing of web pages over individual participation. As discussed in the Intro-
duction, while the general public were becoming accustomed to the social web,
the experts were discussing the nuances of the Semantic Web as summarised by
Table 1; in particular whether hard semantic solutions were preferable to a more
pragmatic approach of soft semantics.

Conceptual Structures for STEM Data 5

2.1 Linked and Open Data

The UK government has become an enthusiastic supporter of Open Data. Early
response to proposals were positive. Plans were initially cancelled with the in-
coming new Government in 2009, but have been fairly rapidly revived. In the
UK, the Open Data Institute formally opened its doors in October 2012. Nigel
Shadbolt commented on the ODI blog “Less than a year ago Tim Berners-Lee
and I were writing a briefing note for Government outlining the opportunity
for an Institute dedicated to realising the economic value of Open Data. Earlier
in 2011 the Chancellor in a speech at the Google Zeitgeist stated “Our ambi-
tion is to become the world leader in open data. The economic impact of this
open data revolution will be profound. . . ”. http://www.theodi.org/blog/ 1st
October 2012.

The Open Data Institute was established with an objective of demonstrating
the commercial value of open data. The UK government provides a set of case
studies of Open Data on their web site http://data.gov.uk. Useful information
on the economic impact of open data is available via the LinkedGov wiki which
provides an index of a selection of peer reviewed papers. The UK government’s
2011 Open Data White Paper [9] identified five agenda items for open data in
the UK: i) building a transparent society; ii) enhanced access; iii) building trust;
iv) making smarter use of data; v) The future transparent society. Examples of
transparency and the benefits of it cover areas of transport, crime and spending.
Making data available to citizens and businesses can enable government to more
clearly account for their activities and spending, and provide information for
feedback loops which can justify or promote changes in behaviours or responses.
For government open data is key to understanding the nature of the businesses
with which they are engaged. It also enables government to meet requirements of
Freedom of Information legislation. The government proposition is that enhanced
access leads to increased trust and thus to smarter use of data. There are a
number of case studies provided to illustrate these arguments. The government
has set itself a standard for information publishing and is promoting the five star
scheme of data re-use originally proposed by Tim Berners-Lee. The government
had already established a set of Information Principles.

Everyday experience of open data is typically mediated by mobile apps or
web sites. Private companies and social collaborations, along with government,
have produced and published a large amount of open data. Geographic data has
been created in each of these three domains. In the UK the Ordnance Survey
publicises its open data, but app developers use a range of different sources.
However, people who use an app to display a map and overlay points of interest
or to navigate between two locations will at the same time gain some kind of
intuitive grasp of what may be possible, even if they do not yet understand the
principles of publishing open data. Commonplace experience of apps like Tripit,
LinkedIn, Open Street Map and Mendeley each in their different way help users
build up an instinctive understanding of what is useful. System designers have
learnt that making their API available is good for business and companies can
compare the success of open and closed systems and draw their own conclusions

http://www.theodi.org/blog/
http://data.gov.uk

6 S. White

Table 2. Summarizing the semantic enhancements of Shotton et al.

Generic Enhancements Adding value to the text

Providing access to actionable data:
making the datasets available
Data Fusion from Other Sources:
enriching the basic journal data
Making information more accessible
Provenance information

Semantic annotations for key concepts
Document summary and study summary
Tag tree and tag cloud
Supporting claims tooltip;
Various citation analysis tools
Alternative language abstract

as to the best way forward. In academia, researchers have been experimenting
with open data. In 2009 Shotton et al report on an interesting experiment to
see how it was possible to semantically enrich a traditional academic paper [10].
The account of this activity identifies a set of enhancements which can be seen
in Table 2. The whole activity provided an immensely rich experience which if
it could be produced in a replicable automated manner would add considerable
value.

2.2 Big Data

The storage capacity of computer systems and the speed and power of data
processing have enabled the collection of big data sets. Big data refers to massive
datasets containing many billions of information items. Big data is too large to be
analysed by conventional database tools. It comes from many different sources.
These include:

i) data gathered by local and national governments as a result of providing
services of systematic survey; ii) data gathered by businesses as a result of their
interactions with clients and customers; iii) data from the natural world through
scientific observations or experimentation; iv) collated and aggregated data sets
which are gathered from diverse sources covering similar or identical subject
areas; v) historic data sets;

Data sets may be examined to provide evidence and feed into businesses pro-
cesses for bringing about change. Many large data sets are proprietary—owned
and protected from wider use by copyright, privacy or business imperatives.
Some large datasets are made available for distributed analysis—the SETI@home
project was used to analyse large volumes of astronomical data. Big data can
benefit from crowdsourced analysis just as big data sets may be assembled by
crowdsourcing.

2.3 Educational Communities Around Linked and Open Data

Developer communities have a crucial role to play in the dissemination and
sharing of ideas and helping establish good practice. In educational communi-
ties there are broadly four basic types of intersecting communities which are
concerned with education specific linked and open data i) formal associations;

Conceptual Structures for STEM Data 7

ii) institutional initiatives; iii) evangelist practitioners and researchers; iv) loose
associations or communities of practice. Community has a very strong role to
play in the development of standards in this area. All four types of communities,
plus their respective associations of users of linked and open data, are involved in
different ways [11]. The examples below are drawn from the UK, but similar de-
velopment is taking place in many different countries across the world. Probably
the most significant of these is the international OpenCourseWare Consortium.

Formal associations like XCRI (http://www.xcri.co.uk) can be seen as a
combination of bottom up, specifications and demand arising from the commu-
nity, met strategically with top down input from funding bodies to pursue a
common objective. The XCRI initiative is funded by the JISC, the UK agency
for technology infrastructure and development in Higher and Further Education.
Formal associations produce tangible outcomes. For example, the XCRI initiative
has developed and is now working to a standard model of course information.

Institutional initiatives are manifest in a number of ways. Some institutions,
such as the UK Open University, pursue open and linked data because there
is a strong business case in terms of managing administrative processes and
gaining business intelligence. The University of Southampton has a very close
link with the development of the semantic web. Tim Berners-Lee holds a chair at
Southampton and in an initiative led jointly with Nigel Shadbolt has established
the UK Open Data Institute. A number of other high profile institutions have
this level of commitment.

Evangelist practitioners and researchers form loose associations irrespective
of institutional ambitions. Researchers and application developers in universities
often pursue their objectives through passion and academic interest. Often their
collaboration is a mixture of face-to-face and online interactions supported by
blogging and microblogging which support extended discussions and knowledge
sharing.

The linked universities (http://linkeduniversities.org/) are a loosely
coupled community of practice who work collaboratively on emerging standards.
Being in academia, they can have a symbiotic relationship with the funding coun-
cil through JISC funded standards related work (CETIS) and developers forums
such as Dev8D. They have worked to establish a number of agreed vocabularies
and to bring together a significant amount of expertise relating to linked data
initiatives in the UK and across Europe.

All of these communities add to the common understanding by making visible
their discussions and publicising their achievements. Further examples include
the informative set of case studies made available via the UK XCRI-CAP web
site, while the linked universities describe vocabularies and work in progress and
present a collection of relevant publications.

Another significant educational community is that associated with Open Edu-
cational Resources. The OER community has two different manifestations. Some
institutions have developed repositories which they are making open to share
worldwide, while other repositories are shared efforts across institutions, some-
times with disciplinary groupings. Davis et al provide a comprehensive account

http://www.xcri.co.uk
http://linkeduniversities.org/

8 S. White

of the roots of OERs and the experience of community building [12]. In many
UK universities OER communities have strong ties with the open and scholarly
publications community, and there is evidence in the literature that experience
from one field sometimes informs the others. Open educational resources bring
together those who take a resource based approach to learning (which survives
from many of the early applications of hypertext) and those associated with
formal learning design, working from an IMS perspective.

Open Educational Resources: (OERs) explicitly collected or assembled for
sharing and reuse. Since 1990s standards have evolved which support and en-
able publication and re-use e.g., IEEE Learning Object Metadata (LOM) [14,15].
The standards enable resources to be found and provide systematic descriptions.
Further standards such as IMS-CP support interoperability. It is possible to
transfer sets of identified files and unpack them for use on another server. Fur-
ther standards such as SCORM RTE and IMS-LD CopperCore [16] can be used
to support sequencing and assembling resources for learners. OERs have a long
pedigree. The MERLOT project was an international consortium which worked
in 1997 to build a platform for open educational resources. In Europe, Rob Koper
from the Open University in the Netherlands was influential in early work on
learning objects specifying an educational modelling language [13]. Some ma-
jor players in the OER community are also providers of OpenCourseWare. In
2005 the OpenCourseWare Consortium was established bringing together ma-
jor international interests committed to open sharing of a range of educational
resources presented as discrete courses. The OER and OCW community have
been working in the area of modelling and linked and open data, but their ac-
tivities have been driven from a bottom-up perspective of sharing and achieving
interoperability rather than from a top down design approach.

Large-scale learning: “Learning analytics is essential for penetrating the fog
that has settled over much of higher education” [17]. Just as business organisa-
tions use their big data on customers’ behaviour to improve their bottom line,
so learning analytics is being harnessed in HE. It is not surprising therefore that
just as research into data mining has been influential in many approaches to
big data, mathematical methods of examining large data sets in education have
emerged as Learning Analytics. Universities and educators are much concerned
at the micro level with checking whether learners understand whether learning
has taken place, what feedback is needed and how progress may be measured.
Data is collected per student and aggregated across cohorts. This data is anal-
ysed and reported internally and externally. Topics with which educators are
particularly concerned include student achievement (measured through course-
works, assignments, tests and exams). Because institutions are concerned with
awarding degrees, data on attainment contributes to progression and retention
information which will be discussed and analysed internally and reported exter-
nally. Learning analytics brings the approaches of big data to many institutional
agendas, particularly those of measuring learning, attainment, progression and
retention. From a business process perspective this data may also be relevant
to providing evidence for establishing financial cases for educational activities.

Conceptual Structures for STEM Data 9

Larger institutions such as open universities may already have systematic data
collection processes.

George Siemens is a leading thinker in the area of educational learning analyt-
ics and researchers at Athabasca and the UK Open University are prominent and
influential in the field of online education termed Connectivism [18]. Siemens pro-
vides a personal participative link from Learning Analytics into MOOCs (mas-
sively open online courses) having collaborated with Stephen Downes to establish
a MOOC in 2008 [19]. MOOCs provide an opportunity to gather learning an-
alytic data, particularly that related to student behaviours. MOOCs provide a
context for Open Educational Resources, while learners and participants provide
a context for the data collected from a MOOC. Currently MOOCs are provided
on a number of different platforms; for example Cousera, Udacity, MITx and
EdX. In the US some high profile institutions are running MOOCs, perhaps for
their advertising and reputation enhancing potential, or perhaps for their po-
tential to collect learner data which can then feed back into the design of face
to face learning activities.

2.4 Learning Approaches

There is a plethora of educational theory to which individual academics may
refer, and many institutions will exhibit a broad range of approaches, some of
which are explicitly designed within a given educational approach. Some rela-
tively new institutions, especially large open universities may commit to a formal
design process across the institution based on an acknowledged set of educational
principles, but more often students experience diverse influences from a range of
theoretical perspectives.

Figure 2 gives a much simplified representation of some of the key theoretical
influences from education and technology which are prevalent in educational
approaches in universities at the current time. For learners the network is playing
an increasingly important role in learning. This is a reflection of the way in which
technology infrastructure has become an intrinsic part of the fabric of everyday
life. It also resonates with many educational theories such as constructivism and
social constructivism. In Higher Education Laurillard has been highly influential
and the conversational model of learning [20] has been credited with widespread
impact, certainly amongst UK based educators engaged in technology based
learning.

At the same time, work by Siemens has also been influential in proposing a
model of connectivism [18] which emphasises the role of the network in shaping
and determining the nature of learning and approaches which are relevant and
effective. It proposes a model which is particularly relevant to the connected
world. It has strong links to social learning theories and stresses the primacy of
generative and transformative approaches to learning. Siemens subsequently has
been involved with large scale learning activities at the Athabasca University
in Canada. Following that work he also identifies specific links between connec-
tivism and learning analytics [21], making connectivism a perspective which is
particularly relevant to the scope of this paper.

10 S. White

Fig. 2. Educational Approaches—a mass of theories

“Learning analytics currently sits at a crossroads between technical and social
learning theory fields. On the one hand, the algorithms that form recommender
systems, personalization models, and network analysis require deep technical
expertise. The impact of these algorithms, however, is felt in the social system
of learning. As a consequence, researchers in learning analytics have devoted
significant attention to bridging these gaps and bringing these communities in
contact with each other through conversations and conferences” [22].

There are many approaches to educational theory which do not take into
account the online and connected world. One recent educator who has been
influential in approaches to learning, but who does not deal specifically with
technology and learning is Biggs [23]. His models of the student and effective
ways of facilitating student learning have gained widespread currency, and there
has been a growing interest in understanding what ‘what the student does’ as a
means of modelling and enhancing education. Where Biggs seems to be particu-
larly relevant to the emerging conceptual frameworks in STEM education is via
recent interest in Digital Literacies. Much of the discussion within is aligned with
Biggs’ perspective. Students do things to learn, and can be expected to develop
their learning skills whilst undertaking higher level study. Working with students
to understand, develop and extend their digital literacies is an increasingly im-
portant agenda for Higher Education across the board. For students in STEM
areas this will extend to mastering and understanding everyday work tools and
to the specific sets of tools which predominate in their chosen specialisms.

Education has a long tradition of working with webs of documents. The role
of text in education was a driver for early computer based systems, and in turn
influenced models of understanding for approaches to technology based learn-
ing which differed from the more strongly industrially influenced approach of

Conceptual Structures for STEM Data 11

computer based training. Hypertext was implemented on mainframes through
the Plato. On personal and distributed computers, Apple briefly led the way
with their HyperCard system. Hypertext researchers looked at education, and
much interest developed in personalisation, customisation and intelligent tutor-
ing systems. Hypertext systems such as microcosm, although developed before
the web came into use, used assembled collections of interlinked resources and
it was that understanding of texts which informed the developments of early re-
search and educational repositories such as ePrints and EdShare [24]. Different
subject areas have tended to privilege different aspects of learning technologies;
specifically those which are better suited to their individual disciplinary needs
[25]. Independently, academics were programming web pages and producing spe-
cialised applications such as simulations, as well as using authentic data sets for
structured tutorials.

At the same time commercial interests were promoting systems which has of-
fered to manage the learning process, early systems often worked to extend the
book metaphor pacing the learner through their material. It was natural that
this work continued through the early years of web technologies, when systems
which managed the learning experience Blackboard and WebCT for example
were introduced. These systems often integrated with student management sys-
tems which the suppliers were also selling. Virtual Learning environments also
encapsulate a number of different learning processes, for example tutorial plus
questions plus simulations. Typically there are also analytics such as data log-
ging and tracking. They have gained some popularity for their ability to sequence
order and organise information and thus drive learning activities. The function-
ality of VLEs have evolved alongside technology in the wider world, and systems
typically now incorporate aspects of the social read-write web, although their
objective of being closed systems means that they cannot have the exact same
affordances as the wikis, blogs and online discussions which are found on the
wild web.

2.5 Semantic Technologies in Higher Education

The discourse and analysis of the potential for semantic technologies in Higher
Education has strong links back to the research of the hypertext and adaptive hy-
pertext communities and thus necessarily encompassed contributions from those
concerned with AI agendas such as agents and Intelligent Tutoring Systems.
The 2009 SemTech Report presents survey findings for semantic technologies in
learning and teaching [26]. Things have moved on since, but some of the obser-
vations are still relevant. SemTech articulates the need to differentiate between
soft and hard semantics in an educational context. Table 3 differentiates i) soft
semantic technologies like topic maps and Web 2.0 applications, which provide
lightweight knowledge modelling in formats understood by humans and ii) hard
semantic technologies like RDF, which provide knowledge modelling in formats
processable by computers.

There are many different ways in which semantic led approaches might con-
tribute to educational activities. Table 4 differentiates between those which can

12 S. White

Table 3. Examples of hard and soft semantics in Higher Education

Hard Technologies
Using machines to talk to each other

Soft technologies
Helping people to organise

knowledge

managing shared learning content Tool to link learning and select careers
identify cross-curricular connections Managing shared learning content
Support for personal learning Support for personal learning
Search for people (people like me) Developing reasoning skills and argument
Search for resources Shared mind-maps/topic-maps

Table 4. Where semantic technologies can contribute to educational processes

Classroom administration
Assisting course creation
Aggregate course and module information

Visible data → dynamic analysis & feed-
back
Aggregate relevant resources & workflow
Streamline accreditation & quality pro-
cesses

Learning activities
Critical thinking and argumentation sup-
port
Efficient personal & group knowledge con-
struction
Authentic learning
Group formation

Assessment, certification, counter-
ing/detecting plagiarism
Learning in the wild
Informal learning
Self-actuated learning
Aggregation, personalisation, customisa-
tion

be considered to related to ‘classroom’ administration and those which might
make up a direct component of learning activities.

2.6 Education in STEM Subjects, Some Scenarios

The challenge for educators is to provide the educational opportunities which
enable the learner to familiarise themselves with, and then master the necessary
knowledge, skills and understandings which can equip them to be competent
in their chosen specialism. Can using smart technology help us address these
ambitions? How is our model of student learning activities made more complex
by these requirements?

At the same time as we address these aims, there is a widespread expectation
that learning should be a transformative process, and that the students will be
able and ready to make and sustain their contribution to their chosen workplace
and career path. It is inevitable that such a trajectory necessitates a mastery
which extends beyond academic subject specialism and into the applied discipline
in a world where technology is an essential component. Disciplinary differences
as investigated by Biglan [27,28] and subsequently Becher [29], play an important
role in the nature of teaching in Higher Education. Disciplines determine needs

Conceptual Structures for STEM Data 13

Table 5. Disciplinary needs of Hard Pure and Hard Applied Subjects [25]

Curriculum/content Assessment Cognitive Purpose

H
a
rd

P
u
re

e.
g
.,
N
a
tu
ra
l
S
ci
en

ce
s Concepts and principles

closely connected
Content typically fixed
and cumulative
Quantitative
Teaching and learning
activities are focused

Specific and focused
exam questions
Object tests relying on
quantitative nature of
knowledge

Logical reasoning
Testing of ideas in linear
form of augmentation.
Reliance on facts,
principles and concepts

H
a
rd

A
p
p
li
ed

e.
g
.,
E
n
g
in
ee
ri
n
g

Concerned with the
mastery of the physical
environment.
Focus is on products and
techniques.
Knowledge is atomistic
and cumulative.
Emphasises factual
understanding.

Preference for exam
questions; especially
problem solving.

Logical reasoning.
Testing of ideas in linear
form of argumentation.
Reliance on facts,
priniples and concepts

and establish context. The STEM subjects are considered to fall within the
Hard Pure and Hard Applied disciplinary space. The context of disciplinary
differences in e-learning has been investigated by White and Liccardi whose
summary of the disciplinary needs relevant to STEM subjects is presented in
Table 5. Alongside the disciplinary needs of learners, it is worth considering the
affordances of different types of tools. Based on the observations of the SemTech
report, and extrapolating from the experience of enriched publishing reported
by Shotton et al. [10]. Table 6 builds on the activity gradient proposed by White
and Liccardi, suggesting added value which might result if educational resources
were semantically enriched.

The value of ontologies to planning the learning process has been recog-
nised by researchers and educational specialists within some discipline areas
[30]. This would come under the classroom administration category suggested
in Table 4 which was previously discussed. In the SemTech survey [26] there
was evidence of the purposeful use of semantic tools for authentic learning. Ex-
perience in the use of repositories and digital collections would suggest that
they have strengths for the educator as well as the learner and would indi-
rectly support informal learning, self actuated learning, personalisation and
customisation. In the world of MOOCs specialist programs have been estab-
lished which reflect an industry need; for example the solar power industry
http://solpowerpeople.com/solar-courses/—which might also be appro-
priate to provide authentic resources for learners studying on a formal program
in a relevant topic. At the time of writing, Coursera, a federation of OpenCourse-
Ware, listed almost 200 courses with a duration of between 4 and 12 weeks. It

http://solpowerpeople.com/solar-courses/

14 S. White

Table 6. Suggested benefits from semantically enriched learning in stem subjects

Teacher led/passive

Resource Conventional use Semantically enriched

Notes on the web
Teacher: author, publisher.
Student: consumer, viewer,
use for reference.

Automatically linked to
related resources.
Dynamic annotation
(semantic wiki).
Use/integrate with OER.

Tests, questions
Teacher: author, publisher
Student:
participates/interacts.

Automatically linked.
Dynamic and static
generation of feedback.
Dynamic linking to ‘wild’
resources.
Use/integration of OER

Interactive tutorials.
Incorporates learning
activities and assumes
structure.

Teacher: author, publisher.
Dynamically assembled,
dynamically link.

Simulations.
Incorporates learning
activities and assumes
structure.

Teacher: author, publisher.
Student:
participates/interacts
Pathways dynamic/proxy
for real world.

Distributed participants,
use of authentic data.

‘World Ware’
Teacher points to/requires
use of authentic tools.

Real world datasets &
tools.

Student created artefacts
Student freely utilises
authentic tools.

Semantic
publication/visibility

Online discussions.
Blogs and Wikis.

Students engage is ‘social’
creation and ‘social’
learning.

Dynamic interlinking,
semantic publication.

Student led/active

claimed to have more than 1.7 million registered course participants. By far the
majority of the subjects were in the stem subject area. High profile open courses
have been offered by US Ivy League universities but are also being offered by
informal networks of teachers, by individual academics and by small colleges.

The examples above considered the value of semantic enrichment and open
and linked data from the perspective of purposeful course design, or as an ad-
junct to the educational administration. These two perspectives were the main
line of analysis identified in the SemTech report. However, there has been con-
siderable discussion across the community which argues for taking a personal
learner perspective on educational resources, and to place the use of educational
resources within a framework of a Personal Learning Environment. Within the

Conceptual Structures for STEM Data 15

framework of developing campus wide support for learning at the University of
Southampton, the personal learning environment has been considered. Seman-
tically rich environments provide ample opportunities for the interlinking and
crafting of personal learning resources.

The world is changing and universities must respond to students’ needs and
expectations in agile and effective ways. Learners enter university with an in-
evitable diversity of technological familiarity and a mix of näıve and sophisticated
approaches to using technology as a part of their learning. Students are using
apps and becoming familiar with the potential of linked data. Just as they have
learned how to Google for information and to look to Wikipedia as the first source
of information, so they are also becoming familiar with technology behaviours
which they might reasonably expect to appear in their study environment.

Using online services such as Facebook, Amazon, Delicious, Flickr, YouTube
introduces them to a world where artefacts like integration and recommenda-
tion are an obvious part of the infrastructure. Familiarisation with these services
shapes expectations and also prepares users to be adept at exploiting the affor-
dances for their own reasons. Students develop skills and expectations. Famil-
iarity with these specialised affordances of various common place yet separate
applications, may result in students viewing the institutional provision of web
sites and virtual learning environments (VLEs) as clunky and out of date. For
their part, universities may feel themselves overloaded with the task of pro-
viding, maintaining and updating the necessary information needed to inform
and educate their students and also to furnish and drive the workflows of their
administrative processes.

Many universities are understandably proud of the historic heritage on which
University system is based, and the historic roots on which their own institution
is established. Yet these same roots and traditions are in some ways likely to
be the source of some of the challenges which are faced by the University as an
organisation.

Institutions are being changed by external factors. Siemens identifies an al-
tered information cycle brought about by ‘participatory technologies’. At the
University of Southampton, four fundamental drivers for change were identi-
fied. i) support curriculum change and innovation; ii) address student expecta-
tions; iii) enable the university to remain credible in its support for learning and
teaching—particular to be seen as fluent and innovative in the use of IT; iv) fa-
cilitate the adoption of a University-wide educational style. Students may want
interconnectivity with external apps, actors in our systems may want to share
data from internal info with external apps, but whatever else we certainly need
to be able to share and reuse data from and between our internal apps, using a
web2.0 approach using the web as a platform, exposing our data and devising
services to enable apps to communicate is essential.

An early implementation of educational infrastructure to support teaching
was developed in Southampton making use of linked data. We routinely use
linked data for info within one part of the University ECS enabling all our info
style pages to be generated dynamically. The mix of screen shots collected as a

16 S. White

single figure illustrate this approach incorporating a personal page where data is
associated to provide information based on real world relationships recorded as
linked data. Academics are tutors; tutors have tutees; academics are lecturers;
lecturers have teaching allocations, and so on. Assembled sets of relations gener-
ate informative and highly functional web pages. This approach creates official
home pages and generates module pages for teaching activities. The resources
page also accesses the institutional repository and using tags as filters populates
the module page resources tab. A wiki is used to add and enter information;
there is also a linked HTML web pages on the filestore. Dynamic content I
added through retrieving delicious tags associated with course teachers, and a
tag cloud index to the delicious data is generated.

We used RDF because it saves time; however, the hand crafted web sites will
persist, and some colleagues use paper handouts. Automatically generated pages
provide learners with a consistent backbone to which they can refer. Individual
differemces will persist. Not everyone uses the EdShare repository, or edits the
notes or student wiki.

Even with this proof of concept, the challenge remains, how to port it to the
rest of the University? This system was introduced by those whose research is
into linked data. Colleagues in Electronics, physic or chemistry might not regard
the changes in the same light. Time and again we return to the issue that change
is cultural, and individual responses and behaviours are mediated by skills and
by available time, and willing priority. Open and linked data can be used by
universities for business process management. The University of Southampton
established an open data initiative in 2010. Full information can be found at the
project’s web site http://data.soton.ac.uk/.

Benefit can be gained from exposing and sharing the public and private cap-
ital of data and information within and across departments and institutions to
enable workflows and promote and enable collaboration. Since its inception the
project has supported, shown financial returns and won the support of senior ad-
ministrators and managers who have particularly appreciated the way in which
the data can be drawn upon at short notice to provide customised web sites
(for example to support a student visit day). Among the achievements made by
this initiative i) furnish components of a financial information system; ii) helped
address external demands for information provision is a cost effective manner;
iii) enable enhanced quality of data relating to room information; iv) increase the
efficiency of the on campus catering provision; v) drive a mobile app detailing
university and city wide bus services.

3 Discussion

The examples above demonstrate that education has more than one focus: learn-
ers, teachers, researchers, administrators; depending on the activity, some people
are at the core, whilst some are at the periphery. Establishing a coherent ap-
proach to institution-wide change which incorporates technology and introduces
new business practices is an ambitious challenge and it would not be surprising
if a few challenges were encountered on the way.

http://data.soton.ac.uk/

Conceptual Structures for STEM Data 17

Table 7. Southampton data sets available in autumn 2012

Apps using our data
Buildings and Places
Catering
Common Learning
Spaces
Extra Information
ECS EPrints Link set
EPrints Repository
Easting/Northing
EdShare
EdShare Video
ECS EPrints Repository
Events Diary
Facilities and Equipment
Food Hygiene Ratings
International Links
International Links
DBPedia Data
JACS Codes

Links to DisabledGo
Access Information
Local Amenities
Open Data Catalogue
Open Days July
2011Organisation
Payments 2010-11 to
2011-01
Photographs of
University of
Southampton Things
Press Contacts
Information
Programmes (2010-2011
session)
Programmes (2011-2012
session)
Programmes (2012-2013
session)

Public Phonebook
Published Accounts
Services
Southampton Bus-routes
Southampton Bus-stops
Southampton Jargon
Dictionary
Student Statistics
Students Union Events
Teaching Room Features
Transport Linkset
University of
Southampton Profile
Document
Vending Machines
WiFi
iSolutions Workstation
Clusters

Surveying the use of Semantic Technologies in Education in 2009, Tiropan-
nis et al observed of the the challenges faced by Higher Education that most
could be addressed by querying across institutional repositories (databases, web
pages, VLEs). Significant learning and teaching challenges can be addressed by
accessing resources across departments, schools, institutions. The emergence of
linked data fields across related repositories (seen in Table 7) will enable new
applications relevant to identified HE challenges. They consider that the initial
value of semantic technology will be in scale rather than reasoning and suggest
that institutions will benefit from adopting a bottom-up approach starting from
linked data which can be related to (layers of) ontologies later in the context of
specific applications. The SemTech perspective quoted here focused on specific
implications for learning and teaching, but from the material covered in this
paper it would appear that a broader perspective would repay investigation.

This paper has looked at the roots of technology innovation which were cre-
ated by the web and its technical developments incorporating linked and open
data. It has considered a range of different technical innovations which can be
found in the business and commercial domains and considered how they relate
to educational domains through two mechanisms i) establishing patterns of use
and user expectations through familiarity and perceived user benefit; ii) creating
organisational gains either in terms of improved efficiency and effectiveness or
through directly reduced costs. Furthermore, these changes have the potential to
create indirect savings by streamlining processes and gathering valuable business
intelligence which can help in strategic planning and direction.

18 S. White

Whilst much of the paper has discussed educational innovations, it may well be
that for educational institutions the real gains which can be made are in the area
of organisational efficiencies. Core business functions in educational institutions
have much in common with commercial and business organisations, albeit there
are some very particular constraints found in educational contexts because of
the cyclical nature of the business, and the uneven tempo of the academic year.
There has been some discussion of formal teaching related affordances which
might be available to educators using linked and open data. However, semantic
technologies do offer learners the means to independently craft and fine tune their
own personal learning environments. The discussion and examples throughout
this paper have referred to university education, but the case was made in the
opening sections that this work is equally applicable to workplace learning at
higher levels. There are particular constraints which apply to workplace learning
which differentiate it from university learning.

The affordances of semantic technologies, open and linked data introduce
potential for flexibility, dynamism and automation which may be particularly
beneficial for those who are studying in a workplace context. Streamlining the
ways in which we can assemble and inter-link content offers a considerable gain.
This benefit will be as relevant to the work-based learner, topping up expertise or
undertaking professional development. The models established in OpenCourse-
Ware combined with the potential for personal learning environments appear to
be particularly fruitful areas for future development. It also seems likely that
academics, becoming familiar with technologies in their research activities, will
find ways of introducing datasets and research practice into learning as authentic
activities. The specific digital literacies of each learner within any given STEM
area will be closely related to the authentic tools which are routinely used by
practitioners (in the workplace or the research lab) associated with that spe-
cialism. Time savings may also accrue from a data based approach to gathering
summary information about study programmes for accreditation. The curricu-
lum is one area where the effort of building ontologies is beneficial. Institutions
expend significant effort trying to gain broad-brush pictures across modules and
programmes; work on knowledge modelling in this area could be fruitful.

The potential impact of widespread use of linked data in Higher Education
is immense. Everyday understanding of the power derived by placing raw data
in the public domain is growing. It promises to transform education, intercon-
necting administrative data, enriching and embellishing teaching resources while
providing tools and resources for learners and researchers alike. Currently, se-
mantic technologies are more widely and systematically used in research and
administration than they are in teaching in higher education.

Having discussed the broad challenges and potential of greater use of data in
an educational context, it might be constructive to suggest a way forward.

– Experience at Southampton has placed great value in purposefully construct-
ing teams which incorporate a range of organisational perspectives. Existing
literature on change processes identifies the need for champions and patrons.

Conceptual Structures for STEM Data 19

Champions pursue agendas at a local level, while patrons support and visibly
promote change at a strategic and trans-institutional level.

– Some of the simple demonstrators which helped disseminate the potential
of using data in applications were developed speculatively on low budgets
by student interns. Some apps were developed independently by students,
mirroring the wider experience of making APIs available for those who will
gain most to invest in.

– Many of our data clients were surprised by the simplicity of the changes they
needed to make in order to publish their data and accrue additional benefit.
A participant who saves money is a great advert and a willing advertiser of
your hard work.

– Once the data has been published and example apps developed, new clients
are more able to imagine what they want and what they might gain. This
can then enable effective collaboration and co-creation of further apps which
will in turn accelerate or refine future developments.

– Borrowing from business practices can be fruitful. Hackathons, BarCamps,
UnConferences and Competitions can be ways of finding and pairing devel-
opers with clients and producing proof of concept apps in short timeframes.
The energy created by these types of events will also sustain more measured
developments.

– There is a wider understanding of what might be achieved by crowdsourcing:
sharing the task of collecting data, or refining and correcting datasets.

– Publishing data is a wonderful way to distribute quality control tasks. Users
can spot and correct published data. We found this worked particularly well
in the case of our teaching room database, which was previously maintained
on a PC and updated on an annual basis, often preserving mis-information
from year to year.

– Shared initiatives lead to understanding and sharing organisational
objectives

– Being a semantic squirrel may be rewarding. If there is an opportunity to
collect data, the cost of storage will be small. If a means or motivation to
analyse and use it emerges in the future, half of the job will already be done.

– Engaging in cool projects at your institution will make your techies happy,
and give them things which they can go and brag about at developer events.

– Joint projects like the open data activities suggested here provide an oppor-
tunity to develop a local community of practice which will in turn enrich
organisational knowledge

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284, 34–43 (2001)

2. Shadbolt, N.R., Gibbins, N., Glaser, H., Harris, S., Schraefel, m.c.: CS AKTive
Space or how we stopped worrying and learned to love the Semantic Web. IEEE
Intelligent Systems 19, 41–47 (2004)

20 S. White

3. Shadbolt, N., Berners-Lee, T., Hall, W.: The Semantic Web Revisited. IEEE In-
telligent Systems 21, 96–101 (2006)

4. Berners-Lee, T., Weitzner, D.J., Hall, W., O’Hara, K., Shadbolt, N., Hendler, J.:
A Framework for Web Science. Foundations and Trends in Web Science 1, 1–130
(2006)

5. Berners-Lee, T.: The process of designing things in a very large space: Keynote
Presentation. In: WWW 2007 (2007)

6. Shirky, C.: A group is its own worst enemy - A speech at ETech. Clay Shirky’s
Writings About the Internet: Economics & Culture, Media & Community, Open
Source (April 2003), http://www.shirky.com/writings/group_enemy.html

7. O’Reilly, T.: What Is Web 2.0 – Design Patterns and Business Models for the Next
Generation of Software (2005),
http://oreilly.com/web2/archive/what-is-web-20.html

(last accessed June 2010)
8. O’Reilly, T.: What is Web 2.0: Design patterns and business models for the next

generation of software. Communications & Strategies 1, 17–37 (2007)
9. Cabinet Office Open Data White Paper Unleashing the Potential Unleashing the

Potential Open Data White Paper 52, London (2011),
http://www.cabinetoffice.gov.uk/resource-library/

open-data-white-paper-unleashing-potential

10. Shotton, D., Portwin, K., Klyne, G., Miles, A.: Adventures in semantic publish-
ing: exemplar semantic enhancements of a research article. PLoS Computational
Biology 5, e1000361 (2009)

11. Wilson, S.: Community-driven Specifications: xCrI, sword, and Leap2a. Interna-
tional Journal of IT Standards and Standardization Research 8, 74–86 (2010)

12. Davis, H.C., Carr, L.A., Hey, J.M.N., Howard, Y., Millard, D.E., Morris, D., White,
S.: Bootstrapping a Culture of Sharing to Facilitate Open Educational Resources.
IEEE Transactions on Learning Technologies 3, 96–109 (2010)

13. Koper, R.: Modelling units of study from a pedagogical perspective the pedagogical
meta-model behind EML (2001)

14. IEEE Learning Standards Committee (LTSC) IEEE P1484.12 Learning Object
Metadata Working Group; WG12, http://ltsc.ieee.org/wg12/

15. Campbell, L.M.: UK Learning Object Metadata Core Working Draft Version 0.3
1204 (2004)

16. Tattersall, C.: Comparing Educational Modelling Languages on a CaseStudy: An
Approach using IMS Learning Design. In: Sixth International Conference on Ad-
vanced Learning Technologies, pp. 1154–1155 (2006)

17. Long, P., Siemens, G.: Penetrating the Fog: Analytics in Learning and Education.
Educause Review 46, 31–40 (2011)

18. Siemens, G.: Connectivism: A Learning Theory for the Digital Age. International
Journal of Instructional Technology and Distance Learning 2, 1–8 (2005)

19. Siemens, G., Downes, S.: Connectivism and connective knowledge: Course delivered
at University of Manitoba (September-November 2008),
http://ltc.umanitoba.ca/connectivism/

20. Laurillard, D.: Rethinking University Teaching: a Framework for the Effective Use
of Educational Technology. Routledge, London (1993)

21. Siemens, G.: Learning Analytics: Envisioning a Research Discipline and a Domain
of Practice. In: Second International Conference on Learning Analytics and Knowl-
edge (LAK 2012), pp. 4–8 (2012)

22. Siemens, G., Gasavic, D.: Learning and Knowledge Analytics. Journal of Educa-
tional Technology & Society 15, 1–2 (2012)

http://www.shirky.com/writings/group_enemy.html
http://oreilly.com/web2/archive/what-is-web-20.html
http://www.cabinetoffice.gov.uk/resource-library/open-data-white-paper-unleashing-potential
http://www.cabinetoffice.gov.uk/resource-library/open-data-white-paper-unleashing-potential
http://ltsc.ieee.org/wg12/
http://ltc.umanitoba.ca/connectivism/

Conceptual Structures for STEM Data 21

23. Biggs, J.: Teaching for quality learning at university: what the student does. Open
University Press in Association with The Society for Research into Higher Educa-
tion, Buckingham (1999)

24. Hall, W., Davis, H.C., Hutchings, G.: Rethinking Hypermedia the Microcosm Ap-
proach. Kluwer, Boston (1996)

25. White, S., Liccardi, I.: Harnessing Insight into Disciplinary Differences to Refine
e-learning Design. In: 36th Annual Frontiers in Education Conference, pp. 5–10
(2006), doi:10.1109/FIE.2006.322553

26. Tiropanis, T., Davis, H., Millard, D., Weal, M., White, S., Wills, G.: JISC -
SemTech Project Report 28, Bristol (2009)

27. Biglan, A.: The characteristics of subject matter in different academic areas. Jour-
nal of Applied Psychology 57, 195–203 (1973)

28. Biglan, A.: Relationships between subject matter characteristics and the structure
and output of university departments. Journal of Applied Psychology 57, 204–213
(1973)

29. Becher, T.: The Significance of Disciplinary Differences. Studies In Higher Educa-
tion 19, 151 (1994)

30. Cassel, L.N., Davies, G., LeBlanc, R., Snyder, L., Topi, H.: Using a Computing On-
tology as a Foundation for Curriculum Development. In: SW-EL 2008 Conjunction
with ITS 2008 (2008)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 22–28, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Relating Language to Perception,
Action, and Feelings*

Arun K. Majumdar and John F. Sowa

VivoMind Research, LLC, USA
arun@vivomind.com, sowa@bestweb.net

Abstract. The world is a continuum, but words are discrete. Sensory organs
map the continuous world to continuous mental models of sights, sounds, and
motions. Muscles and bones move in a continuous range of positions, postures,
forces, and speeds. Internal feelings of hunger, thirst, pains, pleasures, fears,
and desires have a continuous range of variation. But discrete words and
patterns of words cannot faithfully represent the continuum of perceptions,
actions, and feelings. Peirce’s semiotics and Wittgenstein’s language games
provide a framework for relating language to the world and to perceptions and
actions in the world. Peirce analyzed signs and transformations of signs in
networks of discrete symbols and in patterns of continuous images.
Wittgenstein showed how language is integrated with every aspect of human
activity. To implement their insights, the discrete networks of symbols must be
mapped to continuous mathematics. This article is a summary of the methods
and applications for mapping natural languages to conceptual graphs and
continuous transformations. Those methods have been used to analyze and
classify plot twists in narratives and the structure of expository texts.

Keywords: conceptual graphs, natural language processing, semiotics, analogy,
mental models, continuity, catastrophe theoretical semantics.

1 Language and Brain

The human brain is built on an ape-like plan with a greatly enlarged cerebral cortex. If
the cortex were removed, the human brain stem and cerebellum would be hard to
distinguish from those of a chimpanzee or gorilla. After reviewing the fossil evidence,
Terrence Deacon [1] concluded that the mainstream of evolution from the apes to
Australopithicus, Homo habilis, Homo erectus, and Homo sapiens was driven by “the
co-evolution of language and the brain.” Gradual changes in the vocal tract indicate
an early shift toward more complex vocalization. The earliest language-like
vocalizations, perhaps spoken by some Australopithecines, gave their speakers a
competitive advantage over other primates. The need for a larger vocabulary and a
more precise grammar drove the rapid increase in size and complexity of the brain.
Figure 1 shows aspects of language that evolved in the past 6 million years on top of a
foundation of 600 million years of evolution from primitive worms.

* An extended paper associated with this invited talk will appear in the Workshop Proceedings

for the ‘‘Workshop on Modeling States, Events and Processes (MSEPS)”.

 Relating Language to Perception, Action, and Feelings 23

Fig. 1. Human language supported by an ape-like foundation

Yet Figure 1 has some questionable features. The labels on the language boxes
correspond to traditional academic fields, but those boxes don’t have a one-to-one
mapping to modules in the brain. The box labeled knowledge, for example, includes
information in different areas of the brain: language-independent images; concepts
related to language, but independent of any specific language; and knowledge
encoded in the patterns of a particular language. The box labeled pragmatics involves
the use of language in all the activities of life. But knowledge of an activity is directly
based on actions and perceptions, only indirectly on the words that express them. As
Wittgenstein emphasized, words are always learned and used in the context of some
activity: “The word language-game (Sprachspiel) is used here to emphasize the fact
that the speaking of language is part of an activity, or of a form of life” [2: §23].

Nobody knows exactly how the brain works, but neuroscience has accumulated a
great deal of evidence about the areas of the brain associated with various functions.
For right-handed people, the left hemisphere of the cerebral cortex (LH) is critical for
language. Figure 2 shows areas of LH involved in language processing [3, 4]. Broca’s
area, which generates the syntax and phonology of speech, is adjacent to the primary
motor cortex for the mouth, face, tongue, and vocal tract. Wernicke’s area, which
relates language to semantics, is adjacent to the primary auditory cortex and close to
the sensory areas for vision and touch. It is also directly beneath the parietal lobe,
which maintains patterns that are variously called cognitive maps, frames, or
schemata. Lamb [5, 6] argued that the primary nodes for concepts are located in the
parietal lobe. Nouns, which map to images, are in the temporal lobe, close to both the
auditory and visual areas. Verbs are in the frontal lobe, close to the motor areas that
control actions.

24 A.K. Majumdar and J.F. Sowa

Fig. 2. Language areas of the left hemisphere

The cerebral cortex is essential for language and all complex reasoning. But the
brain stem controls the basic functions necessary for maintaining life. It also
integrates all inputs and outputs to and from the cerebral cortex. One part, called the
superior colliculus, integrates vision with eye movements and head position. It also
relates vision to the auditory inputs processed by the inferior colliculus. The
cerebellum learns and controls fine tuned, but automatically executed skills. Using
just the superior colliculus and the cerebellum, a frog can jump along the lily pads in a
pond, track a fly in mid flight, and shoot out its tongue at just the right speed and
direction to catch it. Humans use the same neural mechanisms for shooting a
basketball, performing gymnastics, or playing the piano. For a person talking on a cell
phone, the superior colliculus can bypass the cortex and enable the cerebellum to
control walking without thinking.

As Figure 2 shows, language areas are distributed around the cortex. Instead of a
dedicated language module, brain areas specialized for perception and action are also
used to interpret and generate language. Broca’s area, for example, overlaps two
regions called Broadman’s areas BA44 and BA45. BA44 is active in controlling the
mouth for speech and eating. BA45 is active in producing both spoken and signed
languages. It is also active in precise motor control for using tools.

The processes carried out by the brain stem and cerebellum are outside conscious
awareness and independent of language. But they are essential for producing and
maintaining the images in the cortex that are mapped to and from language. The
superior colliculus is responsible for controlling eye movements, relating multiple

 Relating Language to Perception, Action, and Feelings 25

fragmentary glimpses, and enabling the visual cortex to assemble them in a stable,
panoramic image of the environment. But the frontal lobes can also provide the
stimuli to generate an imaginary model of a planned, hypothetical, or desired
environment. As the neuroscientist Antonio Damasio [4] said,

The distinctive feature of brains such as the one we own is their uncanny ability
to create maps... But when brains make maps, they are also creating images, the
main currency of our minds. Ultimately consciousness allows us to experience
maps as images, to manipulate those images, and to apply reasoning to them.

Although the details of information processing in the brain are major research
problems, brain scans show the active areas, and anatomy shows the pathways that
connect them. For language understanding and generation, Wernicke’s area and
Broca’s area are connected by a thick bundle of fibers called the arcuate fasciculus.
Those fibers transmit information in both directions to coordinate the semantic
processing in Wernicke’s area with the syntactic processing in Broca’s area. But the
verb patterns, which are located in BA47 close to Broca’s area (BA45), are critical for
relating sentence structures to actions, planning, and reasoning. The nouns that
participate in those patterns are located in the temporal lobes. The arcuate fasciculus
has branches that connect to those areas and to the parietal lobe with its concepts and
cognitive maps.

The evidence from neuroscience confirms what linguists, psychologists, philoso-
phers, and language users have known for millennia: nouns are linked to images,
verbs are linked to actions, the links depend on background knowledge, and people
with different backgrounds often misunderstand each other. For computer processing,
it implies that language understanding requires methods that go beyond the discrete
words and patterns of words that appear in texts. For any subject that has a continuous
range of variation — anything except subjects like chess, Sudoku, or computer
programs — the semantics requires continuous mathematics. The discrete patterns of
language must be mapped to and from continuous fields and transformations.

2 Discrete and Continuous Processing

The early stages of language processing must analyze the discrete words and patterns
of words that occur in speech and texts. For VivoMind software, the results of the
analysis are translated to conceptual graphs (CGs) as the semantic representation [7,
8, 9]. But the graphs are still discrete. They must be translated to continuous fields for
the next stage of analysis. Key to that translation is an insight by Charles Sanders
Peirce, whose existential graphs (EGs) are the foundation for CGs [10].

Peirce was inspired by the graphs used to represent molecules in organic
chemistry. He designed his EGs as a notation for representing “the atoms and
molecules of logic.” The continuous fields are forces like gravity or electro-
magnetism. In the verb patterns, each verb is a nucleus, and the nouns orbit the
nucleus in a continuous force field. The verb sleep, for example, has one actant or
participant; it has valence 1. The verb hit has 2, give has 3, and buy or sell has 4.

26 A.K. Majumdar and J.F. Sowa

René Thom [11] was a mathematician who developed catastrophe theory and
applied it to a variety of physical phenomena. As he broadened the range of
applications, he discovered psychological and linguistic phenomena that displayed
related patterns. He used the dependency grammar developed by Lucien Tesnière [12]
to represent patterns of events. When he analyzed the dynamic evolution of those
events and their consequences, he discovered that they fell into patterns that
resembled the chaotic patterns he observed in physics. He showed that those patterns
could be used to classify the typical kinds of plot structures found in literature.
Thom’s ideas were developed further by Petitot [13] and Wildgen [14]. Most linguists
ignored those developments because they use mathematical computations that are
unrelated to the usual linguistic theories. But Tesnière’s dependency structures have a
direct mapping to conceptual graphs [7]. That mapping enables the methods of
catastrophe theoretical semantics (CTS) to be adapted to CGs.

3 Applications

VivoMind software has mostly been applied to nonfictional documents on subjects
such as oil and gas exploration or rare earth magnetic materials [8, 9]. For those
purposes, CTS proved to be valuable for classifying document types. It can
distinguish documents that serve different purposes, even though they have similar
vocabulary and ontology. Examples include chapters from a textbook, research
reports, tutorials, and surveys that cover similar material. These methods can even
distinguish routine or incremental research from novel papers and highly innovative
speculation.

To illustrate the differences between a serious and a humorous text, we used the
methods to compare the patterns of betrayal in two anecdotes: the BRUTUS story
betrayal model [15] and a joke called “Meeting St. Peter.” In both of them, the
situation is painful for the victim. But the victim in the serious anecdote is a
sympathetic character (a student); in the other, the victim is a stereotypical butt of
humor (a salesman). Following are two stories of betrayal analyzed by the CTS
methods.

“Betrayal” by BRUTUS

Dave Striver loved the university. He loved its ivy-covered clocktowers, its
ancient and sturdy brick, and its sun-splashed verdant greens and eager youth.
He also loved the fact that the university is free of the stark unforgiving trials of
the business world — only this isn’t a fact: academia has its own tests, and
some are as merciless as any in the marketplace. A prime example is the
dissertation defense: to earn the PhD, to become a doctor, one must pass an oral
examination on one’s dissertation. This was a test Professor Edward Hart
enjoyed giving.

Dave wanted desperately to be a doctor. But he needed the signatures of three
people on the first page of his dissertation, the priceless inscriptions which,
together, would certify that he had passed his defense. One of the signatures had

 Relating Language to Perception, Action, and Feelings 27

to come from Professor Hart, and Hart had often said-to others and to himself-
that he was honored to help Dave secure his well-earned dream.

Well before the defense, Striver gave Hart a penultimate copy of his thesis. Hart
read it and told Dave that it was absolutely first-rate, and that he would gladly
sign it at the defense. They even shook hands in Hart’s book-lined office. Dave
noticed that Hart’s eyes were bright and trustful, and his bearing paternal.

At the defense, Dave thought that he eloquently summarized chapter three of
his dissertation. There were two questions, one from Professor Rodman and one
from Dr. Teer; Dave answered both, apparently to everyone’s satisfaction.
There were no further objections.

Professor Rodman signed. He slid the tome to Teer; she too signed, and then
slid it in front of Hart. Hart didn’t move.

"Ed?" Rodman said.

Hart still sat motionless. Dave felt slightly dizzy.

"Edward, are you going to sign?"

Later, Hart sat alone in his office, in his big leather chair, saddened by Dave’s
failure. He tried to think of ways he could help Dave achieve his dream.

The next story is an updated and extended version of a joke that was circulated around
the Internet.

Meeting St. Peter

A computer salesman died and went to meet St. Peter at the Pearly Gates.

St. Peter: Welcome to our reception hall. We’ve made some updates to our
traditional procedures in order to speed up the process and make our guests feel
more comfortable. Instead of the old book of sins, we now use an iPad.

Computer Salesman: That sounds great. I love the new technology.

Then St. Peter swiped the iPad and projected scenes from the salesman’s life on
the wall next to the Pearly Gates. The salesman began to squirm when he saw
some of the long-forgotten events.

St. P: Relax. We got rid of the old trial because it takes too long. We developed
new methods that predict the same results with six-sigma reliability. We just let
people choose whether they would prefer to go to Heaven or Hell.

Then he took another swipe at the iPad and showed some scenes from Heaven.
People in white robes were sitting on clouds, playing harps, and singing hymns.

C S: That looks boring.

Then St. Peter took another swipe at the iPad and showed scenes from Hell.

A toga party was going on. There was wild music, dancing, drinking, and
carousing. Men and women in various stages of undress were engaged in every
activity imaginable.

28 A.K. Majumdar and J.F. Sowa

C S: That’s fantastic. I choose Hell.

St. P: Done.

St. Peter took another swipe at his iPad, a trap door opened, and the salesman
found himself sliding down a steel chute. He was rapidly accelerating down a
well-worn path, polished by many previous travelers.

Finally, he flew through an open door into a huge cavern with fire and
brimstone stinging his eyes. At once, a dozen little devils with pitchforks started
prodding and pushing him toward a fiery pit.

C S: Hey, wait a minute! What happened to the party?

Then the chief devil walked over, stroking his beard.

Chief Devil: Ooooh. You must have seen our demo.

References

1. Deacon, T.W.: The Symbolic Species: The Co-evolution of Language and the Brain. W.
W. Norton, New York (1997)

2. Wittgenstein, L.: Philosophical Investigations. Basil Blackwell, Oxford (1953)
3. MacNeilage, P.F.: The Origin of Speech. University Press, Oxford (2008)
4. Damasio, A.R.: Self Comes to Mind: Constructing the Conscious Brain. Pantheon Books,

New York (2010)
5. Lamb, S.M.: Pathways of the Brain: The Neurocognitive Basis of Language. John

Benjamins, Amsterdam (1999)
6. Lamb, S.M.: Neurolinguistics. Lecture notes for Linguistics, vol. 411. Rice University

(2010), http://www.owlnet.rice.edu/~ling411
7. Sowa, J.F.: Conceptual graphs. In: van Harmelen, F., et al. (eds.) Handbook of Knowledge

Representation, pp. 213–237. Elsevier, Amsterdam (2008),
http://www.jfsowa.com/cg/cg_hbook.pdf

8. Majumdar, A.K., Sowa, J.F., Stewart, J.: Pursuing the Goal of Language Understanding.
In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI), vol. 5113, pp. 21–42.
Springer, Heidelberg (2008)

9. Majumdar, A.K., Sowa, J.F.: Two Paradigms Are Better Than One, and Multiple
Paradigms Are Even Better. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009.
LNCS (LNAI), vol. 5662, pp. 32–47. Springer, Heidelberg (2009),
http://www.jfsowa.com/pubs/paradigm.pdf

10. Sowa, J.F.: Peirce’s own tutorial on existential graphs. Semiotica 186(1-4), 345–394
(2010); Special issue on diagrammatic reasoning and Peircean logic representations

11. Thom, R.: Esquisse d’une Sémiophysique. InterEditions, Paris (1988)
12. Tesnière, L.: Éléments de Syntaxe structurale, 2nd edn. Librairie C. Klincksieck, Paris

(1959)
13. Petitot, J.: Cognitive Morphodynamics: Dynamical Morphological Models of Constituency

in Perception and Syntax. Peter Lang, Bern (2011)
14. Wildgen, W.: Process, Image, and Meaning: A Realistic Model of the Meaning of

Sentences and Narrative Texts. John Benjamins Publishing Co., Amsterdam (1994)
15. Bringsjord, S., Ferrucci, D.: Artificial Intelligence and Literary Creativity. Lawrence

Erlbaum, Mawah (2000)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 29–30, 2013.
© Springer-Verlag Berlin Heidelberg 2013

PurposeNet: A Knowledge Base Organized
around Purpose*

Rajeev Sangal, Soma Paul, and P. Kiran Mayee

Language Technologies Research Centre
International Institute of Information Technology

Hyderabad, India
{sangal,soma}@iiit.ac.in,

kiranmayee@research.iiit.ac.in

1 Invited Talk Summary

We show how purpose can be used as a central guiding principle for organizing
knowledge about artifacts. It allows the actions in which the artifact participates to be
related naturally to other objects. Similarly, the structure or parts of the artifact can
also be related to the actions.

A conceptual base, architecture and implementation of a semantic knowledge base
called PurposeNet, with an evaluation performed in comparison with other knowledge
bases, shows that PurposeNet is a superior method in terms of coverage. Building an
exhaustive knowledge base is a laborious and intense task, it needs human expertise
and it needs good web data processing tools so that information from the web can be
easily extracted in order to build the knowledgebase semi-automatically. In order to
maintain the quality of the resource, it has been, till now, a case where the knowledge
base was manually created. Nevertheless, creating such a huge resource completely in
manual mode would be a time-consuming work. PurposeNet also makes it possible
for automatic extraction of simple facts (or information) from text for populating a
richly structured knowledge base.

Therefore artifact related information which is useful for our knowledge base is
available in various resources such as WordNet, Wikipedia and other web corpora.
Results are reported on conducting a few experiments on detecting and extracting
purpose of artifacts from web corpus. An experiment in domain-specific question-
answering from a given passage shows that PurposeNet used along with scripts (or
knowledge of stereotypical situations), can lead to substantially higher accuracy in
question answering. In the domain of car racing, individually they produce correct
answers to 50% and 37.5% questions respectively, but together they produce 89%
correct answers. These experimental results in domain-specific question-answering
have produced promising results.

* An extended paper associated with this invited talk will appear in the Workshop Proceedings

for the ‘‘Workshop on Modeling States, Events and Processes (MSEPS).’’

 R. Sangal, S. Paul, and P. K. Mayee

30

References

1. Alani, H., Brewster, C.: Ontology ranking based on the analysis of concept structures. In:
Proceedings of the 3rd International Conference on Knowledge Capture (K-CAP 2005),
pp. 51–58. ACM Press, New York (2005)

2. Alani, H., Brewster, C.: Metrics for ranking ontologies. In: WWW 2006, Edinburgh, UK,
May 22–26 (2006); Patton, H.D.: Physiology of Smell and Taste. Annual Review of Phy-
siology 12, 469–484 (2006)

3. Aleman-Meza, B., Halaschek, C., Sheth, A., Arpinar, I.B., Sannapareddy, G.: SWETO:
Large-Scale Semantic Web Test-bed. In: Proceedings of the 16th SEKE 2004: Workshop
on Ontology in Action, Banff, Canada, June 21-24, pp. 490–493 (2004)

4. Bharati, A., Chaitanya, V., Sangal, R.: Natural Language Processing: A Paninian Perspec-
tive. Prentice-Hall of India, New Delhi (1995),
http://ltrc.iiit.ac.in/downloads/nlpbook/nlp-panini.pdf

5. Bharati, A., Nawathe, S.A., Chaitanya, V., Sangal, R.: A New Inference Procedure for
Conceptual Graphs. In: Proc. of 4th University of New Brunswick Artificial Intelligence
Symposium (1991)

6. Cowell, E.B., Gough, A.E.: The Sarva-Darsana-Samgraha or Review of the Different Sys-
tems of Hindu Philosophy. Trubner’s Oriental Series. Taylor & Francis (2001)

7. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Communications
of the ACM 38(11), 33–38 (1995)

8. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling Ontology Evaluation
and Validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 140–
154. Springer, Heidelberg (2006)

9. Devi, G.: Padartha Vijnana made easy. Chaukhamba Sanskrit Pratishthan, Delhi (2007)
10. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: WordNet: An online lexical

database. International Journal of Lexicography 3(4) (1990)
11. Iśvarakṛṣṇa, Sāṁkhyakārikā with Sankara Misra’s commentary Sāṁkhyatattva kaumudi,

Edited and translated into Hindi by Nigam Sharma. Parimal Prakashan, Varanasi (2007)
12. Mayee, P.K., Sangal, R., Paul, S.: Action Semantics in PurposeNet. In: Proceedings of

2011 World Congress on Information and Communication Technologies, IEEE WICT
2011, pp. 1299–1304 (2011)

13. Kulkarni, A.P.: Navya-Nyaya and Logic. MTech Thesis, IIT Kanpur (1994)
14. Liu, H., Singh, P.: ConceptNet: A Practical Commonsense Reasoning Toolkit. BT Tech-

nology Journal 22 (2004)
15. Nagaraj, A., Darshan, M.V., Prakashan, J.V.: Amarkantak (2003)
16. Praśastapāda, Padārthadharmasamgraha with Sridhara’s commentary Nyāyakandali, Edited

and Translated into Hindi by Sharma, S.D.J. Sampurnananda Sanskrita University,
Vārānasī (1997)

17. Rao, R.S.: M. Ayurveda Padardha Vijnana (2003)
18. Sangal, R., Chaitanya, V.: An Intermediate Language for Machine Translation: An Ap-

proach based on Sanskrit Using Conceptual Graph Notation. Computer Science and In-
formatics Journal, Computer Society of India 17(1), 9–21 (1987)

19. Singh, N.: Comprehensive Schema of Entities: Vaiśeṣika Category System. Science Phi-
losophy Interface 5(2), 1–54 (2001)

20. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addi-
son-Wesley, Reading (1984)

21. Sowa, J.F.: The Challenge of Knowledge Soup. In: Ramadas, J., Chunawala, S. (eds.) Re-
search Trends in Science, Technology, and Mathematics Education, pp. 55–90. Homi
Bhabha Centre, Mumbai (2005)

Classical Syllogisms in Logic Teaching

Peter Øhrstrøm1, Ulrik Sandborg-Petersen1, Steinar Thorvaldsen2,
and Thomas Ploug1

1 Department of Communication and Psychology, Aalborg University,
9000 Aalborg, Denmark

{poe,ulrikp,ploug}@hum.aau.dk
2 Department of Education, University of Tromsø,

9037 Tromsø, Norway
steinar.thorvaldsen@uit.no

Abstract. This paper focuses on the challenges of introducing classi-
cal syllogisms in university courses in elementary logic and human rea-
soning. Using a program written in Prolog+CG, some empirical studies
have been carried out involving three groups of students in Denmark; one
group of philosophy students and two groups of students of informatics.
The skills of the students in syllogistic reasoning before and after the
logic courses have been studied and are discussed. The empirical obser-
vations made with the program make it possible to identify syllogisms
which are found difficult by the students, and to identify others which
the students find easier to handle. It is discussed why certain syllogisms
are more difficult than others to assess correctly with respect to valid-
ity. The results are compared with findings from earlier studies in the
literature. As in other studies, it is shown that the test persons have
a tendency correctly to assess valid syllogisms as such more often than
correctly assessing invalid syllogisms as such. It is also investigated to
what extent the students have improved their skills in practical reasoning
by attending the logic courses. Finally, some open questions regarding
syllogistic reasoning are discussed.

1 Introduction

For centuries the Aristotelian syllogisms have been a crucial part of university
courses introducing basic logic and human reasoning. In the medieval univer-
sities, syllogistics was regarded as an essential component of basic academic
learning. At many modern universities this is still the view.

There is, obviously, a close relation between the ontological primitives
(e.g., SubclassOf) and the categorical statements which are used in classical
syllogistics. In fact, a number of syllogistic arguments can be inferred from the
hierarchical structures used in formal ontology (see [4]). It appears to be evi-
dent that a proper understanding of conceptual structures in many cases will
depend on the ability to handle basic syllogistic arguments correctly. Based on
such observations syllogistic reasoning should still be considered to be an impor-
tant prerequisite for the understanding of conceptual structures and indeed for

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 31–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

32 P. Øhrstrøm et al.

science in general. For mathematics, syllogistics can be said to form part of the
foundation for mathematics as such. For engineering, a basic knowledge of syllo-
gistics could enhance the potential for systematic reasoning about the artefacts
being constructed. For this reason, it is our view that students working with
science, technology, engineering, and mathematics – as well as students in the
humanities – should be introduced to these basic forms of logic and reasoning.

From a modern point of view classical syllogistics may be seen as a fragment of
first order predicate calculus. A classical syllogism corresponds to an implication
of the following kind:

(p ∧ q) ⊃ r

where each of the propositions p, q, and r matches one of the following four
forms

a(X , Y) (read: “All X are Y ”)
i(X , Y) (read: “Some X are Y ”)
e(X , Y) (read: “No X are Y ”)
o(X , Y) (read: “Some X are not Y ”)

These four functors were suggested by the medieval logicians referring to the
vowels in the words “affirmo” (Latin for “I confirm”) and “nego” (Latin for “I
deny”), respectively. The classical syllogisms occur in four different figures:

(x(M,P) ∧ y(S,M)) ⊃ z(S, P) (1st figure)

(x(P,M) ∧ y(S,M)) ⊃ z(S, P) (2nd figure)

(x(M,P) ∧ y(M,S)) ⊃ z(S, P) (3rd figure)

(x(P,M) ∧ y(M,S)) ⊃ z(S, P) (4th figure)

where x, y, z ∈ {a, i, e, o} and where M , S, P are variables corresponding to
“the middle term”, “the subject” and “the predicate”. In this way 256 different
syllogisms can be constructed. According to classical (Aristotelian) syllogistics,
however, only 24 of them are valid. The medieval logicians named the valid
syllogisms according to the vowels, {a, i, e, o}, involved. In this way the following
artificial names were constructed (see [1]):

1st figure: barbara, celarent, darii, ferio, barbarix, feraxo
2nd figure: cesare, camestres, festino, baroco, camestrop, cesarox

3rd figure: darapti, disamis, datisi, felapton, bocardo, ferison

4th figure: bramantip, camenes, dimaris, fesapo, fresison, camenop

In these names the consonants signify the logical relations between the valid
syllogisms, and they also indicate which rules of inference should be used in

Classical Syllogisms in Logic Teaching 33

order to obtain the syllogism in question from syllogisms which were considered
to be fundamental: barbara, celarent, darii, and ferio. – In fact, the system of
syllogisms may in this way be seen as the first axiomatic system ever (see [1] and
[3]). According to Aristotle a universal statement concerning an empty term can-
not be true. For this reasoning an a-proposition must imply the corresponding
i-proposition. This view was rejected, when philosophers and mathematicians
began to pay more attention to the idea of an empty set. Without this Aris-
totelian view the number of valid syllogisms was reduced to 15 (leaving out the
9 syllogisms which have been underlined in the above list, i.e. the syllogisms
whose names contain either an x or a p).

The conceptual structures which form the foundation of the experiment con-
ducted in this paper, may be illustrated by reference to the classical hierarchy
of categorization depicted in Figure 1.1

c0

c1

c3 c4

c2

c5 c6

Fig. 1. A classical hierarchy of categorization

The relation between the concepts in this figure can all be described in terms of
the Aristotelian propositions which are used in syllogistics. For example:

– All c5 are c2
– Some c0 are c1
– No c1 is c2
– Some c0 are not c1

Even the properties of the IsA-relation can be said to correspond to the syllogistic
logic. One very simple example would be the transitivity of this relation, which
turns out to be equivalent with the syllogism called barbara, 1st figure. For
example:

All c3 are c1
All c1 are c0
Ergo: All c3 are c0

1 It should be noted that in this paper, when we capitalize “Figure”, we refer to an
illustration within the text. When, however, we do not capitalize “figure”, we refer
to the four figures of the Aristotelian syllogisms.

34 P. Øhrstrøm et al.

For this reason, it seems obvious that the proper conception of the hierarchical
structure of ontologies depends on a proper understanding of the logic embedded
in classical syllogistics.

2 Data and Method

The data analysed in this study have been obtained using the system Syllog
(described in detail in [17]), which has been implemented using an extended
version of Prolog+CG (see [5–7]). Syllog presents the user with an arbitrary
syllogistic argument and asks him or her to evalute the syllogism that appears on
the screen as to its Aristotelian validity. The arbitrary arguments are generated
by Syllog with S belonging to the set {”swedes”,”politicians”,”dentists”}, P
belonging to the set {”halffools”, ”halfminded”,”redheaded”}, and M belonging
to the set {”thieves”, ”crackpots”, ”fools”}. Syllog picks an arbitrary figure
number (1-4) and an arbitrary number (1-12). The latter number corresponds
to a particular syllogism within the chosen figure. The numbers, (1-6), point to
the valid syllogisms listed above, whereas the numbers (7-12) stand for invalid
syllogisms assumed to be somewhat “tempting”:

1st figure: aia, oae, iai, ieo, iii, oao
2nd figure: oae, aoe, oio, ioo, ieo, oao
3rd figure: aaa, iaa, aia, eae, oae, eie
4th figure: aaa, aie, iaa, eae, eie, aoe

Three groups of students in Denmark have been involved in the tests:

1. Two groups of second year University students in informatics (one in Copen-
hagen and one in Aalborg)

2. One group of first year University students in philosophy (in Aalborg).

All three groups were going to attend a basic course in logic – including Aris-
totelian syllogistics. The course was based on course material in Danish (cor-
responding to parts of [1] along with elements from [2]). The students were
taught in basically the same way, to the same extent, and to a large extent using
the same course material. The teacher of the Aalborg Informatics students also
taught the course for the Philosophy students.

The students were asked to run Syllog individually or in groups of 2-4 both
before and after their logic course (i.e. pre- and post-test). All these test results
have been logged by Syllog.

The statistical analyses of the data were performed using standard methods
from descriptive statistics and statistical testing. The chi-square test is applied
to detect group differences using frequency (count) data, and also to look for
significant differences between results from the pre-test and the post-test. We
compared the pre-test results of the informatics-students in Copenhagen and in
Aalborg, and found no significant differences between the two groups (p-value
= 0.25, data not shown).

Classical Syllogisms in Logic Teaching 35

Table 1. The three 2x2 tables below summarize counts of how often students replied
correctly and incorrectly when presented with valid and invalid syllogisms. The first
table is for the pre-test of the whole student group, while the second and third ta-
ble shows the same data separated in two subgroups. All three tables support strong
statistical evidence against the presumption that student will handle valid and invalid
syllogism equally well (p-values < 10−5 by the two-sided chi-square test).

Correct reply? Correct reply? Correct reply?
(all students, (philosophy students, (informatics students,

n=174) n=33) n=141)

Syllogism Yes No Yes No Yes No

Valid: 814 318 307 80 507 238

Invalid: 697 538 283 179 414 357

Table 2. Two 2x2 tables summarizing counts of how often students replied correctly
and incorrectly in the pre-test and in the post-test. The first table is for the philosophy
students, whereas the second table shows the results for the Copenhagen group of
informatics students.

Correct reply? Correct reply?
(philosophy students, (informatics students,

n=33/n=17) n=39/n=42)

Test Yes No Yes No

Pre: 590 259 382 229

Post: 175 46 486 306

3 Results

The first online tests were carried out with all the students as a pre-test before
their lessons in classical syllogistics. The students answered the exercises indi-
vidually or in groups of 2-4. If less than 3 exercises were answered by a given
individual or group, the record was excluded from the analysis to avoid data that
were influenced by technical problems or unserious students. The final data from
the pre-test consists of 2365 evaluated syllogisms, from n=174 groups (or indi-
viduals), with an average of 13.6 answered exercises. The results of the pre-tests
are shown in the (a) parts of Figures 2-5 and in Table 1.

The group of informatics students in Copenhagen and the philosophy students
in Aalborg also took part in a post-test under conditions similar to the pre-
test. For the informatics students the post-test was performed four months after
the pre-test, but before the exam, and for the philosophy students the interval
between the tests was five weeks. The (b) parts of Figures 2-5 show the results
obtained by the post tests, and Table 2 summarizes the results obtained by
the pre- and post-tests. For the group of informatics students in Aalborg, the
post-test were supposed to be done voluntarily at home, and only 6 students
completed it, hence their results are left out.

36 P. Øhrstrøm et al.

(a) (b)

Fig. 2. Pre-test score (a) and post-test score (b) of syllogisms in figure 1. The first 6
syllogisms are valid according to Aristotelian syllogistics, whereas the 6 other syllogisms
are invalid. It should be noted that the scores of syllogism no. 9 are very low (see the
discussion in Section 4).

(a) (b)

Fig. 3. Pre-test score (a) and post-test score (b) of syllogisms in figure 2. The first 6
syllogisms are valid according to Aristotelian syllogistics, whereas the 6 other syllogisms
are invalid.

(a) (b)

Fig. 4. Pre-test score (a) and post-test score (b) of syllogisms in figure 3. The first 6
syllogisms are valid according to Aristotelian syllogistics, whereas the 6 other syllogisms
are invalid. Note that syllogism no. 3 has got very high scores (see the comments in
Section 4).

Classical Syllogisms in Logic Teaching 37

(a) (b)

Fig. 5. Pre-test score (a) and post-test score (b) of syllogisms in figure 4. The first 6
syllogisms are valid according to Aristotelian syllogistics, whereas the 6 other syllogisms
are invalid. Because of a minor programming error the results regarding syllogism 12
cannot be expected to be correct.

The student dropout is more than 50% in the post-test of the left part of
Table 2, and hence the results are only indicative with p-value = 0.004 by the
two-sided chi-square test.

The right part of Table 2 provides no significant evidence against the hypoth-
esis that informatics students did not obtain better skills in syllogistic reasoning
during the logic course (p-value = 0.66).

4 Discussion of the Results

The abilities of performing syllogistic reasoning have been studied earlier using
other methods (see [9–16]). Our data can to some extent confirm the findings
in these earlier studies. In addition, the present study also allows some new
conclusions. The results in Table 1 show that students more often wrongly agree
with invalid syllogisms than they wrongly disagree with a valid syllogism. The
reason may be that the students find it more natural to agree with a difficult
argument, than to disagree. In other words, it may be more natural for the human
nature to be positive than to be negative. In this way there seems to be “a belief
bias” in syllogistic reasoning (see [16]). The results listed in Table 2 may seem
somewhat surprising. It seems that the philosophy students have in fact improved
their skills in syllogistic reasoning during the course whereas there is no evidence
that informatics students have made similar progress during their course. It is
not clear how this difference should be explained. However, several comments
and possible explanations may be considered. First of all, the philosophy students
in general may see it as fascinating to reflect on the Aristotelian ideas and the
notion of human reasoning as such, whereas the informatics students may not
find the study and elaboration of Aristotelian syllogisms particularly interesting.
In addition, it may be important that the philosophy students had their post-
test immediately after the logic course, whereas the informatics students had to
wait longer for their post-test. Furthermore, it should also be noted that right

38 P. Øhrstrøm et al.

from the beginning the philosophy students are clearly better when it comes
to syllogistics than the informatics students. However, it is obvious that even
the informatics students have skills in syllogistic reasoning without having been
taught any logic as such.

According to the data in this study, the syllogism with lowest score (in the
pre-tests as well as in the post-tests) is syllogism number 9 in figure 1 (see Figure
2, both its (a) and its (b) parts). This is an invalid syllogism of the following
form:

(i(M,P) ∧ a(S,M)) ⊃ i(S, P)

In Syllog the values of M , S and P are selected arbitrarily from certain fixed
sets as mentioned above. The users may, for instance, be presented with the
syllogism in the following way:

Some crackpots are redheaded
All Swedes are crackpots
Ergo: Some Swedes are redheaded

A majority of users have mistakenly evaluated this syllogism as valid. This error
may have occurred because the students have not fully understood the differ-
ence between “All Swedes are crackpots” and “All crackpots are Swedes”. The
syllogism

Some crackpots are redheaded
All crackpots are Swedes
Ergo: Some Swedes are redheaded

is clearly valid. It is a disamis (in the 3rd figure). The difference between the
two syllogisms can be made clear in terms of Euler circles. The point is that the
information in the premises of the iai-syllogism in the 1st figure may correspond
to the diagram in Figure 6(a). Here it is obvious that i(S, P) cannot be concluded.

(a) (b)

Fig. 6. Euler circles consistent with: (a) the information in the premises of the iai-
syllogism in the 1st figure, and (b) the information in the premises of disamis in the
3rd figure

Classical Syllogisms in Logic Teaching 39

In disamis (in the 3rd figure), however, the information contained in the premises
will have to be represented otherwise, as in Figure 6(b). Here, i(S, P) obviously
follows from the premises. If it is known thatM and P have elements in common,
and M is a subset of S, then it is evident that S and P must also have elements
in common. It seems obvious that if the student immediately had been able to
visualize the graphical relation between M and S when being given the premise
(i.e. a(S,M))), then they would not have taken the iai-syllogism in the 1st figure
to be valid. This leads to a strong emphasis on the importance of the use of
graphical representation in logic courses.

There are also interesting questions to ask concerning the data of the 24
syllogisms which are valid from an Aristotelian point of view. First of all one
may focus on the syllogism which has got the highest score taking both pre-tests
and post-tests into account, i.e. datisi in the 3rd figure:

(a(M,P) ∧ i(M,S)) ⊃ i(S, P)

Intuitively, it seems obvious that this structure is a valid syllogism: If all M ’s
are P ’s, and if some M ’s are S’s, the clearly some S’s must be P ’s. However,
disamis in the 3rd figure seems just as obvious:

(i(M,P) ∧ a(M,S)) ⊃ i(S, P)

In fact, datisi and disamis in the 3rd figure have got also the same score.
Another interesting question regarding the valid syllogisms has to do with the

possible difference between the two subgroups of 15 and 9 syllogisms mentioned
above. Given that the empty set is an integrated idea in modern thinking, it
seems to be straight forward to expect that the 15 syllogisms would have a
higher score the 9 Aristotelian syllogisms which have been questioned in modern
logic. For this reason we have compared the scores for the 15 syllogisms which all
modern logicians accept (i.e. figure 1 no. 1,2,3,4 & figure 2 no. 1,2,3,4 & figure
3 no. 2,3,5,6 & figure 4 no. 2,3,5) with the 9 syllogisms whose validity some
modern logicians would question (i.e. figure 1 no. 5,6 & figure 2 no. 5,6 & figure
3 no. 1,4 & figure 4 no. 1,4,6). We compared the group of these 9 versus the 15
other valued syllogisms and the results appeared as shown in Table 3.

Table 3. Two 2x2 tables summarizing counts of how often students replied correctly
to the subgroup of 15 and 9 valid syllogisms. The first table is for the pre-test, whereas
the second table shows the results for the post-test.

Correct reply? Correct reply?
(Pre-test n=174) (Post-test n=65)

Syllogism Yes No Yes No

Valid in modern syllogistics 552 126 260 71

Questions in modern syllogistics 262 192 125 70

40 P. Øhrstrøm et al.

Table 4. Two 2x2 tables summarizing counts of how often students replied correctly
to the asymmetric and symmetric syllogisms. The first table is for the valid syllogisms,
whereas the second table shows the results for the invalid.

Correct reply? Correct reply?
(Valid n=174) (Invalid n=174)

Syllogism Yes No Yes No

Asymmetric (figures 1 and 4) 401 160 338 288

Symmetric (figures 2 and 3) 413 158 359 248

Table 3 shows data obtained in the pre-test of the whole student group, and also
shows the data from the post-test. Both parts of the table support strong statisti-
cal evidence against the presumption that student will handle the two subgroups
of valid syllogism equally well (p-value < 10−5 and p-value = 2 × 10−4, respec-
tively, by the two-sided chi-square test). However, we may also observe that the
replies given to the subgroup of questioned syllogisms are still significantly dif-
ferent from random where we would expect equally many correct and not-correct
answers (p-values 0.02 and 0.007 in the pre-test and post-test, respectively).

The results by Johnson-Laird and Bara [15] suggest that test persons will
obtain a higher score for asymmetric syllogisms (figure 1 and 4) than for the
symmetric syllogisms (figure 2 and 3). Our results based on the pre-test replies
and listed in Table 4 do not confirm this suggestion. None of these tables support
significant evidence against the presumption that students will handle the two
types of syllogisms equally well (p-value = 0.75 and p-value = 0.068, respectively,
by the two-sided chi-square test). – It should, however, be mentioned that our
setup differs from the setup used in Johnson-Laird’s and Bara’s experiment in
several respects, in particular regarding the temporal setup. So although their
test seems to be analogous to ours, there may also be significant differences in the
setup and methods used in the two experiments that can explain the deviation in
the results. It is, however, an open question exactly how the discrepancy between
their results and ours should be explained.

5 Future Research Agenda

As we have seen some syllogisms (e.g. number 9 in figure 1) have got very
low scores in the present study. It is, however, an open question exactly which
syllogisms are conceived as the most difficult to handle. Various hypotheses may
be considered as potential answers. In order to investigate these hypotheses,
more empirical studies will be needed. Looking at the data at hand there are
indications of trends worthy of further investigation:

1. Syllogisms consisting of only existential functors, i.e. i- and o-functors (figure
1, syll. 11, figure 2, syll. 9 & 10) are among the syllogisms with the lowest
rates of correct answers. Less than 40% of the students answer them correctly
in the pre-test.The average rate of students answering these correctly in

Classical Syllogisms in Logic Teaching 41

the post-test is 0.49 compared to an average of 0.65 for all syllogisms. Of
the syllogisms consisting of only universal functors, i.e. a- and e-functors
(figure 1, syll. 1, 2, figure 2, syll. 1, 2, figure 3, syll. 7, 10, figure 4, syll.
2, 7, 10), the students do really well in the first four cases with 80% or
more answering them correctly. These figures could indicate that syllogistic
reasoning involving universal functors, i.e. a- and e-functors, are less hard
than syllogistic reasoning involving existential functors, i.e. i- and o-functors.
The current dataset does not allow any definite conclusions on this issue. In
future research it would thus be of interest to test more systematically:

– For each of the figures how well syllogisms consisting of only a- and
e-functors or only i- and o-functors are handled by the students.

2. Syllogisms consisting of only affirmative functors, i.e. a- and i-functors (figure
1, syll. 1, 3, 5, 7, 9, 11, figure 3, syll. 1, 2, 7, 8, 9, figure 4, syll. 1, 3, 7, 9) are
generally handled well by the students. Only in three cases (figure 1, syll. 9,
11, figure 4, syll. 7) the rate of correct answers drops significantly below 50%.
Unfortunately no syllogisms consisting of only negative functors, i.e. e- and
o-functors, are included in the current study. In order to more systematically
clarify the role of affirmative and negative functors in the reasoning of the
students it would be of interest to investigate:

– For each of the figures how well are syllogisms consisting of only a- and
i-functors or only e- and o-functors handled by students?

Note that research questions (1) and (2) may be combined such that the test-
ing is directed at clarifying the role of quantification and affirmation/negation
at the same time. This then requires testing of syllogisms consisting of only
a-, e-, i- or o-functors.

3. One of the alleged benefits of formalization is a greater transparency of the
logical structure of an argument. In the current study the syllogisms pre-
sented for the students are made up of natural kind terms such as ”swedes”,
”politicians”, ”dentists”, ”halffools” etc., and the functors are expressed in
natural language, e.g. the a-functor as “All . . . are . . . ”. The current study
does not provide any data that may serve to determine the role of formaliza-
tion for the ability to reason logically. Syllog may, however, easily be modified
to accommodate such research interests. All that is required is for the post-
test to be conducted with an on-screen presentation of the syllogisms in their
basic form, i.e. with premises and conclusion in the form of e.g. a(S, P) etc.
It seems as if the clarification of the role of formalization for the ability to
analyse and determine the validity of arguments may have some important
implications for the teaching of logic.

4. It would be interesting to measure the effect of not only formalizing the
syllogisms being quizzed, but drawing diagrams in terms of Euler circles,
Venn Diagrams, or Existential Graphs to support the student in deciding the
validity of a certain syllogism. Measurements could be taken with or without
the support of the diagrams, and comparisons could be made between groups
answering with and without such support. This might lend support to the
argument for the use of diagrammatic reasoning in teaching logic.

42 P. Øhrstrøm et al.

5. It should be noted that in the present study the students have been free to
use as much time as they wanted on each evaluation. Since the evaluations
of the syllogisms may depend on the temporal conditions given during the
test, it would be interesting to investigate whether the results would be
significantly different, if the students were asked to make a fixed number of
evaluations within a given time limit. It may even be interesting to study
how the results would be under mild stress.

6. Finally, it could also be interesting to carry out an experiment using our
technique which as closely as possible resembles the experiment described
in [15] about symmetric and asymmetric syllogisms, in order to investigate
whether we can confirm the findings in [15] regarding symmetric and asym-
metric syllogisms.

References

1. Parry, W.T., Hacker, E.A.: Aristotelian Logic. State University of New York Press
(1991)

2. Sandborg-Petersen, U., Schärfe, H., Øhrstrøm, P.: Online Course in Knowledge
Representation using Conceptual Graphs. Aalborg University (2005),
http://cg.huminf.aau.dk

3. Aristotle: Prior Analytics. Translated by A.J. Jenkinson. The Internet Classics
Archive (1994-2000), http://classics.mit.edu/Aristotle/prior.html

4. Panayiotou, C., Bennett, B.: Cognitive context and syllogisms from ontologies for
handling discrepancies in learning resources. In: Bouquet, P., et al. (eds.) Work-
shop on Contexts and Ontologies, The 18th European Conference on Artificial
Intelligence, Patras, Greece, pp. 21–25 (2008)

5. Kabbaj, A., Janta-Polczynski, M.: From PROLOG++ to PROLOG+CG: A CG
Object-Oriented Logic Programming Language. In: Ganter, B., Mineau, G.W.
(eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 540–554. Springer, Heidelberg
(2000)

6. Kabbaj, A., Moulin, B., Gancet, J., Nadeau, D., Rouleau, O.: Uses, Improvements,
and Extensions of Prolog+CG: Case Studies. In: Delugach, H., Stumme, G. (eds.)
ICCS 2001. LNCS (LNAI), vol. 2120, pp. 346–359. Springer, Heidelberg (2001)

7. Petersen, U.: Prolog+CG: A Maintainer’s Perspective. In: de Moor, A., Polovina,
S., Delugach, H. (eds.) Proceedings of First Conceptual Structures Interoperability
Workshop (CS-TIW 2006). Aalborg University Press (2006)

8. Leighton, J.P.: Teaching and assessing deductive reasoning skills. Journal of Ex-
perimental Education, Volume 74(2), 109–136 (2006)

9. Turner, P., Jamie, A., Thompson, V.A.: The role of training, alternative models,
and logical necessity in determining confidence in syllogistic reasoning. Thinking
& Reasoning 15(1), 69–100 (2009)

10. Monaghan, P., Stenning, K.: Effects of representational modality and thinking
style on learning to solve reasoning problems. In: Gernsbacher, M.A., Derry, S.J.
(eds.) Proceedings of the Annual Conference of the Cognitive Science Society, pp.
716–721 (1998)

11. Grossen, B.: The Fundamental Skills of Higher-Order Thinking. Journal of Learn-
ing Disabilities 24(6), 343–353 (1991)

http://cg.huminf.aau.dk
http://classics.mit.edu/Aristotle/prior.html

Classical Syllogisms in Logic Teaching 43

12. Hoffman, B., McCrudden, M.T., Schraw, G., Hartley, K.: The Effects of Infor-
mational Complexity and Working Memory on Problem-Solving Efficiency. Asia
Pacific Education Review 9(4), 464–474 (2008)

13. Bucciarelli, M., Johnson-Laird, P.N.: Strategies in syllogistic reasoning. Cognitive
Science 23(3), 247–303 (1999)

14. Gilhooly, K.J., Logie, R.H., Wynn, V.: Syllogistic reasoning tasks, working memory,
and skill. European Journal of Cognitive Psychology 11(4), 473–498 (1999)

15. Johnson-Laird, P.N., Bara, B.G.: Syllogistic inference. Cognition 16, 1–61 (1984)
16. Quayle, J.D., Ball, L.J.: Working memory, metacognitive uncertainty, and belief

bias in syllogistic reasoning. Quarterly Journal of Experimental Psychology Section
A – Human Experimental Psychology 53(4), 1202–1223 (2000)

17. Øhrstrøm, P., Sandborg-Petersen, U., Ploug, T.: Syllog – A Tool for Logic Teach-
ing. In: Proceedings of Artificial Intelligence Workshops 2010 (AIW 2010), Mimos
Berhad, pp. 42–55 (2010)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 44–57, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Model to Compare and Manipulate Situations
Represented as Semantically Labeled Graphs

Michał K. Szczerbak1,2, Ahmed Bouabdallah2,
François Toutain1, and Jean-Marie Bonnin2

1 Orange Labs, France Telecom R&D, Lannion, France
2 Telecom Bretagne, Institut Mînes-Telecom, Cesson-Sévigné, France
{michal.szczerbak,francois.toutain}@orange.com,
{ahmed.bouabdallah,jm.bonnin}@telecom-bretagne.eu

Abstract. In our previous work we have introduced a novel social media that
performs collaborative filtering on situations. This enhances user situation
awareness with a collaborative effort to learn about importance of situations. In
this paper we focus on defining a conceptual graph-based model used to
represent situations in our system, so that it would (1) be consistent with exist-
ing formal definitions of situation, and (2) enable logical manipulations on situ-
ations, namely their detection and semantic generalization, which we employ in
the system. In particular, we show how the latter can be accomplished thanks to
situation lattices, which we adapt for the model.

Keywords: Situation awareness, situation theory, conceptual graphs, semantics,
specialization / generalization, graph hierarchies, situation lattices.

1 Introduction

In the domain of interpersonal communication, we identify a potential in being able to
communicate easily one’s situation with one another. Users are already given web
tools to exchange their availability statuses, location coordinates, moods, applications
used, etc. And they use them willingly to share different pieces of information with
whole groups of friends. However, we argue that enabling communicating one’s
complete and meaningful situations could result in more informed decisions on user
interactions.

In [24] we introduce a context phonebook application to enable (1) sharing several
context dimensions between contacts and (2) defining situations concerning those
contacts that users wish to be notified of. We anticipate a stronger communication
exchange need among close friends and family members. Therefore, we wish to assist
in user situation awareness regarding their close ones. The KRAMER system employs
collaborative filtering to suggest its users with notifications found to be important by
others.

We model situations in our system with conceptual graphs [23]. Not only does this
model make situation representations graphically pleasant and human-readable, but
above all it enables reasoning on similarity of situations. Furthermore, we have tested

 A Model to Compare and Manipulate Situations 45

logical manipulations on such semantically labeled graphs as KRAMER performs
semantic generalization on situations it finds similar.

In this paper we elaborate a model of situations to use in our system. We justify it
with a consistency with a theory of situation awareness [11] and the situation theory
[3, 16]. We refer to several other works dealing with defining and modeling a
situation.

Later, we place our model in a situation lattice, a hierarchical structure introduced
in [28] for it maintains naturally the dependence relations between situations. We
point out that Sowa’s graph reasoning [23] can be seen as traversing such a lattice,
which simplifies the process of situation generalization and specialization.

Finally, we focus on two main semantic operations implemented in the KRAMER
system, namely situation detection and generalization of situation sets. We have
already given the details, in particular of the latter in [25], but from the algorithm
implementation point of view. In this paper we explain how do they employ the spe-
cialization / generalization reasoning inherited from conceptual graph reasoning.

The remainder of the paper is structured as follows. In Section 2, we gather the
theoretical approaches towards defining what a situation is in a technical sense. In
Section 3, we discuss different ways to model a situation present in the literature. We
show that conceptual graphs are expressive in that manner and mix several good fea-
tures of other models. Basing on this, we focus on the situation model used in the
KRAMER system in Section 4. In Section 5, we explore the problem of comparing
situations, as it is the basic problem in situation awareness. Afterwards, in Section 6,
we discuss other logical operations that can be performed on situations in order to
reason on them. We show how specialization and generalization operators can order
situations in conceptual graph hierarchies. In Section 7, we explain how do we apply
such hierarchies in our system to (1) detect situations and (2) perform semantic gene-
ralization on situations. We conclude and give future work directions in Section 8.

2 Theory of Situation (-Awareness)

A family of context-aware systems is very vast and rich. It gathers all systems that
adapt their behaviors in function of changing context in general. However, context in
its raw, low-level form is known to be often meaningless, trivial, uncertain and vul-
nerable to small changes [28]. Intelligent context-aware systems are more and more
often interested in identifying situations as processed, more abstract context data,
which provide a direct input to determine systems’ adaptations and reactions.

As a result, situation-awareness is a property with a crucial impact on decision
making and performance of both human and artificial system [11]. In fact, Endsley
presents a model of human situation-awareness as ability to percept surrounding ele-
ments, comprehend their meaning and project their status into the near future. The
author argues for that ability to require a much more advanced level of understanding
than just being aware of numerous pieces of data.

The very same approach should be applied to artificially intelligent systems.
In [28] situations are defined as semantic interpretations of context. They are more

46 M.K. Szczerbak et al.

abstract than low-level context and in turn they are also more stable, more certain,
and, most of all, more meaningful to context-aware systems.

The effort to better grasp the concept of a situation has been made in the situation
theory [3]. Situation theory is an interdisciplinary theory of meaning, which combines
perspectives of philosophical discussion, mathematical rigor, and implementation
practicality [16]. Indeed, Devlin states that it is not possible to define a situation in
terms of familiar mathematical concepts, whereas they can be modeled as such [8].
The real situations are, therefore, distinct elementary abstract objects.

Having argued that, Devlin draws a line between those real situations and abstract
situations individuated by agents. The latter are imprecise representations, models that
one can create to reason about the real situations that he picked out [8]. In fact, this
individualization represents only a part of the reality, as limited was situation aware-
ness in [11]. And this common understanding of a situation to be a relevant subset of
the state of the universe [9] is used in situation-aware researches either explicitly, e.g.
[17], or implicitly, e.g. [2].

3 Situation Models

Situations learned by systems are limited to a part of what is really going on in real
situations [8]. Therefore, they can be structured and modeled. In return, systems
would be able to process them, comprehend them, and reason upon them. This would
finally make such systems truly aware of situations with respect to Endlay’s model in
[11]. In this section we survey different situation models.

There are many ways scientists model situations for their needs. The simplest re-
presentation, as a straight forward attempt to capture real situations in a sense of situa-
tion theory, is by elementary situation concepts. Each recognizable situation has its
corresponding semantic concept, like “meeting”, “running”, etc. Frequently they are
related with one another with “is-a” unidirectional relations, forming a taxonomy. For
example, “business meeting” is a particular type of a “meeting” in [2]. The same au-
thors give an impression in their following paper [1] that their situation taxonomy can
be treated as a taxonomy of activities (“checking e-mails”, “meeting”, etc.) quite dis-
tinct from concepts of an agent or its context.

Nevertheless, taxonomies require for all specialized concepts to be disjoint from
one another and cover all cases of the super-concept, which can be too limiting in
terms of measuring similarity between concepts [13]. Moreover, defining a compre-
hensive taxonomy for a complex domain of situations is merely impossible.

Therefore, authors of [2] seek expressivity in a model based on OWL-DL1 ontolo-
gy language. Ontologies support more relations between concepts. This enables mod-
eling situations as interrelated concepts of diverse context taxonomies, namely spatial,
temporal, artifact, and personal. In fact, a situation is said to involve a composition of
such different concepts connected by “AND” logical operator. Existential and quanti-
ficational restrictions are also introduced in this model.

1 http://www.w3.org/TR/owl-ref/

 A Model to Compare and Manipulate Situations 47

Having a set of context values is consistent with the definition of an abstract situa-
tion in situation theory. There, situation is a collection of infons that it supports [4].
Infons are the elementary informational items of a form ا ܴ, ܽଵ, … , ܽ, ሼ1,0ሽ ,ب
where ܴ is n-ary relation of objects ሼܽሽ. These pieces of information about different
context dimensions are called characteristic features in [17]. The situation is, there-
fore, modeled as a set of such features in a given time interval.

Padovitz’s Context Spaces [21] can be seen as a graphical representation of such
composed situations. Each context type has its own dimension in the space and differ-
ent values on scales are characteristic to different situations. As a result, situations are
subspaces within the whole space. As such, they can be compared in terms of a geo-
metric distance. Furthermore, one might see an equivalent of taxonomy relations as
subsumption in space. The latter is harder for a vector representation of context in [7].

[27] presents another attempt to ontologically model situations. It is explicitly
shown that a concept of a situation is on a different layer of the ontology than the
concept of context. Any composite situation is a logical (conjunction, disjunction,
negation) or temporal composition of atomic situations. The latter are further ex-
tended by three concepts: context type, boolean operator, and context value. This
means that a situation can be seen as a combination of such triplets. Whereas those
triplets are nothing else than infons restricted to binary relations.

Costa et al. notice further that context is only meaningfull with respect to an entity,
whose concept is fundamentally different from the concept of context [5]. Therefore,
context can be treated as a moment inhered in a substantial – an entity. As a result, a
situation is a composition of such pairs of entities and their context. The authors in-
troduce a graphical notation for situations involving different types of contexts and
formal relations. This model is explained to be more applicable to context-awareness.

In consequence, we have investigated conceptual graphs. Such graph notations
were developed at first to represent first-order logic and to create a mapping between
queries in natural language and relational databases. In general, they are graphical
representations of logical expressions, conjunctive first order logic formulas [20], and
semantically-rich knowledge. If restricted to binary relations conceptual graphs be-
come directed. Similarly to graphs in [5], they can be labeled with both entity and
context value concepts.

Nodes and associated edges would form context type-value pairs, similar to [27],
while multiple edges directed to one node would stand for “AND” operator, as in [2],
matching multiple context moments with one entity [5]. Conceptual graphs can also
represent if-then relations and negations, and might be extended with temporal rela-
tions. In the remainder of this paper we shall consider only conceptual graphs without
cycles, namely conceptual trees. Their origin and definition are explained in the fol-
lowing section.

4 Situation Model in KRAMER

We start defining our model with a meta model inspired by a CONON upper ontol-
ogy [26]. We distinguish, however, substantials (entities) from moments (context

48 M.K. Szczerbak et al.

description) as proposed in [5]. As a result, we define concepts of a context entity and
its context state. Computation entity and person are subclasses of an entity. Location
and activity are domain specific moments.

Fig. 1. Meta model of situation

We also introduce relations between moments and substantials, and between enti-
ties and a person to model the fact that one’s situation is in fact one’s context along
with context of his or her close ones and his or her devices, services, etc. As a result,
by instantiating concepts representing a situation and by inferring the respective meta-
concepts relations, we receive a conceptual graph, a conceptual tree to be accurate.
This conceptual graph has a “me” concept in its root. We say, that this complex situa-
tion exists with respect to one particular entity, a person who perceives the situation.

Fig. 2. Instanciating a conceptual graph from the meta model

Following the notation in [20] and [6] we define a situation conceptual graph (tree)
SCG used in the KRAMER system along with its support. It should be noted that
concept types are of four kinds (four concepts in the meta model) and relations are
connecting either two entities or an entity with its context (red arrows in Fig. 1).

 A Model to Compare and Manipulate Situations 49

Definition 1. A support is a 5-tuple ܵ ൌ ሺ ுܶ, ሼ ாܶሽ, ሼ ܶሽ, ሼ ௌܶሽ, ோܶሻ, where:

─ ுܶ is a finite, ordered set of human relations types ሺ ுܶ, ሻ;
─ ሼ ாܶሽ is a set of finite, ordered sets of entity types ሺ ாܶ , ሻ, e.g. services, devices,

application, etc.;
─ ሼ ܶሽ is a set of finite, ordered sets of location types ሺ ܶ, ሻ specific the entity type;
─ ሼ ௌܶሽ is a set of finite, ordered sets of status types ሺ ௌܶ, ሻ specific the entity type;
─ ோܶ is a finite set of binary relation types divided into two categories: those connect-

ing entities to other entities ோܶ ൌ ሼ݊݅ݐ݈ܽ݁ݎ, ,݁ܿ݅ݒ݁݀ ,݁ܿ݅ݒݎ݁ݏ ,ݐ݊݁݃ܽ … ሽ, and
those connecting entities to statuses ோܶ௦ ൌ ሼݏݑݐܽݐݏ, .ሽ݊݅ݐ݈ܽܿ

Definition 2. A situation conceptual graph is a 3-tuple ܵܩܥ ൌ ሾܵ, ,ܩ :ሿ, whereߣ

─ ܵ ൌ ሺ ுܶ, ሼ ாܶሽ, ሼ ܶሽ, ሼ ௌܶሽ, ோܶሻ is a support;
ܩ ─ ൌ ሺ ܸ, ோܸ , ,ீܧ ݈ሻ is an ordered, directed graph having edges ீܧ ൌ ሺܿଵ, ,ݎ ܿଶሻ:

 ∀݁ א ଵܿ ீܧ א ுܶ ሼ ாܶሽ, ݎ א ோܶ ֞ ܿଶ א ுܶ ሼ ாܶሽ, ݎ א ோܶ௦ ֞ ܿଶ א ሼ ܶሽ ሼ ௌܶሽ
and meeting a condition: ∀ܿ א ுܶ ሼ ாܶሽ ∃݁ א ଵܿ :ீܧ ൌ ܿ ∧ ܿଶ א ሼ ܶሽ ሼ ௌܶሽ;

ܿ∀ :is a labeling of the nodes of G with elements from support S ߣ ─ א ܸ ߣሺܿሻ א ுܶ ሼ ாܶሽ ሼ ܶሽ ሼ ௌܶሽ; ∀ݎ א ோܸ ߣሺݎሻ א ோܶ .

Every concept in nodes of such conceptual graphs is a semantic concept taken from a
respective taxonomy. Taxonomies model different context dimensions: human rela-
tions, types of devices, locations, etc. For example, Figure 3 presents a situation, for
which being located in Poland is more relevant than being in any city in particular. As
a result, these semantically labeled graphs become more expressive than situation
taxonomies as presented in [1]. This will also enable logical manipulation presented
further in this paper.

Fig. 3. Graphs are built of concepts from respective taxonomies

Moreover, our conceptual graph-based model is consistent with a definition of an
abstract situation in situation theory [8]. Indeed, graphs represent only a part of the
reality, of the real situation. In fact, every other entity taking marginal part in the

50 M.K. Szczerbak et al.

situation can be represented as “any” concept, extended further by “any” concept for
its context. “Any” is a root concept for every context taxonomy used in our model and
is omitted in a situation representation.

Fig. 4. Conceptual graphs model a part of a real situation

The motivation for us to select conceptual graphs as a model representing situa-
tions was its expressiveness, but also an easy comparison of conceptual graphs, which
enables logical operations on situations, i.e. their generalization. We focus on those
mechanisms in the following sections.

5 Comparing Situations

In order to reason about situations, understand them, agents need to be able to com-
pare them with each other. They need to measure a degree of similarity between a
current situation and their knowledge about situations, e.g. patterns. Therefore, a situ-
ation model should enable and facilitate this operation. In this section we show how
situations can be compared in different models, i.e. conceptual graphs.

The first model discussed in Section 3 was the plain uni-concept representation of
situations. In this case, similarity between two situations is measured as a similarity
between two semantic concepts. Often, it is a distance measure between those con-
cepts in an ontology. Gandon summarizes popular metrics in [13] and points out sev-
eral open research questions. Basically, he states that strict mathematical distance on a
static ontology is not necessarily the human way to reason about semantic closeness.
Richer representations should be used to deal with a resolution error.

In that sense, having situations as a composition of several context dimensions
could help. Scalar difference is a measure of distance between two points in Context
Spaces theory [21]. Situation subspaces can also be compared, either by the distance
measure or by the intersection operator, which finds if two subspaces have a common
part. A context space makes detecting a situation extremely intuitive.

 A Model to Compare and Manipulate Situations 51

The introduction of context-operator-value triples [27] or substantial-moment pairs
[5] combines the two preceding approaches. Comparing two situations requires mea-
suring similarities of semantic concepts for each context dimension separately and
calculating their weighted mean. The same principle applies to conceptual graphs that
represent such multidimensional semantic spaces.

Even though optimal algorithms for matching graphs in general are reported to be
exponential with respect to the number of nodes in either graph [14], we should re-
member that abstract situations do not represent the whole knowledge [8]. Instead, the
number of nodes is limited to what is necessary for an agent to detect a situation. For
instance in [17], “travelling” situation is defined only by using any transportation
mean and by a fact of moving significantly.

Furthermore, Mugnier reports in [20] that many inter- conceptual graph operations
become polynomial, should the involved graphs be restricted to trees. As shown in
Section 4, situations are indeed considered to be represented by conceptual trees. In
[29] one of the implementations of conceptual trees matching is reported to be poly-
nomial. Furthermore, [6] gives an ontology similarity measure based on a projection
between conceptual graphs, and [18, 19] present comparison of two conceptual graphs
as a calculation of their overlapping parts with and without semantic subsumption.

6 Logical Manipulations on Situations

Most of the conceptual graph-based comparison algorithms mentioned in the previous
section exploit the fact that concepts in nodes are structured in taxonomies per context
dimension. As a result, “chasing an animal” is supposed to be matched with “chasing
a mouse” [19], rather than “travelling by train”, as concept of a “mouse” is a speciali-
zation of an “animal”. On the other hand, in [22] the authors seek for the most inter-
esting common generalization of two graphs in order to evaluate “thematic” similarity
between two conceptual graphs.

In fact, according to [20], generalization and specialization are said to be the key
computational notions in every reasoning concerning conceptual graphs. Sowa dis-
cusses 6 canonical formation rules as semantic graph-based operators for equivalence
(copy, simplify), specialization (join, restrict) and generalization (detach, unrestrict)
of conceptual graphs [23]. These operators can be interpreted by either logical
subsumption or graph morphism. Just a negation operator needed to be added to han-
dle full first-order logic.

Different researches make use of specialization rules, for instance [15] employs
maximal join operator to perform high-level fusion on heterogeneous information
represented by conceptual graphs. In our work [24], we are more interested in genera-
lizing situations, and therefore generalizing associated with them conceptual graphs.
We present the procedure and its motivation in Section 7.

Mugnier explains in [20] that for one graph to be a specialization of another, there
needs to be a projection from the second graph to the first. Projection is a sequence of
graph morphisms in a classical graph theory sense but implying equality of relation
types and taxonomic specialization of concept types. As a result, a specialized graph

52 M.K. Szczerbak et al.

is a super-graph of the original one (external join operation) with possibly semantical-
ly narrowed labels (restrict operation).

This makes the specialization relation a preorder because it is not anti-symmetric
as redundant graphs are still possible. Should the injectivity constraint be introduced
and internal join operator forbidden, the relation becomes a full order. Therefore,
conceptual graphs can form a hierarchy, like in [10]. As a result, reasoning about
relation between two graphs can be transformed into a problem of traversing such
hierarchy. One graph is a generalization of another, if it is an ancestor of that other
graph.

Considering that conceptual graphs represent situations, reasoning about similarity
of two situations is reduced in a way to semantic distance measures as presented in
[13]. Moreover, finding more abstract / detailed situations implies traversing the hie-
rarchy upwards or downwards. Ye et al. introduce this idea in a concept of situation
lattices [28]. Although they model situations as simple unitary concepts, similarly to
[2], they notice that this organization reflects the internal structure of situations and is
beneficial in identifying situations.

We argue that situations modeled as conceptual graphs can naturally form situation
lattices. Situation awareness would benefit from seeing a situation space as such order
structures. In the following section we show how our system implements the ex-
plained situation model.

7 Situation Operations in KRAMER

In [24] we present an overview of our system, KRAMER. The ambition there is to
empower users with spreading information about importance of situations, which is
established in a collaborative manner. We model situations as conceptual trees, a
special case for conceptual graphs (see Section 4). We say that situation is related,
meaningful to an entity, the “me” concept in a tree root (see Fig. 2).

In previous sections we showed how this model is consistent with situation theory
and how researchers have applied sophisticated relation structuring to ease reasoning
about specialization / generalization of conceptual graphs. In this section we discuss
(1) detecting complex situations and (2) generalizing them by the KRAMER system
based on those approaches.

7.1 Detecting Situations in KRAMER

Our system enables users’ smart devices to sense the user context, share it among
close phonebook contacts and fire programmed actions, i.e. notifications, should a set
of conditions be fulfilled. This set of conditions concerns one’s context and the con-
text of his or her close ones. Simply put, an action is fired once a required situation
matches the current one. Therefore, we need an efficient multiple situation detection
mechanism.

For this matter we use a Rete production system [12]. This choice is well moti-
vated in associating productions (decisions to perform an action) with complex set of

 A Model to Compare and Manipulate Situations 53

conditions (situations). In order to introduce semantic reasoning, we enhanced our
Rete implementation by replacing equality (=) condition with subsumption (≤) one in
alpha network. Therefore, an enhanced Rete takes full advantage of situation lattices
concept introduced in [28].

For example, wanting to be notified about a friend being in Poland requires a Rete
condition C: (<x> ^location Poland). Admitting that a friend shares that he is
currently in Warsaw, known to be a capital of Poland and a descendant of a “Poland”
concept on a location taxonomy, one would expect the condition to be matched. In-
deed, a situation “a friend is in Warsaw” implies a situation “a friend is in Poland”.
The actual situation would be, therefore, a specialization of the situation expressed by
condition C.

One might notice that a condition is a context triple representing an atomic situa-
tion [27], always a context relative to an entity as in [5]. Should the situations become
more complex, a set of conditions is introduced to a production system. From a Rete
network point of view, conditions are connected by join nodes in beta network (see
Fig. 5). From situation model point of view, atomic situations are logically connected
with AND logical operator as in [1]. Complex situations form therefore a conceptual
tree.

Fig. 5. Example Rete network, (a) structure, and (b) instantiation with working memory sets w
for a situation “my wife is busy and my TV is on sports channel”

One might also notice that having redundant situations is not possible in the
KRAMER system. Therefore, every possible situation for a given set of contacts in a
phonebook forms a finite lattice. The supremum is the most abstract situation, “any-
thing is going on”. It stands for a trivial graph made of one node labeled “me”. It
might be extended to a full structure filled with “any” labels, see Fig. 4. The infimum
would be therefore a set of most specialized full conceptual trees (see Fig. 6).

As a result, an abstract situation detecting problem can be transformed into
determining whether a concrete current situation is a descendant of the first one. A
situation the system needs to detect should be a generalization of the situation
perceived. Therefore, there should exist a set of join (to merge multiple pieces of
information coming from different sources of interest for a particular abstract situa-
tion) and unrestrict (to generalize current situations for particular context dimensions)
operations from the complete situation to the abstract one.

54 M.K. Szczerbak et al.

Fig. 6. Part of a situations lattice for the example in Fig. 5

Our Rete implementation performs a check for such set of operations. Firstly, it
joins every atomic situation introduced separately to its network (in order to perform
individual matching tests for each condition in its alpha network). Secondly, it intro-
duces a semantic subsumption operator (restrict / unrestrict operation equivalent)
rather than equality in Rete alpha network. As a result, it browses quickly a situation
hierarchy [10, 28] to determine whether a current situation matches any of the situa-
tions it seeks for action launching.

7.2 Generalizing Situations in KRAMER

The main purpose of our system is to enable collaboration on situation awareness.
Users are invited to define situations they wish to be notified of thanks to context
sharing subsystem. Those situations are defined on contextual concepts and are not
associated with any private data. Furthermore, every such situation is anonymously
uploaded on a server that is supposed to evaluate each in terms of their use rating. As
a result, the system suggests important situations to other users and reevaluates them
accordingly to whether those users find them interesting or not. See [25] for details.

However, depending on the context granularity, it may be distorting to the situa-
tions rating if we treat two very similar situations as completely different ones. For
example, a complex situation of having “a daughter leaving school and wife being
busy, unable to take her home” might be essentially the same as having “a son leaving
school and wife being busy, unable to take him home”. It could only depend on what
gender child one has. Therefore, our system is able to generalize similar situations and
merge their ratings [25].

Our algorithm has, however, a couple of restrictions in order for two situations
represented as conceptual graphs to be generalized. The first is a requirement for the
graph structures to match. The other, for the corresponding concepts on those graphs
to be semantically similar. We shall explain how do those restrictions relate to the
situation hierarchy from [10].

As discussed in the previous subsection, every possible situation in a system and
all corresponding abstractions exist in a common situation lattice. Therefore, finding a
least common ancestor by mean of generalization for any two situations is always
possible. For example, generalizing “wife is at work” and “wife is busy” results in

 A Model to Compare and Manipulate Situations 55

trivial “wife (is anywhere and doing anything)”. This does not make sense with re-
spect to suggesting meaningful situations to system users. Therefore, our algorithm
first groups situations by matching graph structures with respect to number of edges
and their relation concept labels.

As a result, one might see this as an elimination of join operator from the situation
hierarchy (like in Fig. 6) to create a family of smaller structures based on restrict op-
erator only. The second step of the algorithm will be performed within the scope of
each small hierarchy separately, see Fig. 7 for one example.

Fig. 7. Part of a hierarchy of situations with restrict-only relations

Having found two or more situations sharing the same graph structure, the algo-
rithm proceeds to finding opportunistic generalizations of those that are similar. We
define one requirement for a set of situations to be generalized into one: there cannot
be a series of restrictions from the abstract situation to any leaf that does not pass
through any of the situations in a set. One might say that the abstraction is the least
common ancestor of situations in a hierarchy that covers all of those situations and
none of the situations that does not subsume any of the situations in the set.

For example, let’s consider the following set of situations: (1)“son is in school”,
(2)”son is in a cinema”, (3)“ daughter is in school”, and (4)”parent is in school. A
part of a restriction hierarchy for a situation matching scheme <a person> is in
<a location> is presented in Fig. 7. As a result, a situation can be generalized from
(1), (3) and (4) into “a member of a close family is in school”. Meanwhile, the situa-
tion (2) remains not generalized, because there are many situation nodes missing if we
were to generate an abstract situation “son is in a building”, for example.

As a result, the KRAMER’s algorithm performs two steps on a common situation
lattice. First, it eliminates any join / detach operation connectors, which splices the
structure into a family of hierarchies, each involving only one situation graph struc-
ture. Second, it scans all generalized situations (products of unrestrict operation) so
that they are common for a subset of given situations while not having any restrict
operation chain that would not lead to any given situation. This approach is found to
be efficient from the computational complexity point of view in [25].

56 M.K. Szczerbak et al.

8 Conclusions

In the KRAMER system we perform two main semantic operations on situations:
their detection and generalization. In this paper we present those operations as logical
manipulations on situation hierarchies, lattices that constitute a space of all possible
situations. We show that such hierarchies are a natural product of specialization /
generalization relations between situations. To assure expressiveness of situation
comparison we model situations as conceptual graphs. In addition, we discuss that
model to be consistent with the situation theory.

As a result, we transform reasoning on situations similarity into a problem of tra-
versing a conceptual graph hierarchy. This approach is less implementation centric,
much more situation model driven. Nevertheless, it provides a set of straight-forward
logical directives for our algorithms to implement.

For future works, we plan to investigate its further impact upon situation prediction
and reasoning in situation uncertainty. It is very likely that a sensed situation is simi-
lar to the searched one but they are not the same in terms of subsumption relation.
However, this may mean, for example, that an agent is unable to perceive some con-
text dimensions necessary for detecting a situation, or that the searched situation
would possibly appear in the near future. In either case, narrowing the situation hie-
rarchy to the nearest neighbors with respect to join / detach operators, and discovery
of their restrict / unrestrict operation products might result in a respective measure of
probability.

References

1. Anagnostopoulos, C.B., Ntarladimas, Y., Hadjiefthymiades, S.: Reasoning about Situation
Similarity. In: International IEEE Conference on Intelligent Systems, pp. 109–114 (2006)

2. Anagnostopoulos, C.B., Ntarladimas, Y., Hadjiefthymiades, S.: Situation Awareness:
Dealing with Vague Context. In: ACS/IEEE International Conference on Pervasive Ser-
vices, pp. 131–140 (2006)

3. Barwise, J., Perry, J.: Situations and Attitudes. Bradford Books, The MIT Press (1983)
ISBN 0-262-02189-7

4. Cooper, R., Kamp, H.: Negation in Situation Semantics and Discourse Representation
Theory. In: Situation Theory and Its Applications, vol. 2. Stanford University (1991)

5. Costa, P.D., Guizzardi, G., Almeida, J.P.A., Pires, L.F., van Sinderen, M.: Situations in
Conceptual Modeling of Context. In: 10th IEEE International Enterprise Distributed Ob-
ject Computing Conference Workshops, p. 6 (2006)

6. Croitoru, M., Hu, B., Dashmapatra, S., Lewis, P., Dupplaw, D., Xiao, L.: A Conceptual
Graph Based Approach to Ontology Similarity Measure. In: Priss, U., Polovina, S., Hill, R.
(eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 154–164. Springer, Heidelberg (2007)

7. Delaveau, L., Loulier, B., Matson, E.T., Dietz, E.: A vector-space retrieval system for con-
textual awareness. In: IEEE International Multi-Disciplinary Conference on Cognitive Me-
theods in Situation Awareness and Decision Support, pp. 162–165 (2012)

8. Devlin, K.J.: Situations as Mathematical Abstractions. In: Situation Theory and Its Appli-
cations, vol. 2. Stanford University (1991)

9. Dey, A.K.: Providing architectural support for building context-aware applications. PhD
thesis, Georgia Institute of Technology (2000)

 A Model to Compare and Manipulate Situations 57

10. Ellis, G., Levinson, R.: Multi-Level Hierarchical Retrieval. Knowledge-Based Systems,
Conceptual Graphs Special Issue 5, 233–244 (1992)

11. Endsley, M.R.: Toward a Theory of Situation Awareness in Dynamic Systems. Human
factors 37, 32–64 (1995)

12. Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem. Artificial Intelligence 19, 17–37 (1982)

13. Gandon, F.: Graphes RDF et leur Manipulation pour la Gestion de Connaissances, Ch. 4:
Graphes comme espaces métriques, HdR, Nice Sophia-Antipolis (2008)

14. Jiang, X., Bunke, H.: Graph Matching. SCI, vol. 73, pp. 149–173 (2008)
15. Laudy, C., Ganascia, J.G., Sedogbo, C.: High-level Fusion based on Conceptual Graphs.

In: 10th International Conference on Information Fusion, pp. 1–8 (2007)
16. Mechkour, S.: Overview of Situation Theory and its application in modeling context, Se-

minar Paper, University of Fribourg (2007)
17. Meissen, U., Pfennigschmidt, S., Voisard, A., Wahnfried, T.: Context- and Situation-

Awareness in Information Logistics. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y.,
Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 335–344. Springer, Heidelberg (2004)

18. Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Comparison of Conceptual Graphs.
In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS, vol. 1793, pp. 548–556. Springer,
Heidelberg (2000)

19. Montes-y-Gómez, M., Gelbukh, A., López-López, A., Baeza-Yates, R.: Flexible Compari-
son of Conceptual Graphs. In: Mayr, H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.)
DEXA 2001. LNCS, vol. 2113, pp. 102–111. Springer, Heidelberg (2001)

20. Mugnier, M.L.: On Generalization / Specialization for Conceptual Graphs. Journal of Ex-
perimental & Theoretical Artificial Intelligence 7, 325–344 (1993)

21. Padovitz, A., Loke, S.W., Zaslavsky, A.: Towards a Theory of Context Spaces. In: 2nd
IEEE Conference on Pervasive Computing and Communications Workshops, pp. 38–42
(2004)

22. Poole, J., Campbell, J.A.: A Novel Algorithm for Matching Conceptual and Related
Graphs. In: Ellis, G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS,
vol. 954, pp. 293–307. Springer, Heidelberg (1995)

23. Sowa, J.F.: Conceptual Graphs. Foundations of Artificial Intelligence, vol. 3, pp. 213–237
(2008)

24. Szczerbak, M.K., Toutain, F., Bouabdallah, A., Bonnin, J.M.: Collaborative Context Expe-
rience in a Phonebook. In: 26th IEEE International Conference on Advanced Information
Networking and Applications Workshops, pp. 1275–1281 (2012)

25. Szczerbak, M.K., Bouabdallah, A., Toutain, F., Bonnin, J.M.: Generalizing Contextual
Situations. In: 6th IEEE International Conference on Semantic Computing (to be pub-
lished, 2012)

26. Wang, X.H., Gu, T., Zhang, D.Q., Pung, H.K.: Ontology Based Context Modeling and
Reasoning using OWL. In: 2nd IEEE Annual Conference on Pervasive Computing and
Communications Workshops, pp. 18–22 (2004)

27. Yau, S.S., Liu, J.: Hierarchical Situation Modeling and Reasoning for Pervasive Compu-
ting. In: 4th IEEE Workshop on Software Technologies for Future Embedded and Ubi-
quitous Systems, pp. 5–10 (2006)

28. Ye, J., Coyle, L., Dobson, S., Nixon, P.: Using Situation Lattices to Model and Reason
about Context. In: 4th International Workshop on Modeling and Reasoning in Context, pp.
1–12 (2007)

29. Zhong, J., Zhu, H., Li, J., Yu, Y.: Conceptual Graph Matching for Semantic Search. In:
Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 92–
106. Springer, Heidelberg (2002)

Analyzing Clusters and Constellations

from Untwisting Shortened Links on Twitter
Using Conceptual Graphs

Emma L. Tonkin1, Heather D. Pfeiffer2, and Gregory J.L. Tourte3

1 UKOLN,
University of Bath, Bath, UK

e.tonkin@ukoln.ac.uk
2 Akamai Physics, Inc.

Las Cruces, New Mexico, USA
hdp@cs.nmsu.edu

3 School of Geographical Sciences,
The University of Bristol, Bristol, UK

g.j.l.tourte@bristol.ac.uk

Abstract. The analysis of big data, although potentially a very reward-
ing task, can present difficulties due to the complexity inherent to such
datasets. We suggest that conceptual graphs provide a mechanism for
representing knowledge about a domain that can also be used as a useful
scaffold for big data analysis. Conceptual graphs may be used as a means
to collaboratively build up a robust model forming the skeleton of a data
analysis project. This paper describes a case study in which conceptual
graphs were used to underpin an exploration of a corpus of tweets re-
lating to the Transportation Security Administration (TSA). Through
this process we will demonstrate the emerging model built up of the
data landscape involved and of the business structures that underlie the
technical frameworks relied upon by microblogging software.

Keywords: Conceptual Graphs, Twitter, Microblogging, Models.

1 Introduction

The increasing prominence of Twitter as a social site in the last years has led
to a great deal of interest in the way in which the site is used, as well as the
technical enablers underlying the site and its applications. Of course, there is
a significant existing body of literature describing various aspects of the site
and the characteristics of its use, e.g., [11,12], so a researcher looking to analyse
data taken from Twitter should naturally begin by reviewing that information.
However, one aspect of Twitter is its apparent inconsistency across topics [30]
and across cultures (see for example [39]). Another is the changing landscape of
technologies and implementation decisions: as a developing platform seeking to
marketize effectively, Twitter, like most services, evolves over time as a result

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 58–74, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Untwisting Shortened Links on Twitter 59

of various motivating factors. As a consequence there is a need for exploratory
data analysis [22].

Typically, the exploratory analysis of data (EAD) involves the use of infor-
mation visualisation tools, cluster analysis, data mining approaches and so forth
[22], which permits domain experts to begin to develop an understanding of the
dataset at hand. This permits them to develop testable hypotheses. However,
as Perer notes, one difficulty with this approach is that it is typically somewhat
scattershot—discoveries made in this way are typically opportunistic. Yet an
entirely systematic approach risks undermining the knowledge-driven, insight-
led research pattern of domain experts. Generally, Perer suggests, systematic
approaches do not always suffice when faced with real problems. Thus, Perer
suggests, a series of design goals should be considered when developing data ex-
ploration interfaces: most relate to the ability to track actions already taken, to
see available actions not already taken, to annotate actions, to retrace existing
steps taken, and so on. Particularly interesting is design goal 6: the need to share
progress with other users.

We begin this paper by exploring knowledge representations through which
information learned about the entities, agencies, interactions and underlying in-
frastructure of the Twitter environment can be stored and shared within a team
to support EAD, explaining why we chose to use conceptual graphs for the pur-
pose of supporting a text mining application. We explain the development phi-
losophy underlying the EAD approach taken and its limitations, and we provide
a brief introduction to the literature surrounding Twitter and findings resulting
from a preliminary exploration of certain aspects of Twitter infrastructure.

2 Method

Involving each member of a research group into an iterative process of data model
development requires both appropriate communication channels and sufficiently
useful proxies (e.g. imagery, model diagrams, etc) on which to work. There are
many candidates for this process, of course, ranging from pen and paper or
whiteboard to a shared collaborative space online such as a wiki, Google Doc, or a
version or revision control system such as Subversion. However, it is important to
separate the collaborative space that is used from the actual representation that
is employed within that workspace, and to recognise that such aids to teamwork,
whilst innately prerequisite, typically provide neither formalism nor guidance. It
is for this purpose that a formal knowledge representation structure becomes of
importance; according to Davis et al [6], KR may be described in terms of five
roles: a KR may act as a proxy through which via thought-experiment the effects
of an action may be deduced; a KR represents a series of ways of thinking about
an entity; a KR represents a formalism expressed in terms of sanctioned and
recommended inferences; a KR can be seen as ‘a computational environment for
thinking’ and as ‘a medium of human expression’. KRs may be classified into
five categories: pictorial, symbolic, linguistic, virtual and algorithmic [19].

60 E.L. Tonkin, H.D. Pfeiffer, and G.J.L. Tourte

Given these five categories of KR the internal structure of the data must be
able to hold not only factual data, but the conceptual dependencies between the
elements so that their relationships are defined within the data structure. These
structures can hold scripts [33] of information that is represented textually and
can be formed into a story. This story line can then be structurally stored into
a commonsense database of records. This database structure could hold three of
the categories—symbolic, linguistic, and algorithmic—by using language theory.
The two other categories virtual and pictorial would be lacking because the text
basis of the scripts. However, the conceptual graphs structure, especially with
time and space extensions [25], does not have this textual limitation, but does
give the relational structuring between conceptual dependency and can therefore
process all five categories.

Conceptual graphs (CGs) provide a formal visual approach to knowledge rep-
resentation, closely linked to natural language [37] which have been found to
be accessible by team participants from varying specialities in the past, includ-
ing for example visual designers and managers [28], developers [16], engineers
[4] and so forth. The graphical representation provided by the CG formalism
is an aid to understanding that has in the past been shown to be effective in
multidisciplinary team environments [4].

This graphical format of CGs can be represented in textual expression or as
links to other types of conceptual information such as URL addresses to photos,
videos, games, etc. The CGs as a set of partial models do not have to maintain
truth as with other representation so they may contain conceptual relationship
or dependencies that are in opposition to other graphs within the same model
set. This is because partial models are snapshots in time [25]. When the final
model is built all inconsistencies will be resolved.

2.1 Conceptual Graphs in Text Mining

Text mining, an area that remains relatively youthful, is a research area based on
the detection/discovery of interesting patterns within textual corpora.Whilst the
majority of text mining applications are essentially focused on relatively simple
representations—key words/phrases, or even in some cases ‘bag of words’ repre-
sentations, the use of conceptual graphs in text mining problems is well repre-
sented in the literature. Cao [2] describes the use of conceptual graphs alongside
fuzzy logic as a means of extending Semantic Web technologies to approach hu-
man expression and reasoning more effectively; conceptual graphs are here used
as a means of representing natural language sentences. Montes-y-Gomez et al.
[10], for example, describe the use of conceptual graphs to represent a series of
text, permitting the detection of rare patterns and local deviations (occurring at
specific contexts and generalization levels) within the textual corpus. Spasic et
al. [38] identify Daraselia et al’s [5] use of conceptual graphs as a representation
of a number of ontological frames, permitting them to be queried or for further
text mning work to be completed against them. Shehata et al (2006) describe
the use of conceptual graph representations to capture in detail sentence-level
semantics, in order to improve the quality of text retrieval and indexing [34].

Untwisting Shortened Links on Twitter 61

In general terms, then, text mining and conceptual graphs are demonstrably
viable companions. However, by no means should this be taken to mean that the
problem of mining a research corpus such as the Twitter corpus described here
reduces to the use of an existing software package or service. There is significant
variation between corpora; Twitter, for example, limits users to a small number
of characters per utterance, typically resulting in a telegraphic, abbreviated style.

2.2 Agile Development

In this instance the proposal is to use conceptual graphs within the team to build
up information about the various aspects of the dataset under investigation. We
separated this work into two broad phases, the first one of which is exploratory
in nature, and is intended to enable us to rapidly build up a basic model of
the domain. For this purpose we use a variant of the agile software develop-
ment methodology, conceptually linked to the Rapid Application Development
models [15]. For the second, we link the conceptual graphs built up during the
exploratory work in order to create a single composite knowledge representation,
and explore its use as a basis structure on which to develop research questions
about the dataset.

We begin by briefly reviewing literature relating to use of agile methodolo-
gies in exploration of scientific datasets, and move on to the development of
fragmentary conceptual graphs though research findings.

2.3 Agile Methodologies for Scientific Datasets

Agile software development methodologies are designed to prioritise certain as-
pects of the software development process. The agile manifesto [9] expresses the
methodology’s practices as follows:

– Individuals and interactions over processes and tools
– Working software over comprehensive documentation
– Customer collaboration over contract negotiation
– Responding to change over following a plan

and states that ‘while there is value in the items on the right, we value the items
on the left more’.

The use of agile development methodologies for the purpose of development
of scientific software is a concept that has been explored elsewhere; for example,
Lane [13] describes a theory-driven methodology that encodes scientific knowl-
edge and natural processes within an implemented piece of software. The impor-
tance of the computational model is clearly stated by Lane [13]: computational
models, it is argued, are amongst other things able to clearly and rigorously lay
out the components of the scientific theory under discussion, allow the deriva-
tion of testable predictions, and provide a useful mechanism to facilitate making
sense of rich and dense datasets. Accepting the value of a computational model,
it is therefore reasonable to consider the question of the quality, relevance and

62 E.L. Tonkin, H.D. Pfeiffer, and G.J.L. Tourte

accuracy of its implementation. To successfully resolve these queries it is nec-
essary to establish appropriate tests—that is, what makes a model ‘good’, or
‘accurate’, in the context of our research?

2.4 Building and Testing a Conceptual Model to Underlie Research

Due to the idiosyncratic composition of any research team it is reasonable to ex-
pect that the precise research interests/requirements of the individuals involved
are likely to have an impact on the features highlighted, perhaps even on the
inclusion of features. This is not uncommon; indeed, the process of mining a
text is typically starkly reductive—reduction of entropy/compression of a text
may be expected to have at its core a model of the aspects of that text most
clearly of use. Features of the text that are not contained within that model may
or may not survive the reduction. An obvious example of this is the previously
mentioned bag-of-words model, that is, reduction of a text into its component
words; the details of the syntax, the presentation, etc., cannot be expected to
survive this process. If the research requirements of the team may be satisfied
by the use of such a model, however, there is no pressing need to turn away from
it. Thus the participants must be at the core of model development.

3 Mining a Twitter Corpus

The use of Twitter as a data source for various forms of data/text mining is
well established. The data is usable for a variety of purposes, perhaps most
easily classified according to the technologies used. Twitter is famously used as
a resource for sentiment analysis and for opinion mining [20], with a variety
of purposes in mind, including product/service/company profiling, marketing
purposes, political analysis and opinion polling, for example, with activist aims
in mind [20], but also for stock market prediction [1], disaster alerts [7], level of
interest in news articles [26] and so forth. Explicitly topic-oriented mining is of
use for various purposes, such as tracking public health trends [27,21], earthquake
monitoring [31], news tracking [14,23] and so on. The very public nature of the
service renders it of interest to spammers, and therefore another research topic
in the text mining field is that of identifying and mining spam. Shekar et al. [35]
demonstrate a mechanism for identifying spam from Twitter data through an
initially manually input list of key terms, followed by the use of a Naive Bayesian
algorithm and a J48 decision tree classifier. As well as straightforward use as a
text corpus, Twitter’s sharply time-based, turn-based and telegraphic nature
introduces the need to consider issues that perhaps would not be as prominent
where other types of information, such as perhaps academic papers or even blogs,
are concerned.

Yet the content of users’ tweets is certainly not the only aspect of Twitter
that may be of interest, and the existing body of research certainly reflects this.
Twitter’s popular classification as a social network is well established despite
senior Twitter executives’ protestations that Twitter is ‘a news network and

Untwisting Shortened Links on Twitter 63

not a social network’ [18]. Certainly the findings of Kwak et al [12] bear out
the assertion that trending Twitter topics are, in the majority of cases, either
’headline or persistent news’ in nature, whilst their topology analysis suggests
that Twitter is not a pure social network, as the distribution of followers and
low reciprocity does not closely resemble the typical social network. Yet other
studies suggest that this is the effect of noise; as Huberman et al. [11], social
interactions exist within Twitter, as a sparse subset of the broadly declared set
of friends and followers. It appears likely that Twitter, sharing aspects both of
social networks and the emerging concept of a ‘news network’, must be modelled
in such a way as to satisfy both definitions.

The technical infrastructure underlying Twitter’s functionality is also of in-
terest to researchers.

3.1 Infrastructure Underlying Twitter

A particularly important tool for Twitter users in the past has been the URL
shortener [3]—a tool, often web based or built in to the application used by the
individual to post their remarks to Twitter. These are conceptually simple: a
URL is provided to the shortening tool, which assigns to it a unique key; when
presented with that key, the tool will then present the browser with some form
of redirect (often a 301) to return the user to the original long URL.

The primary benefit for Twitter users was simply that a shortened URL does
not eat significantly into the limited space available for each tweet (Twitter’s
famous 140 characters or less), leaving the user with more space to present their
own ideas or opinions. There are also secondary benefits, of course, such as
relative opacity (i.e., it is not usually possible to guess at the destination of a
shortened URL), making it possible for users to forward readers to unexpected
URLs, providing potential for practical jokes and for malicious reuse as well as
fulfilling the more general purpose of compressing information.

3.2 Rationale: Construction and Maintenance—Relative Costs?

Since URL shorteners are not technically complicated, they are relatively easy
to set up, and indeed a site that tracks URL shorteners in use has identified over
a thousand individual services [42]. However, like many other such initiatives the
attrition rate of URL shorteners over time appears to be quite high—according
to yi.tl, the majority of shortening services identified have since closed. As
we will discuss in this poster, the majority of shortened URLs from a given
US-centric discourse during the spring of 2012 make use of one of a few major
service providers, either directly or via aliases run by those providers. One clear
advantage of making use of a URL shortener is the opportunity to gain infor-
mation about the number of clickthroughs—how many people accessed the link
that was posted, when, and from which broad geographic region. This is partic-
ularly useful to those for whom the distribution of links in a given venue forms
part of a marketing strategy—a group in which Higher Education institutions

64 E.L. Tonkin, H.D. Pfeiffer, and G.J.L. Tourte

are increasingly likely to count themselves, as market forces penetrate ever more
deeply.

This reasoning also leads the construction of URL shorteners in some do-
mains—indeed, it is not uncommon for parent enterprises to sell social media
analytics services or provide free or paid analytics services. Yet, as with sentiment
analysis, much of this activity deals with short-term, transitory events. Such
analysis is typically bound to a relatively brief timescale—a few hours to a few
days. Little financial benefit may exist in long-term provision of a ‘long tail’ of
older redirects.

3.3 Preservation of Shortened URLs

Shortened URLs, once identified, can (if the underlying service is still available),
trivially be resolved into the original destination URL. This is a useful step for
many forms of analysis (e.g., content/contextual analysis of tweets on Twitter).
The half-life of social services is often short, but a URL shortener is more inti-
mately bound into our ability to follow a conversation than, for example, a news
aggregation service might be. The loss of the news aggregation service potentially
compromises our ability to identify the trigger for transitory interest in a given
subject or resource. The loss of the redirect service means that the key resources
referenced during a conversation can no longer be referenced, compromising our
ability to understand the social or political context and underlying framing of the
discussion. URL redirection increasingly offers a further challenge, for although
the number of discrete services in popular use appears to be reducing, the pen-
etration of these services into the user experience continues to increase. Twitter
itself did not initially impose the use of a domain redirection service. Later, the
service began to ‘wrap’ popular (frequently retweeted/referenced) URLs into
Twitter’s own domain redirection service, t.co. In late 2011 Twitter made this
mandatory for all URLs [8]; therefore, any URL published through the Twitter
service will be published in the form of a t.co/key alias. Since users’ choice
of URL redirection service typically relates to their choice of application (for
example, HootSuite users will find that they are minting ow.ly URLs, which are
inbuilt), this means that a user making use of HootSuite will have a characteristic
‘fingerprint’: t.co → ow.ly (→ previous source of link).

There are many reasons to look into URL redirection other than preservation,
such as the need to identify spam [41], or an interest in conversation/discourse
analysis and information propagation [29].

3.4 In Chains: Unwrapping the URL

The implementation of various services and applications leads to the ‘wrapping’
of existing URLs into one or more URL redirects. The effect is similar to taking
a postcard, and placing it into an envelope addressed to the initial receiver care
of an intermediary. Then that envelope is passed on to a courier service who
insist on placing the mail into their own brand of envelope and addressing it
to ‘Original recipient, care of initial intermediary, care of the courier service’s

Untwisting Shortened Links on Twitter 65

posting office’. By this means, each agency is able to collect statistics about
visitors to that URL.

For the user, this carries the penalty that URLs are both opaque and some-
what slower to resolve. It also implies that the user is providing considerable
information about their interests and activities to each agency in the redirect
chain. However, for the researcher at least, it provides us with additional in-
formation about the pathway that this information took on its way from the
originator to the author of the tweet.

3.5 Backtracking the Trackers

A simple URL redirect tracker was developed for the purpose of tracking each
step of URL redirection, using Perl’s LWP libraries to extract information about
each step of domain resolution. This ‘traceroute’ application is able to generate
information about a shortened URL by backtracking through each step and
documenting each redirect. A sample result is given (see Table 1).

Table 1. A sample HTTP response chain

Short
URL

Response
Code

Redirect
Chain
ID

t.to/example 301 ow.ly/example 1
ow.ly/example 301 bbc.in/example 2
bbc.in/example 301 news.bbc.co.uk/example 3

An aggregate view of the redirect landscape is shown in Fig. 1. As is visible
from this graph representation, there are many redirect services in use. To be-
gin to build up the CG model for analysis of the trackers of the retweets the
definitional graph for the knowledge representation of the data from Table 1
and extended data is found in Fig. 2. This REDIRECT graph indicates that a
shortened URL can be redirected into a modified URL. From the type hierarchy
associated with this definitional graph we see that during a join of factual data
later in the representation processing URLs that are either ‘Short URL’ concepts
or ‘Modified URL’ concepts can be joined. However, as our literature review has
indicated, many of these are ‘vanity’ domains, so it is inaccurate to think of each
redirect as a separate service. Rather, it is suggested that many are simply aliases
of an existing commercial service. The question of identifying individual business
entities within this group is one that can be solved quite simply on a technical
level, through the use of domain analysis tools to identify the site operator. The
use of WHOIS information presents difficulties since domains registered through
separate registrars/various countries have quite different recordkeeping conven-
tions and access regulations. Instead, service-level information such as IPs may
be used as a rough indicator, with results such as those shown in Fig. 3.

66 E.L. Tonkin, H.D. Pfeiffer, and G.J.L. Tourte

t.co

bit.ly

is.gdgoo.gl

ow.ly

j.mp

gizmo.dopo.st

shar.es

redd.itgaw.kr
dld.bz

df4.usbutt.orgherit.agsfy.coarst.choio.grawe.smx.cosu.prjalo.pstl.gdxn--kci.wsvsb.li

plu.gd

trib.al
ajc.com
dlvr.it
rt.comctic.co

bgell.me

Fig. 1. The TSA web of redirects

(a) Type hierarchy for REDIRECT schema

(b) CG definitional graph for REDIRECT schema

Fig. 2. CG schema for REDIRECT

Untwisting Shortened Links on Twitter 67

bbc.in

69.58.188.49

nyti.ms
huff.to
fxn.ws
apne.ws
n.pr

wapo.st
ti.me

econ.st

168.143.174.97

tpm.ly

cbsn.ws
mctr.st
usat.lymojo.lyyhoo.it

soup.ps

colm.esabcn.wszite.tocnet.colat.mstmz.mebrbr.co

kng5.tvnydn.us

read.bi

cbiz.us

cs.pnbo.stnyp.stamzn.tocopy.bz4sq.com

hrld.us

zd.netjaw3.me

roll.cl

tbr.mxchn.gekptv.tvbuff.lyaol.itgkgk.us

sfg.ly

glpo.st

otb.nu

vrge.coepj.me

vr.tljane.ioreut.rs

atms.grgkz1.cowj.lamod.myg4.tvtrib.in

ning.it

exm.nrinq.cmwfb.tcn0.gdsacb.eekp.ccsmrt.ion360.tosnd.scwtim.esind.pn

ampr.gs

frm.rstgr.phstjr.nldigs.bycot.agt247.it

twb.ioscr.bitsa.iodrev.me

tnne.ws

fdl.me

stk.lyspag.eses.pn

twal.kr

zz.gyamba.tolgf.bzjo-e.demtln.us

6sen.seweav.rsbkwd.bz

k2ne.ws
rwnj.co
hub.am
wny.cc

shos.it

fotp.ro

p4k.inlb.to

orne.ws

dpo.st

re4.ms
mlti.ps
amde.it
whrt.it
shg.me
sdtk.fm
tol.bz
ack.fm

cyha.es

jty.me

itsh.bo

somd.me

wibi.us

gawk.ws

wrgm.ag
n24.cm
erik.gschi.me

hvrd.me
twy.la
untp.it

tag.me

f4a.tv
prn.tospnd.itexci.toavtr.cothrl.stbsun.mdcour.at4ms.mewfts.tvcsec.tkgoff.mebet.us12d.covnty.frb0x.eebit.msinv.lvzoo.mn

rlx.im

tal.gsgrm.to

goli.mp

appj.mpcoon.yt

cpro.gs

aarp.usmnza.usglo.bo

ept.ms

btp.coshvn.coevn.tcfw2.orgaz3.tvcart.mndai.ly

sdut.us

Fig. 3. The bit.ly infrastructure constellation

4 Results

4.1 Service Model

Network architecture relies on mapping relationships between conceptual entities
such as businesses, service names and API endpoints and their representations
on the network, i.e. IP addresses, ports, protocols and attributes. There is a
great deal of information to record here (see Fig. 3); however, Fig. 4 presents a
small part of the network with the essential information, prerequisite to further
analysis—i.e., how the URLs are associated with their IPs. In Fig. 5, this basic
conceptual information is given in a definitional CG. The underlying network
(and, consequentially, business) relationships upon which the system depends
can be instantiated into multiple factual CGs, in which Fig. 6 is an example.

4.2 URL Redirection Information Model

We presented in Fig. 2(b) a CG definitional graph representation of the informa-
tion to be used to create a partial model for a URL redirection operation. This
includes the URL originally provided (the short URL), the object that consti-
tutes the direct object of that redirect (modified URL), and the agent responsible
for the redirect (the redirect). Additional information typically retrieved during
the URL resolution process is also indicated in this CG, such as the response
code provided by the redirect service during the lookup process (instance meta-
data) and the position of this redirect object within the chain of redirects, which
again differs by instance.

68 E.L. Tonkin, H.D. Pfeiffer, and G.J.L. Tourte

ow.ly

75.101.155.42

184.72.246.159

ht.ly

lp21.me

owl.li

smf.is

drnk.it

htl.li

tblz.us

Fig. 4. A simple constellation of redirect services

Fig. 5. The service relationship definitional CG

Fig. 6. Instantiation of service relationship CG with single linkage from network

This CG graph can be instantiated with actual factual data producing, for
example, the graph seen in Fig. 7. This information is processed from a bank of
tweets, and can later be joined with the instantiated SERVICE CG already en-
countered (Fig. 6) using the Type Hierarchy from Fig. 2(a) to produce a graph
with the service relationship from one CG tied to the instantiation of a redi-
rection graph. This creates a partial model CG that has the original shortened
URL linked to the service providing the actual disk space/web hosting service
(see Fig. 8) by joining on the modified URL of the instantiated redirect CG.

4.3 Contextual Representation

This example, containing both instance data and modelled generalities, is contex-
tual to the resolution process and outcome. By continuing on with the process
discussed in the previous sub-section, the generation of the representation of
Fig. 4 as a CG partial model is produced in Fig. 9. The ability to represent
contextual information is a strength of conceptual graph theory and represents
a core requirement for analysis of social data such as Twitter. This consideration
becomes particularly important if the information is to be treated as elements
of a broader discourse rather than orphaned utterances [17]. Extension to the
model to deal with temporal and sequential aspects of Twitter discourse may be
of benefit.

Untwisting Shortened Links on Twitter 69

Fig. 7. Instantiation of REDIRECT definitional graph

Fig. 8. Join of fact SERVICE CG with fact REDIRECT CG

4.4 Individual and Chained Utterances

In reality there is a time-based aspect to the data in its originating context,
that of conversations or interaction chains published on Twitter. There is also
a mapping of the landscape of shared references upon which Twitter’s message-
passing depends. If the original redirect definitional graph also stored the relevant
time information from the tweets [25], then a time line chart could be generated
showing the impact on not only Twitter, but on the services providing storage.
We wish to include this in future.

Social network graph representations are typically designed as directed graphs,
showing self-declared relationships between individuals (i.e., ‘friend’, ‘colleague’,
or—in the case of Twitter’s ‘@’-reference, ‘referent’. In a subset of cases, SNG
representations are used that permit temporal reasoning (i.e., progression of the
system’s development through time). Consider for example Tang et al’s pro-
posed temporal distance metrics, designed to quantify the speed of information
diffusion processes [40] in a manner that is sensitive to local and global net-
work characteristics, Shekhar and Oliver’s review of the challenges inherent in
modelling time-aggregated graphs [36], or Santoro et al’s judgment that ’[m]ost
instruments—formalisms, concepts, and metrics—for social networks analysis
fail to capture their dynamics’ [32].

Many research questions—particularly those linked to information propaga-
tion, reaction, etc. through Twitter—benefit from accurate and detailed mod-
elling of temporal precedence. Research into the attractions of Twitter to its
users are likely to focus on the reactions of its user community to different types
of input. Investigation of the attractions of Twitter as a social news service
(in comparison to a microblogging platform), will often focus on broad-grained

70 E.L. Tonkin, H.D. Pfeiffer, and G.J.L. Tourte

Fig. 9. CG storage of simple constellation of redirect services

metrics such as the overall proportion of tweets in any given locality that con-
tain or refer to news items in some manner or another. However, a number of
problems also exist that take a broader view of the information proliferation
landscape, of which Twitter remains only a proportion, albeit at present an in-
fluential one. The relative significance of traditional media, ‘new media’ an social
network services in information proliferation is an interesting subject and one
which will undoubtedly continue to attract attention as the role of services in
reflecting or even setting public opinion comes under scrutiny. Businesses con-
tinue to offer services intended to manage public opinion on social networking
sites; mapping the territory is an important step in evaluating any such claim.

Much of the descriptive language from Santoro’s paper is of direct relevance
to our model; for example, Santoro et al [32] separate the concept of ‘journey’
from that of ‘path’; that is, a type of path through a graph that includes waiting
times at intermediate stages in travel through the graph. They also identify
recent papers proposing temporal versions of the typical social-network metrics
of proximity, betweenness, closeness and so forth.

Untwisting Shortened Links on Twitter 71

4.5 Evaluation of the CG Representation as an EAD Research Tool

The exploratory analysis of a Twitter dataset described during this paper used
CG representations as a backbone for representing information gathered about
entities, agencies, interactions and infrastructure. This paragraph provides a
brief review of this addition to the loose EAD methodology of visualisation,
analysis and mining that we typically apply in the early stages of getting to grips
with a large dataset. As we expected, conceptual graphs provided an accessible
mechanism for knowledge representation within the team context. One team
member was already familiar with the conceptual graph structuring. Another
found that they were not intuitively readable, but was able to read them given
appropriate guidance. It does seems necessary to have training before use.

5 Conclusion

Analysis of large datasets can be a tedious process. However new tools enhance
the ability to process these datasets. These tools must be flexible while at the
same time have a solid knowledge representation. We have discovered that graph-
ical representation and graphics operators make building of the underlying mod-
els (and partial models) easier to visualize. Because conceptual graphs are both
built on logic and graphical operators they can be used for this stable representa-
tion. They are also built such that time and space structure and process is built
directly into the representation [25]. Microblogging creates many data records
that are both similar and different at the same time. In particular re-tweets on
Twitter can grow at a very fast rate and they are time dependent. Therefore
the underlying representation needs to be easy to implement and fast to process
[24]. The basic CG definitional and instantiated graphs for this case study has
given us a good start on an over all processing graph set for discovering the data
clustering and topology of the constellations from shortened links and service
provider on Twitter. We can also use CGs as a teaching tool for learning how to
define context with social network relationships.

References

1. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of
Computational Science 2(1), 1–8 (2011),
http://www.sciencedirect.com/science/article/pii/S187775031100007X

2. Cao, T.H.: Fuzzy conceptual graphs for the semantic web. In: Proceedings of
2001 BISC International Workshop on Fuzzy Logic and the Internet, FLINT 2001,
Berkeley, CA, USA (August 2001)

3. Carmody, T.: A Tangled Web of Shortened Links. A study of link shortening reveals
hidden strands of the Web (2011), http://www.technologyreview.com/
news/423170/a-tangled-web-of-shortened-links/ (retrieved May 16, 2011)

4. Carpenter, S.: Developing a measure to elicit and compare mental models of pro-
cesses. Tech. rep., The University of Alabama in Huntsville (2007)

http://www.sciencedirect.com/science/article/pii/S187775031100007X
http://www.technologyreview.com/news/423170/a-tangled-web-of-shortened-links/
http://www.technologyreview.com/news/423170/a-tangled-web-of-shortened-links/

72 E.L. Tonkin, H.D. Pfeiffer, and G.J.L. Tourte

5. Daraselia, N., Yuryev, A., Egorov, S., Novichkova, S., Nikitin, A., Mazo, I.: Extract-
ing human protein interactions from medline using a full-sentence parser. Bioin-
formatics 20(5), 604–611 (2004),
http://bioinformatics.oxfordjournals.org/content/20/5/604.abstract

6. Davis, R., Shrobe, H.E., Szolovits, P.: What is a knowledge representation? AI
Magazine 14(1), 17–33 (1993),
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1029

7. De Longueville, B., Smith, R.S., Luraschi, G.: OMG, from here, I can see the
flames!: a use case of mining location based social networks to acquire spatio-
temporal data on forest fires. In: Proceedings of the 2009 International Work-
shop on Location Based Social Networks, LBSN 2009, pp. 73–80. ACM, New York
(2009), http://doi.acm.org/10.1145/1629890.1629907

8. dev.twitter.com: The t.co URL wrapper (2012),
https://dev.twitter.com/docs/tco-url-wrapper (retrieved May 15, 2012)

9. Gelperin, D.: Exploring agile. In: Proceedings of the 2008 international workshop
on Scrutinizing agile practices or shoot-out at the agile corral, APOS 2008, pp.
1–3. ACM, New York (2008), http://doi.acm.org/10.1145/1370143.1370144

10. Montes-y-Gómez, M., Gelbukh, A., López-López, A.: Detecting Deviations in Text
Collections: An Approach Using Conceptual Graphs. In: Coello Coello, C.A., de
Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI),
vol. 2313, pp. 176–184. Springer, Heidelberg (2002),
http://dl.acm.org/citation.cfm?id=646402.691915

11. Huberman, B.A., Romero, D.M., Wu, F.: Social networks that matter: Twitter
under the microscope. CoRR abs/0812.1045 (2008)

12. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news
media? In: Proceedings of the 19th International Conference on World Wide Web,
WWW 2010, pp. 591–600. ACM, New York (2010),
http://doi.acm.org/10.1145/1772690.1772751

13. Lane, P.C.R., Gobet, F.: A theory-driven testing methodology for developing scien-
tific software. Journal of Experimental & Theoretical Artificial Intelligence 24(4),
421–456 (2012),
http://www.tandfonline.com/doi/abs/10.1080/0952813X.2012.695443

14. Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread
of news on digg and twitter social networks. CoRR abs/1003.2664 (2010)

15. Maurer, F., Martel, S.: Extreme programming. rapid development for web-based
applications. IEEE Internet Computing 6(1), 86–90 (2002)

16. Mishne, G.: Source code retrieval using conceptual graphs. Master of logic thesis,
Institute for Logic, Language and Computation, University of Amsterdam (2003)

17. Moulin, B.: Temporal contexts for discourse representation: An extension of the
conceptual graph approach. Applied Intelligence 7, 227–255 (1997),
http://dx.doi.org/10.1023/A:1008224616031

18. Oricchio, R.: Is Twitter A Social Network (2010),
http://www.inc.com/tech-blog/is-twitter-a-social-network.html

(retrieved September 16, 2012)
19. Owen, R., Horváth, I.: Towards product-related knowledge asset warehousing in

enterprises. In: Proceedings of the Fourth International Symposium on Tools and
Methods of Competitive Engineering, pp. 155–170. HUST Press (2002)

http://bioinformatics.oxfordjournals.org/content/20/5/604.abstract
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1029
http://doi.acm.org/10.1145/1629890.1629907
https://dev.twitter.com/docs/tco-url-wrapper
http://doi.acm.org/10.1145/1370143.1370144
http://dl.acm.org/citation.cfm?id=646402.691915
http://doi.acm.org/10.1145/1772690.1772751
http://www.tandfonline.com/doi/abs/10.1080/0952813X.2012.695443
http://dx.doi.org/10.1023/A:1008224616031
http://www.inc.com/tech-blog/is-twitter-a-social-network.html

Untwisting Shortened Links on Twitter 73

20. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion min-
ing. In: Chair, N.C.C., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis,
S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh International Confer-
ence on Language Resources and Evaluation (LREC 2010), European Language
Resources Association (ELRA), Valletta, Malta (May 2010)

21. Paul, M., Dredze, M.: You are what you tweet: Analyzing twitter for public
health. In: International AAAI Conference on Weblogs and Social Media (2011),
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2880

22. Perer, A., Shneiderman, B.: Systematic yet flexible discovery: guiding domain ex-
perts through exploratory data analysis. In: Proceedings of the 13th International
Conference on Intelligent User Interfaces, IUI 2008, pp. 109–118. ACM, New York
(2008), http://doi.acm.org/10.1145/1378773.1378788

23. Petrović, S., Osborne, M., Lavrenko, V.: Streaming first story detection with appli-
cation to twitter. In: Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics,
HLT 2010, pp. 181–189. Association for Computational Linguistics, Stroudsburg
(2010), http://dl.acm.org/citation.cfm?id=1857999.1858020

24. Pfeiffer, H.D.: The Effect of Data Structures Modifications on Algorithms for Rea-
soning Operations Using a Conceptual Graphs Knowledge Base. Dissertation, New
Mexico State University (December 2007)

25. Pfeiffer, H.D., Hartley, R.T.: Temporal, spatial, and constraint handling in the
conceptual programming environment, cp. J. Exp. Theor. Artif. Intell. 4(2), 167–
182 (1992), http://dx.doi.org/10.1142/S0218001490000125

26. Phelan, O., McCarthy, K., Smyth, B.: Using twitter to recommend real-time topical
news. In: Proceedings of the Third ACM Conference on Recommender Systems,
RecSys 2009, pp. 385–388. ACM, New York (2009),
http://doi.acm.org/10.1145/1639714.1639794

27. de Quincey, E., Kostkova, P.: Early Warning and Outbreak Detection Using Social
Networking Websites: The Potential of Twitter. In: Kostkova, P. (ed.) eHealth
2009. LNICST, vol. 27, pp. 21–24. Springer, Heidelberg (2010)

28. Ribière, M., Matta, N., Cointe, C.: A proposition for managing project memory in
concurrent engineering. In: International Conference on Computational Intelligence
and Multimedia Applications, ICCIMA 1998 (February 1998)

29. Rodrigues, T., Benevenuto, F., Cha, M., Gummadi, K., Almeida, V.: On word-of-
mouth based discovery of the web. In: Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, IMC 2011, pp. 381–396. ACM,
New York (2011), http://doi.acm.org/10.1145/2068816.2068852

30. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of informa-
tion diffusion across topics: idioms, political hashtags, and complex contagion on
twitter. In: Proceedings of the 20th International Conference on World Wide Web,
WWW 2011, pp. 695–704. ACM, New York (2011),
http://doi.acm.org/10.1145/1963405.1963503

31. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International Con-
ference on World Wide Web, WWW 2010, pp. 851–860. ACM, New York (2010),
http://doi.acm.org/10.1145/1772690.1772777

32. Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., Amblard, F.: Time-
varying graphs and social network analysis: Temporal indicators and metrics.
CoRR abs/1102.0629 (2011)

33. Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding: an Inquiry
into Human Knowledge Structures. Lawrence Erlbaum, Hillsdale (1977)

https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2880
http://doi.acm.org/10.1145/1378773.1378788
http://dl.acm.org/citation.cfm?id=1857999.1858020
http://dx.doi.org/10.1142/S0218001490000125
http://doi.acm.org/10.1145/1639714.1639794
http://doi.acm.org/10.1145/2068816.2068852
http://doi.acm.org/10.1145/1963405.1963503
http://doi.acm.org/10.1145/1772690.1772777

74 E.L. Tonkin, H.D. Pfeiffer, and G.J.L. Tourte

34. Shehata, S., Karray, F., Kamel, M.: Enhancing text retrieval performance using
conceptual ontological graph. In: Sixth IEEE International Conference on Data
Mining Workshops, ICDM Workshops 2006, pp. 39–44 (December 2006)

35. Shekar, C., Wakade, S., Liszka, K., Chan, C.C.: Mining pharmaceutical spam from
twitter. In: 2010 10th International Conference on Intelligent Systems Design and
Applications (ISDA), pp. 813–817 (November-December 2010)

36. Shekhar, S., Oliver, D.: Computational modeling of spatio-temporal social net-
works: A time-aggregated graph approach. In: Proceedings of the 2010 Specialist
Meeting on Spatio-Temporal Constraints on Social Networks (2010),
http://www.ncgia.ucsb.edu/projects/

spatio-temporal/docs/Shekhar-position.pdf

37. Sowa, J.F.: Conceptual structures: information processing in mind and machine.
Addison-Wesley Longman Publishing Co., Inc., Boston (1984)

38. Spasic, I., Ananiadou, S., McNaught, J., Kumar, A.: Text mining and ontologies in
biomedicine: Making sense of raw text. Briefings in Bioinformatics 6(3), 239–251
(2005), http://bib.oxfordjournals.org/content/6/3/239.abstract

39. Sullivan, J.: A tale of two microblogs in china. Media, Culture & Society 34(6),
773–783 (2012), http://mcs.sagepub.com/content/34/6/773.short

40. Tang, J., Musolesi, M., Mascolo, C., Latora, V.: Temporal distance metrics for
social network analysis. In: Proceedings of the 2nd ACM Workshop on Online
Social Networks, WOSN 2009, pp. 31–36. ACM, New York (2009),
http://doi.acm.org/10.1145/1592665.1592674

41. Thomas, K., Grier, C., Song, D., Paxson, V.: Suspended accounts in retrospect: an
analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM Conference
on Internet Measurement Conference, IMC 2011, pp. 243–258. ACM, New York
(2011), http://doi.acm.org/10.1145/2068816.2068840

42. Yi.tl: Url shorteners (2012), http://yi.tl/pages/urlshorteners.php (retrieved
May 15, 2012)

http://www.ncgia.ucsb.edu/projects/spatio-temporal/docs/Shekhar-position.pdf
http://www.ncgia.ucsb.edu/projects/spatio-temporal/docs/Shekhar-position.pdf
http://bib.oxfordjournals.org/content/6/3/239.abstract
http://mcs.sagepub.com/content/34/6/773.short
http://doi.acm.org/10.1145/1592665.1592674
http://doi.acm.org/10.1145/2068816.2068840
http://yi.tl/pages/urlshorteners.php

Taking SPARQL 1.1 Extensions into Account

in the SWIP System

Fabien Amarger, Ollivier Haemmerlé, Nathalie Hernandez, and Camille Pradel

IRIT, Université de Toulouse le Mirail,
Département de Mathématiques-Informatique, 5 allées Antonio Machado,

F-31058 Toulouse Cedex
fabien.amarger@gmail.com,

{ollivier.haemmerle,nathalie.hernandez,camille.pradel}@univ-tlse2.fr

Abstract. The SWIP system aims at hiding the complexity of express-
ing a query in a graph query language such as SPARQL. We propose a
mechanism by which a query expressed in natural language is translated
into a SPARQL query. Our system analyses the sentence in order to ex-
hibit concepts, instances and relations. Then it generates a query in an
internal format called the pivot language. Finally, it selects pre-written
query patterns and instantiates them with regard to the keywords of the
initial query. These queries are presented by means of explicative natural
language sentences among which the user can select the query he/she is
actually interested in. We are currently focusing on new kinds of queries
which are handled by the new version of our system, which is now based
on the 1.1 version of SPARQL.

1 Introduction

The amount of knowledge available on the semantic web increases everyday.
Many OWL ontologies and RDF triplestores are put online, especially in the
context of the linked open data initiative [1]. Accessing this knowledge is a real
challenge since it is difficult for an end-user to handle the complexity of the
“schemata” of these pieces of knowledge: in order to express a valid query on
the knowledge of the semantic web, the user needs to know the SPARQL query
language, the ontologies used to express the triples he/she wants to query on as
well as the “shape” of the considered RDF graphs.

Extensive work has been carried out in order to help users express queries
in graph formalisms (CGs, SPARQL. . .) during the recent period. The help
provided for the user can rely on graphical interfaces such as [2] for RQL queries,
[3] and [4] for SPARQL queries or [5] for conceptual graph queries. But such
graphical interfaces need the end-user to be familiar with and, moreover, to
understand the semantics of the expression of a query expressed in terms of
graphs. The work presented in [6] aims at extending the SPARQL language and
its querying mechanism in order to take into account keywords and jokers when
the user does not exactly know the schema he/she wants to query on. Here again,
such an approach requires that the user knows the SPARQL language.

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 75–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

76 F. Amarger et al.

Other works aim at the automatic or semi-automatic translation of formal
queries from user queries expressed in terms of keywords. The user expresses
his/her information need in an intuitive way, without having to know the query
language or the knowledge representation formalism used by the system. Some
works have already been proposed to generate formal queries from keywords,
resulting in different languages such as SeREQL [7], SPARQL [8,9] or conceptual
graphs [10].

Our work belongs to this family of approaches. In [10], we proposed a way
of building queries expressed in terms of conceptual graphs from user queries
composed of keywords. In [11] we extended the system in order to take into
account relations expressed by the user between the keywords he/she used in
his/her query. In [12], we adapted our system to the Semantic Web languages
instead of Conceptual Graphs. Such an adaptation was important for us in order
to evaluate the interest of our approach on large knowledge bases. Since then,
our system has taked into account queries expressed in natural language. Our
work is based on two observations. First, end-users want simple query languages
since they are used to this kind of querying on classic search engines on the Web.
Second, in the main real applications, the submitted queries are variations of a
few typical query families. We believe that each family can be prototyped and
represented with a pattern. These observations led us to propose a mechanism
allowing a user query expressed in terms of natural language to be translated into
a SPARQL query built by adapting pre-defined query patterns chosen according
to the natural language query.

The use of patterns allows us to avoid the step which consists in parsing
the ontology in order to find potential relations which can be used to link the
classes and instances identified in the natural language query, since the relevant
relations appear in the pre-defined patterns. The process takes advantage of the
relevant query families, which correspond to an actual information need. One of
the main issues of our approach is therefore to select the pattern which best fits
user needs. For the moment, patterns are built manually by domain experts.

The SWIP system presented in [12] was based on the 1.0 version of the
SPARQL semantic web query language. At the beginning of 2012, SPARQL
1.1 [13] was released by the W3C. This new version features several improve-
ments. We studied the new version and considered that the aggregates – which
are more or less the same as in SQL – offer the possibility of handling new
kinds of queries that were difficult to process in the previous version of SWIP.
This article presents the extension of the SWIP system by taking into account
the SPARQL 1.1 aggregates. For example, we are now capable of dealing with
queries such as “How many artists are involved in a given film?”, “The number
of awards an artist won in a competition?” or “What is the average length of a
film produced in 2012?”.

In section 2, we present the SWIP system briefly. Section 3 introduces the
aggregates in SPARQL 1.1. Section 4 details the extension of SWIP in order to
implement the aggregates. Finally, section 5 describes the implementation of our
system and presents a first experimentation.

Taking SPARQL 1.1 Extensions into Account in the SWIP System 77

2 The SWIP System

2.1 Overview

In order to allow end-users to express queries on knowledge bases expressed in
the Semantic Web languages (RDF triples built on OWL ontologies), we propose
a system by which a query expressed in natural language is translated into a
SPARQL query. The SWIP1 system was first presented in [11] in its preliminary
Conceptual Graph based version, then in [12] in its SPARQL version. We do not
present the SWIP system exhaustively in this article but briefly recall in this
section the main features of the system and how it works, before focusing on the
extensions of SWIP in section 4.

An overview of the process is presented in Figure 1. The global process of the
system is as follows: (i) the user expresses his/her query in terms of a natural
language query; (ii) the natural language query is then transmitted to a syntactic
dependency analyzer which produces a dependency graph. This graph provides
the main keywords of the query as well as the relations linking them ; they
are represented by means of what we call a pivot query; (iii) the keywords and
relations represented in the pivot query are matched to the elements of the
ontology – concepts, instances and relations which seem to correspond to them ;
(iv) the concepts, relations and instances obtained are mapped with the available
query patterns; (v) explicative sentences corresponding to each possible SPARQL
query are generated and proposed to the user, so that he/she can select the final
query which best fits his/her information need; (vi) finally, the actual SPARQL
query is generated and processed. In the following paragraphs, we present the
process of the SWIP system in more details.

Fig. 1. Overview of the process

1 Semantic Web Interface using Patterns.

78 F. Amarger et al.

2.2 From Natural Language Queries to Pivot Queries

Here we describe the first main step of the SWIP process. This step is illus-
trated in Figure 2. The user enters his/her query in natural language into the
system. The first translation is performed to generate the query in a simplified
and synthetic form that we call pivot language. This language is based on key-
words connected with relationships which are more or less explicit. The detailed
grammar of the pivot language is presented in [12]. We use this pivot language in
order to facilitate the implementation of multilingualism by means of a common
intermediate format.

Fig. 2. Interpretation of the natural language query

The pivot language we propose is an extension of the language composed of
keywords. The optional “?” symbol before a keyword means that this keyword
is the focus of the query: we want to obtain specific results corresponding to this
keyword.

A pivot query expressed in the pivot language is composed of a conjunction
of subqueries:

– unary subqueries, like ?"singer" which asks for the list of singers in the
knowledge base;

– binary subqueries which qualify a keyword with another keyword: the query
?"singer": "married" asks for the list of married singers;

– ternary subqueries which qualify, by means of a keyword, the relationship be-
tween two other keywords: the query ?"singer": "married to"=

"Madonna" asks for the singer(s) that is/are/was/weremarried to Madonna.

The translation of a natural language query into a pivot query is based on the
use of a syntactic dependance analyzer which produces a graph where nodes
correspond to the words of the sentence and edges to the grammatical depen-
dencies between them. Before parsing the query with the analyzer, a first stage
identifies in the sentence the named entities corresponding to knowledge base

Taking SPARQL 1.1 Extensions into Account in the SWIP System 79

resources. These entities are then considered as a whole and will not be sepa-
rated by the parser in the next stage. For example, in the sentence “what are the
films of Jean Dujardin”, “Jean Dujardin” will be considered as a named entity
as it is the label of an instance of Actor in the knowledge base. This stage is
particularly crucial when querying knowledge bases containing long labels, such
as group names or film titles made up of several words or even sometimes of a
full sentence.

Once the named entities are identified and the dependency graph is generated,
a set of rules are applied to construct the pivot query. The different clauses of
the sentence are considered. First, the head of the expression playing the role of
the subject in the main clause is identified as the keyword corresponding to the
object of the query. Then, if there is one, the expansion of the expression is used
to complete a binary subquery. For example, for the query “what are the films of
Jean Dujardin”, the generated pivot query will be ?"film": "Jean Dujardin".
If the clause is composed of a verb and a complement, a ternary subquery is con-
structed. For the query “what films were awarded prizes in Cannes?”, the corre-
sponding pivot query will be ?"movie": "awarded prizes in"= "Cannes". If
the query contains relative clauses, the same rules are applied. The entity ref-
erenced by the relative pronoun is expressed in the subquery with the keyword
used in the previous subquery. For example for the query “What are the awarded
films in which Jean Dujardin played?”, the corresponding pivot query will be
?"film": "awarded". "Jean Dujardin": "played in"= ?"film". These
rules might seem simple but we have observed that the structure of queries
expressed by end-users is generally simple. Note that we use a specific syntactic
analyzer, Maltparser [14], trained for each language we consider.

2.3 From Pivot to SPARQL

The second part of the process, which consists in the formalization of the pivot
query, is illustrated in Figure 3. It is divided in four substeps which are described
below. A more precise description of this step is given in [12].

Matching Keywords to Knowledge Base Entities. First, the ontology is
used to determine which elements (concepts, instances or relations) are closest to
the keywords appearing in the pivot query. This notion of closeness is based on
the similarity measure between strings, as the one presented in [15]. However, in
our system implementation, we do not use a classic method such as Levenshtein
distance, but the Lucene score function, saving us the task of implementing a
similarity measure and allowing us to benefit from the powerful Lucene index-
ation and “fuzzy matching” features, to handle different forms of lemmas and
mistypings.

For example, with the pivot query ?"film": "Jean Dujardin’", SWIP
searches for the labels corresponding to "film", then for the labels corresponding
to "Jean Dujardin". For each element of the pivot query, SWIP returns a list of
possible ontology entities weighted with respect to their relevance. The keyword
"film" is associated with the concept “Film” with a weight of 1 since one of

80 F. Amarger et al.

Fig. 3. Formalization of the pivot query

the labels of the concept “Film” is the string “Film”. It is also matched with
the concept “disaster film” because its label “disaster film’ obtained a similarity
measure of 0.625.

Mapping the Query Patterns to the Pivot Query. Once the ontology
elements are identified, SWIP has to find one or more query patterns which
fit these elements. The patterns are formally defined in [11,12]. Each pattern
corresponds to a family of queries which can be asked on the knowledge base.
Roughly speaking, each pattern is composed of: (i) a query graph which is a
pre-written generic query expressed in SPARQL corresponding to an identified
typical family of queries; (ii) a set of concepts and relations which belong to the
query graph and correspond to the characteristic elements of the pattern; (iii) a
model of an explicative sentence which will be used to generate the sentence in
natural language allowing the user to understand the meaning of the SPARQL
query. After the matching step, SWIP tries to associate the highest-weighted
concepts with the different patterns in order to exhibit the patterns which seem
to be used as a basis of relevant final queries.

Evaluating the Generated Mappings. The mapping step leads to a set
of query mappings, each one corresponding to a possible query interpretation.
These candidate interpretations must be ranked in order to present first to the
user the queries which seem to be the most relevant. To this end, this step
will allocate to each query mapping a relevance mark R, made up of several
partial marks, each one taking into account a number of parameters that seem
important to us:

– Element mapping relevance mark Rmap represents how much we trust the
different element mappings involved in the considered query mapping.

Taking SPARQL 1.1 Extensions into Account in the SWIP System 81

– Query coverage relevance mark RQcov takes into account the proportion of
the initial user query that was used to build the mapping.

– Pattern coverage relevance mark RPcov takes into account the proportion of
the pattern qualifying vertices that was used to build the mapping.

Generating the Query and the Explicative Sentence. The last step of
the SWIP process consists in presenting the results to the user, and allowing
him/her to query the knowledge base. For this, for each mapping between a set
of keywords and a pattern we generate a sentence in natural language explaining
the query represented by the mapping. We then present all the sentences to
the user in decreasing relevance order. Thus, reading the explicative sentences,
the user can easily understand the meaning of each query and choose the one
matching his/her need. The system then formulates from the chosen mapping
the final query expressed in SPARQL. Both operations, generating explicative
sentences and formulating the query graph, are trivial, thanks to the explicative
sentence attached to each pattern and to the graph architecture of each pattern.

For each mapping, the generation of an explicative sentence is carried out by
taking the generic sentence attached to the mapped pattern and personalizing it,
i.e. for each element mapping, the substring associated with the mapped pattern
element is replaced by an appropriated string that comes from the matched label
in the case of ontology elements or that is the string representation of the literal
value in the case of literals. As regards pattern elements which are not involved in
any element mapping, we keep the default associated substrings in the sentence.

The mapping generation is made more dynamic by adding the possibility of
using regular expressions on parts of patterns, drawing ideas from [16]; some
parts are omitted in the final mapping. This improves the readability of the ex-
plicative sentences of each mapping and makes patterns more generic (therefore
less numerous).

The query graph of the selected query mapping is the pattern graph, apart
from the odd detail; it is generated using the procedure presented in [10], except
that relation vertices can be modified by specialization or generalization, in the
same way as that for concept vertices.

3 SPARQL 1.1 Evolutions for Dealing with End-User
Queries

3.1 SPARQL 1.1 Update

The W3C SPARQL 1.1 recommendation aims at improving the initial version of
the language with incremental updates offering ascending compatibility with the
first version [17]. The main issue is to ease the generation of queries by expanding
the language syntax.

The most significant update for dealing with end-user queries is the possibility
of using aggregate functions. In the initial version of SPARQL, it was possible to
retrieve a solution set of triples according to a specific query pattern. With the

82 F. Amarger et al.

use of aggregates, it is now possible to partition this set according to specified
criteria and to compute a new solution using an aggregate on these partitions.
When needed, aggregates were previously calculated by the applications. Now,
however, they are calculated by the SPARQL engine.

The aggregate functions available in SPARQL1.1 are COUNT, SUM, MIN,
MAX, AVG, GROUP CONCAT and SAMPLE. As in SQL queries, aggregate
functions can be used either as projection or as selection attributes.

COUNT
The COUNT aggregate enables the counting of the triples contained in the so-
lution set as in the following query.

SELECT COUNT(?film)

WHERE

{

?film rdf:type cine:Film

}

The result of this query will be the integer corresponding to the number of
instances of the class Film in the triplestore.

The aggregate can also be used in the condition defined to select the partitions
to be considered as in the following query.

SELECT ?actor

WHERE

{

?film rdf:type cine:Film.

?actor rdf:type cine:Actor.

?film cine:hasForActor ?actor.

}

GROUP BY ?actor

HAVING COUNT(?film) > 5

This query will give all the actors who have played in more than 5 films. The
“GROUP BY” clause specifies on which attribute the partitions are built and
the “HAVING” clause specifies the condition that has to be satisfied by the
partition.

SUM - AVG - MIN - MAX
The aggregates (“SUM” for sum, “AVG” for average, “MIN” for minimum and
“MAX” for maximum) can be used in the same way as COUNT except that
they have to be applied on numerical attributes.

GROUP CONCAT - SAMPLE
These two aggregates are more specific to SPARQL 1.1. “GROUP CONCAT”
enables the generation of a string from all the triples contained in the solution

Taking SPARQL 1.1 Extensions into Account in the SWIP System 83

set. SAMPLE will randomly select an element in the solution set. The query
below will return the concatenation of the URI of each film contained in the
dataset, separated with the character “|”.

SELECT GROUP_CONCAT(?film ; separator="|")

WHERE

{

?film rdf:type cine:Film

}

3.2 Aggregates in End-User Queries

When generating SPARQL queries from natural language queries, considering
aggregates can be interesting for two reasons. End-users may want to retrieve
data that are not explicitly stated in the triplestore but can be calculated. Ex-
amples of queries can be: (i) “How many artists are involved in a given film?”,
(ii) “The number of awards an artist won in a competition?”, (iii) “What is
the average length of a film produced in 2012?”. As this information may be
calculated, they will most probably not be stated explicitly with an RDF triple
linking the considered resource to a property and to the corresponding value. In
its current state, this is what our system will look for. This kind of information
will have to be retrieved by generating the corresponding SPARQL query using
the aggregate function. For example, in the triplestore we consider for our ex-
periments, the SPARQL query corresponding to query i) will have to count all
the artists involved in a given film. However, for some queries the same question
words will not always lead to the use of aggregate functions. For example, for
the query “How many members are there in the jury of a given competition”,
the use of the aggregate “count” may not be relevant as a property can be ex-
plicitly stated. It is the case for this query as there is often no point in naming
all the jury members, but only the number of members. As there are two ways
of translating question words corresponding to aggregates in natural language
into SPARQL, both possibilities will have to be considered when generating the
SPARQL query. Aggregates will also be needed when the end-user wishes to
select data according to comparison with other data. Examples of queries can be
“What is the longest film ever made?”, “Who are the actors that have obtained
more than 2 awards”, ...

In order to evaluate the added value of considering aggregates in the SWIP
system, we asked 20 people to propose queries in natural language in the field of
the cinema. The queries were manually translated into SPARQL1.1 to query a
triplestore2. Among the 98 queries we collected, 9% of them implied the use of
aggregates in the SPARQL query. Moreover, in all of these queries, aggregates are
used as projection attributes. We thus decided to focus our work on this kind of
query. By considering aggregates as projection attributes, our system is now able
to deal with 99% of the queries asked by users. The remaining 1% corresponds

2 The triplestore is described at http://ontologies.alwaysdata.net/cinema

http://ontologies.alwaysdata.net/cinema

84 F. Amarger et al.

to queries that contain terms that are not yet in the considered ontology (for
example, SWIP cannot deal with the query “What is the filmography of Jean
Dujardin?” as filmography is not in the ontology).

4 Evolution of SWIP 1.0 into SWIP 1.1

Several extensions to the SWIP system have been proposed in order to generate
SPARQL queries with aggregate functions. The language proposed to represent
pivot queries has been updated. Note that by considering pivot queries it is
possible to dissociate treatments that are language-dependent from those that
transform the pivot query into the SPARQL query. As the interpretation of the
natural language query relies on the use of syntactic analyzers, we have improved
the rules leading to the generation of the pivot query by taking into consideration
typical words that may correspond to aggregates. The process generating the
SPARQL query has also been improved.

Pivot Query Language. The language defined to represent pivot queries has
been extended to take into account aggregate functions.

We propose to extend the pivot language by adding an optional subquery to
the initial grammar described in this section.

This subquery corresponds to the case when an aggregate is used as a projec-
tion attribute. The subquery will be composed of one of the following keywords:
COUNT, SUM, MIN, MAX, AVG. The semantics associated with the new sub-
query is that the aggregate function is applied on the projection attribute rep-
resented by the character ? in the query.

Definition 1. q is a well formed query in the pivot language if it conforms to
the following grammar, given in Backus-Naur form.

query : := subquerySe t (” . ” subquerySe t)∗ (” . ”)? ((”COUNT”
| ”MAX” | ”MIN” | ”AVG” | ”SUM”) (” . ”)?)?

subquerySe t : := keyword (” : ” keyword (”=”keyword (” ,
” keyword)∗)?)?

keyword : := (’ a ’ . . ’ z ’ | ’A’ . . ’ Z ’ | ’ ’) ((’ a ’ . . ’ z ’ |
’A’ . . ’ Z ’ | ’ 0 ’ . . ’ 9 ’ | ” ”))∗

For example, the query “how many artists are involved in The Artist” corre-
sponds to the pivot query : ?"artist":"involved in"="The Artist".COUNT

From the Natural Language Query to the Pivot Query. The pivot query
is built automatically from the query in natural language with rules defined on
the output of a syntactic analyzer.

To detect queries which could need the use of an aggregate once transformed
in SPARQL, we have built a dictionary for each language we consider (French

Taking SPARQL 1.1 Extensions into Account in the SWIP System 85

and English) stating, for each aggregate and condition, terms that may refer
to them. The dictionary has been constructed by analyzing manually a corpus
of approximately 100 queries in each language. A sample of the dictionary for
English is presented in the following table:

Aggregate Corresponding words
COUNT “The number of”, “How many”, ...
SUM “The sum”, “add”, “adding”, ...
MIN “The minimum”, “minimum”,
MAX “The maximum”, “maximum”,
AVG “The average”, “average”, ...

The words defined in the dictionary are searched in the syntactic dependencies
graph given by the analyzer.

If one of them is found to be depending directly on the head of the expression
playing the role of the subject in the sentence (often found after the question
word), a subquery composed of the corresponding aggregate is added to the pivot
query. Dictionary words can be found in the direct context of the subject in the
following queries : “How many artists are involved in a given film?”, “What is
the number of awards an artist won in a competition?”, “What is the average
length of a film produced in 2012?”. The remaining parts of the sentences are
analyzed as in the previous version of SWIP.

In order to deal with the case when the data does not need to be calculated
with an aggregate function because it is explicitly stated in the data set with a
property and its corresponding value, a pivot query is also constructed without
paying any specific attention to words from the dictionary. The pivot query is
thus generated as in the previous version of SWIP. For example, for the query
“What is the number of members in the Oscar jury?”, the second pivot query
will be "member":"?number","member":"jury"="Oscar".

From the Pivot Query to the SPARQL Query. To generate the SPARQL
query, the two pivot queries are mapped to the patterns. For the query contain-
ing the aggregate subquery, the mapping process is the same as in the previous
version of the system as we have chosen to ignore the possible aggregate sub-
queries composing the pivot query during this phase. The main reason is that we
consider than aggregate functions can be used on any of the qualifying concepts
of the patterns and that the need for an aggregate will not be an indication for
discriminating one pattern from another. Patterns represent information needs
that can be expressed differently. The same pattern can map a query which may
or may not need an aggregate in its interpretation.

Once the patterns are ranked according to the pivot query, the eventual ag-
gregate subqueries are considered for completing the generated descriptive sen-
tences. The goal is to show the user how the aggregate has been interpreted.
The name of the aggregate is added in brackets before the term corresponding
to the subject of the aggregate.

86 F. Amarger et al.

The SPARQL query is generated according to the sentence chosen by the user.
The aggregate is added in the SELECT clause.

5 Implementation and Experimentation

5.1 Implementation

The improvements presented in the previous section have been implemented in
the SWIP system. A graphical user interface has been added to the system,
developed with the JQuery technology. We have implemented a simple interface
with two text fields and very few buttons, as can be seen in Figure 4. The first
text field is used so that the user can enter his/her query in natural language.
The “translate” button generates the pivot language query related to the natural
language query. The “search” button generates all the possible SPARQL queries.

When the user clicks on the search button, SWIP searches all the possible
mappings to generate the best SPARQL queries, which are displayed on a dy-
namic table, as can be seen on Figure 5. All the results are displayed sorted by
score (here, the “rel” column) as is the generated sentence associated with the
SPARQL queries directly. To indicate the searched element on the query on the
sentence, it is preceded by the “?” character. There are some selections available
directly on the sentence to allow the user to modify the query. For example, if
he/she wants to generalize a specific element. On each row there is a “+” button
to display all the details of the query, the SPARQL query associated with it

Fig. 4. SWIP interface

Fig. 5. SWIP interface - Generated SPARQL queries

Taking SPARQL 1.1 Extensions into Account in the SWIP System 87

and the mappings generated by SWIP. A double click on a row will execute the
SPARQL query directly on the SPARQL endpoint to finally obtain the answer
to the initial question. The answer is displayed on another table, next to the
“Results” tab.

5.2 Experimentation

As explained in section 3, 9% of the queries collected on the field of the cinema
implied the use of aggregates as projection attributes when translated manually
into SPARQL.

In order to evaluate our approach, we compared the SPARQL queries gener-
ated by the new version of SWIP with the manually written query. For 100%, the
“right” query appears in the first three propositions. This means that the gener-
ated pivot query is mapped relatively correctly with the right pattern. Moreover,
the descriptive sentence obviously shows the right interpretation. This means
that it is not difficult for the end-user to select the right query to generate.

We also considered the generated queries in which a dictionary word suggests
that an aggregate function needs to be used but for which we have not used an
aggregate in the manually built SPARQL query. This kind of query represents
4% of the total queries. For 50% of them, the first proposition made by SWIP is
the correct one. When SWIP gives a wrong interpretation (i.e. an interpretation
considering an aggregate), it is because the label of property that must be used
in the query has not been identified correctly in the query. For example, in the
query “how many members are there in the jury of the oscars” the property
“numberOfMember” is mapped with too low a score to “how many members”.

The evaluation is encouraging but we are currently looking for a larger set of
queries to expand it.

6 Conclusion and Future Work

In this paper, we proposed a development of the SWIP system introduced
in [10,11,12], for the system to take advantage of an enhancement of the SPARQL
1.1 query language: the aggregates. For this, we proposed an evolution of the
pivot query language, and adapted the query interpretation process to make it
take the aggregates into account.

The first evaluation results are very encouraging. We can now handle some
queries that previously could not be processed.

The system has been provided with a graphical user interface which is very
simple: the users are able to express their queries, and then choose the best query
and modify it if necessary.

The preliminary step of building query patterns is done manually and thus
requires a large amount of work. Moreover, this step must be repeated each time
we want to address a new knowledge base. This is why the automatic or assisted
pattern generation is the last important task we need to carry out to obtain a
fully functional system. We have two potential leads for this purpose: building

88 F. Amarger et al.

patterns covering a set of graph queries, or learning these patterns from a set of
natural language queries. At first glance, the first method seems to be the easier
to implement, since the input of this method consists of formal structures which
are easy to handle. However, end user queries expressed in a graph formalism
could be costly to obtain in practice, when natural language queries on a domain
should be easy to find, looking on forums, FAQs, or simply asking users.

Moreover, we plan to extend our work in two other directions:

– we are currently looking for a larger set to evaluate our approach more
precisely in order to identify its drawbacks; we are developing a partnership
with the IRSTEA (a French institute on ecology and agriculture) in order
to build a real application framework concerning French queries on organic
farming.

– in the near future we intend to consider aggregate functions as selection
attributes by means of nested subqueries which are also an evolution of
SPARQL1.1.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic
Web Inf. Syst. 5(3), 1–22 (2009)

2. Athanasis, N., Christophides, V., Kotzinos, D.: Generating On the Fly Queries for
the Semantic Web: The ICS-FORTH Graphical RQL Interface (GRQL). In: McIl-
raith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298,
pp. 486–501. Springer, Heidelberg (2004)

3. Russell, A., Smart, P.R.: Nitelight: A graphical editor for sparql queries. In: Bizer,
C., Joshi, A. (eds.) International Semantic Web Conference (Posters & Demos).
CEUR Workshop Proceedings, vol. 401. CEUR-WS.org (2008)

4. Ferré, S., Hermann, A.: Semantic Search: Reconciling Expressive Querying and
Exploratory Search. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp.
177–192. Springer, Heidelberg (2011)

5. CoGui. A conceptual graph editor. Web site (2009), http://www.lirmm.fr/cogui/
6. Elbassuoni, S., Ramanath, M., Schenkel, R., Weikum, G.: Searching rdf graphs

with sparql and keywords. IEEE Data Eng. Bull. 33(1), 16–24 (2010)
7. Lei, Y., Uren, V.S., Motta, E.: SemSearch: A Search Engine for the Semantic Web.

In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 238–245.
Springer, Heidelberg (2006)

8. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: Adapting Keyword
Query to Semantic Search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
694–707. Springer, Heidelberg (2007)

9. Tran, T., Wang, H., Rudolph, S., Cimiano, P.: Top-k exploration of query can-
didates for efficient keyword search on graph-shaped (rdf) data. In: ICDE, pp.
405–416. IEEE (2009)

10. Comparot, C., Haemmerlé, O., Hernandez, N.: An Easy Way of Expressing Con-
ceptual Graph Queries from Keywords and Query Patterns. In: Croitoru, M., Ferré,
S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 84–96. Springer, Heidelberg
(2010)

http://www.lirmm.fr/cogui/

Taking SPARQL 1.1 Extensions into Account in the SWIP System 89

11. Pradel, C., Haemmerlé, O., Hernandez, N.: Expressing Conceptual Graph Queries
from Patterns: How to Take into Account the Relations. In: Andrews, S., Polovina,
S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 229–242.
Springer, Heidelberg (2011)

12. Pradel, C., Haemmerlé, O., Hernandez, N.: A Semantic Web Interface Using Pat-
terns: The SWIP System. In: Croitoru, M., Rudolph, S., Wilson, N., Howse, J.,
Corby, O. (eds.) GKR 2011. LNCS, vol. 7205, pp. 172–187. Springer, Heidelberg
(2012)

13. Harris, S., Seaborne, A.: Sparql 1.1 query language. w3c working draft (July 24,
2012), World Wide Web Consortium, http://www.w3.org/TR/sparql11-query

14. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S.,
Marsi, E.: Maltparser: A language-independent system for data-driven dependency
parsing. Natural Language Engineering 13(02), 95–135 (2007)

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 707–710 (1966)

16. Alkhateeb, F., Baget, J.-F., Euzenat, J.: Extending sparql with regular expression
patterns (for querying rdf). J. Web Sem. 7(2), 57–73 (2009)

17. Kjernsmo, K., Passant, A.: Sparql new features and rationale. World Wide Web
Consortium, Working Draft WD-sparql-features-20090702 (2009)

http://www.w3.org/TR/sparql11-query

System Architecture to Implement a Conceptual Graphs
Storage in an RDF Quad Store

Khalil Ben Mohamed, Benjamin Chu Min Xian, and Dickson Lukose

MIMOS Berhad,Technology Park Malaysia, 57000 Kuala Lumpur, Malaysia
{khalil.ben,mx.chu,dickson.lukose}@mimos.my

Abstract. With the growth of interest in semantics around the world, we believe
that conceptual graphs have an important role to play. However, from the best of
our knowledge, there is a lack of conceptual graphs storage and retrieval engine
capable of scaling up. In this paper, we propose to utilize the power of the RDF
stores, and present a complete system and methods to implement an efficient con-
ceptual graphs storage and retrieval engine in an RDF store. We translate concep-
tual graphs knowledge bases into RDF knowledge bases, create an external index
of the conceptual graphs and use the index to efficiently retrieve a set of candi-
date conceptual graphs in response to an expanded user query. We also discuss
several heuristics which aim to speed up the data retrieval process, and present
preliminary experimental results using the different heuristics.

1 Introduction

Over the last decade, we have witnessed a tremendous growth of interest on the se-
mantic web and semantic technologies in general. The Linked Open Data initiative1 is
an exceptional example of this seemingly unstoppable movement, containing as per as
September 2011 more than 300 very huge datasets with over 31 billion triples of infor-
mation. Consequently, the semantic web language RDF [Hay04] has become the main
standard to model and engineer knowledge bases which are now emerging from all
around the world. Besides, very large RDF data stores (e.g. triple or quad stores) have
been designed, which have proven their efficiency in terms of scalability and retrieval
speed (see for example [FCB12] and [GM10]).

The Conceptual Graphs (CGs), a well-established knowledge representation and rea-
soning formalism, were first introduced by J.F. Sowa in 1976 [Sow76]. They have been
successfully applied at the end of the twentieth century to diverse Artificial Intelligence
problems such as natural language processing and expert systems, and have continu-
ously been enriched over the years [CM09]. Nevertheless the CGs community does
not play a significant role in the semantic web movement as important as they should,
as recently stated in a position paper by Rudolph et al. [RKH]. In 2005, Dieng-Kuntz
and Corby had already outlined the advantages of the CGs formalism for the seman-
tic web through several real-world applications [DKC05], and more recently Da Silva
et al. made an attempt to answer the challenging question “How to store large knowl-
edge bases to be able to scale up ontological conjunctive query answering?” [dBC11].

1 http://linkeddata.org/

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 90–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://linkeddata.org/

System Architecture to Implement a CGs Storage 91

To the best of our knowledge there exist no CGs data storages capable of scaling
up, i.e. storing very large CGs knowledge bases (e.g. millions or trillions of data) while
keeping good data retrieval performances, although several tools have been proposed
over the years. The first attempt was made in 1992 by Ellis and Levinson [EL92] who
initiated the PEIRCE project, an international conjoint effort with the aim of building
an industrial strength conceptual graphs workbench, but the project suddenly stopped
in its early stages. The second attempt was initiated by Haemmerlé in 1994 who created
CoGITo, a conceptual graphs library. Since 1994 it has been continuously enhanced
and renamed to CoGITaNT in 1998 [GS98][coga], and CoGui, a free graph-based vi-
sual tool using the CoGITaNT library has recently been developed [cogb]. Nevertheless
using these tools as they are imply loading the entire datasets into memory for each
searching-retrieving request.

Moreover, the lack of scalable storage and retrieval engines for conceptual graphs
makes impossible the use of conceptual graphs in softwares designed for commercial-
ization. Indeed, to enter the market a software must among others respond “in the blink
of an eye” to user queries. We believe that this scalability issue plays an important role
for the CGs not to be popular in view of the current concerns of dealing with very large
amounts of data. In this paper we address this issue and propose to take advantage of
the powerful and scalable RDF stores to implement a CGs storage and retrieval engine
helping to filter the parts of the datasets in which answers to a user query may be found.

We propose a system and methods to implement an efficient CGs storage and re-
trieval engine in an RDF triple store. We first present the overall architecture of our
system, with its components and the flows respectively for data indexing and data re-
trieval. In order to store and index CGs knowledge bases, we first translate them into an
RDF notation. We rely on the translations from CGs to RDF and RDF to CGs proposed
by Baget et al [BCG+10] that we extend to consider the graph name parameter. Then,
we create three indexes (one for each object of a CGs vocabulary) by considering the
concepts, relations and individuals in the graphs. To retrieve the stored data in response
to a structured user query, we first expand the query according to a CGs vocabulary,
and provide different retrieval heuristics to return a set of candidate CGs in which an
answer to the query may be found. Finally, we show preliminary experiments using
different benchmarks, regarding the system efficiency in terms of speed and accuracy
while using different heuristics.

Paper layout. Section 2 recalls the basics of conceptual graphs, RDF and indexing tech-
niques. In Section 3, we present the architecture of our conceptual graphs storage and
retrieval engine, and the storage and retrieval methods that we have used. Section 4
presents preliminary experimental results of our system using different heuristics. The
prospects of this work are outlined in Section 5.

2 Preliminaries

In this section, we present a brief overview of the CGs and the RDF formalisms through
some fundamental notions which are used in the following, and a general overview of
RDF stores and indexing techniques.

92 K.B. Mohamed, B.C. Min Xian, and D. Lukose

2.1 Conceptual Graphs

Conceptual Graphs (CGs) are a knowledge representation and reasoning formalism
based on labelled graphs. It was introduced by J.F. Sowa in 1976 [Sow76], who wrote
the first book on CGs in 1984 [Sow84]. Since 1984, it has been enriched and further
developed by the CGs community (see [CM09] for a synthesis of the results obtained
in the last decades). In this formalism, knowledge is represented as labelled graphs, and
the reasoning mechanisms are graph operations. Moreover, the reasoning is logically
founded, which guarantees the obtained results.

A conceptual graph (CG) is a bipartite graph G with two kinds of nodes: concept
nodes and relation nodes. The former represents entities while the latter represents the
relations between these entities. Each node has a type, e.g. “Car” or “Person” for a
concept node and “belongTo” or “possess” for a relation node. In addition, a concept
node is either individual or generic: it has respectively a marker which represents a
known entity (e.g. “France”, “John”) or no marker which represents an unknown entity
(noted ∗ in the figures). In the figures, the concept nodes are represented as rectangles
and the relation nodes as ovals, and the edges linking a relation node r to its neighbor
concept nodes are labelled from 1 to the arity of r (i.e. its number of neighbors). Figure
1 shows an example of two simple CGs. Intuitively, G1 and G2 can be respectively read
as “the human A has as father the Man B who has as mother an unknown woman” and
“the animal C belongs to the woman D and it holds something”.

holdbelongTo
1

1
Human: A hasFather

2 1 hasMother 2

12 2

G 1

G2

Man: B

Woman: D Animal: C

Woman: *

T: *

Fig. 1. Two basic conceptual graphs

The labels in the nodes (types and markers) are taken from a vocabulary V which
can be more or less rich. A vocabulary V is composed of three parts: a specialization
order on the concept types, a specialization order on the relation types, and a set of
individuals. It defines the skeleton on which the conceptual graphs are built. In this pa-
per we consider a fragment of the Basic Conceptual Graphs Vocabulary [CM09], more
precisely a triple (TC , TR, I) where (1) TC and TR are finite pairwise disjoints sets, (2)
TC , the concept types hierarchy, is a set of concept types partially ordered by the rela-
tion ≤ (e.g. Man ≤ Human represents that Man is a specialization of Human), (3)
TR, the relation types (of arity 2) hierarchy, is a set of relation types partially ordered
by the relation≤, (4) I is the set of individual markers. In the following such a triple is
simply denoted CGs vocabulary. Figure 2 shows an example of a CGs vocabulary (the
set of individuals is omitted).

A simple extension of the vocabulary is usually considered in order to restrict the
domain (resp. the range) of a relation type to a concept type. We call signature of a

System Architecture to Implement a CGs Storage 93

Human Animal

Man Woman

hasParenthold

hasFather hasMother

belongTo

2T T

Fig. 2. A CGs vocabulary

relation type r the pair (c1, c2) where c1 ∈ TC and c2 ∈ TC . For example (Human,Man)
is a possible signature for the relation type hasFather.

Finally, we give some notions used in the following: we call CGs knowledge base
(CGs KB) a pair (V , (F1, . . . , Fm)) where V = (TC , TR, I) is a CGs vocabulary and
(F1, . . . , Fm) a list of CGs representing factual knowledge, denoted CGs facts (e.g. the
pair composed of the vocabulary in Figure 2 and the CGs in Figure 1 forms a CGs KB).
Let t be a concept or relation type and V a vocabulary, we call descendants of t w.r.t. V
the types t1, . . . , tn s. t. ti ≤ t for i = 1 . . . n (e.g. the descendants of � w.r.t. the CGs
vocabulary in Figure 2 are Human, Man, Woman and Animal). We call ancestors of t
w.r.t. V the set t1, . . . , tn s. t. t ≤ ti for i = 1 . . . n.

2.2 RDF/RDFS

The Resource Description Framework (RDF), introduced by the World Wide Web Con-
sortium (W3C), is a metadata model designed as the standard for the semantic web
[Hay04]. It enables the encoding, exchange and reuse of structured metadata (also called
semantic annotations), as well as metadata interoperability. It is based upon the idea of
making statements about resources (in particular Web resources) by a set of triples of
the form (subject, predicate, object) (denoted (s,p,o) in the following). The subject de-
notes the resource, and the predicate denotes properties of the resource and expresses a
relationship between the subject and the object. Figure 3 shows a set of RDF triples that
“naturally” corresponds to the CGs in Figure 1, where labels starting with an under-
score denote a blank node, i.e. an anonymous resource. Note that a set of RDF triples
can also be visualized as a graph.

<: A > < rdf : type > <: Human > <: A > <: hasFather > <: B >
<: B > < rdf : type > <: Man > <: B > <: hasMother > b1
b1 < rdf : type > <: Woman >

<: D > < rdf : type > <: Woman > <: C > <: belongTo > <: D >
<: C > < rdf : type > <: Animal > <: C > <: hold > b2
b2 < rdf : type > <: � >

Fig. 3. RDF triples corresponding to the example in Figure 1

94 K.B. Mohamed, B.C. Min Xian, and D. Lukose

The Resource Description Framework Schema (RDFS) extends RDF by adding a
lightweight ontology. It allows describing taxonomies of classes and properties via
the subClassOf and subPropertyOf relations, and extends the definition of some el-
ements of RDF (e.g. it sets the domain and range of the properties via the domain
and range relations). For example the triples (:Woman rdf:type rdfs:Class), (:Human
rdf:type rdfs:Class) and (:Woman rdfs:subClassOf :Human) express that Woman and
Human are classes and that Woman ≤ Human, while the triples (:hasFather rdf:type
rdf:Property), (:hasFather rdfs:domain :Human) and (:hasFather rdfs:range :Man) ex-
press that hasFather is a property with signature (Human,Man).

In addition, a set of RDF triples (a graph) S can be clustered by assigning to each
triple (s, p, o) ∈ S a unique graph name (say g), i.e. we extend the triples to quads
of the form (s,p,o,g). The set of quads sharing the same graph name is called a named
graph. Such named graphs are particularly useful for managing sets of RDF data within
an RDF store (see Section 3.2).

2.3 RDF Store and Indexing Techniques

An RDF store (or triple store) is a system designed for the storage and retrieval of RDF
triples. Like a relational database, triples are stored and retrieved via a query language
(SQL for relational databases and SPARQL for RDF stores), but in contrast with a
relational database, a triple store is optimized for triples and graph-based operations. A
triple store usually contains an internal indexing of its content which is user settable, as
well as RDF reasoning capabilities. We call quad store a triple store with the ability to
deal with quads.

Over the last decade, very large triple/quad stores have been developed, and they
have proven their efficiency in terms of scalability and retrieval speed (see for exam-
ple [FCB12] and [GM10]). For example the quad store Allegro Graph (AG), which is
equipped with internal indexing of the data and reasoning capabilities, is capable to
scale to trillions of RDF triples while still providing outstanding data retrieval perfor-
mances [Inc10]. The key of AG high performances partly resides in its internal index.
For instance if the internal index has been built based on the graph name, when a quad
q = (s, p, o, gn) is searched, the system will automatically match gn to its internal
index and only go through the portion of triples referring to gn.

More generally, in a data storage and retrieval management system the indexing of
the data is one of the most critical processes in order to speed up the retrieval. Accord-
ing to the nature of the data (e.g. texts, graphs), many indexing methods have been pro-
posed, and we only describe a few of them in the following. Inverted indexes are one of
the most popular data structures used in document retrieval systems [ZMR98][BCC10].
An inverted index stores a mapping from content, such as words or numbers, to its lo-
cations in a set of repositories. It is used on a large scale for example in search engines.
For graph-based indexing approaches, Yan et al. propose a triple store indexing method
based on graph partitioning [YWZ+09]. They consider the triple store as a big graph,
partition it into multiple subgraphs and index each subgraph by considering the atomic
data (e.g. concept type) that appear in it. The main drawback of this method is that re-
dundant information, more specifically the “cut points”, is stored in several subgraphs
to ensure the correctness of the method. Picalausa et al. propose to index the triple store

System Architecture to Implement a CGs Storage 95

according to the structure of its content [PLF+12]. This structural index is essentially a
reduced version of the triple store content where nodes have been merged according to
some notion of structural similarity. Zhao et al. propose an indexing method based on a
specific logic graph structure, a star graph [ZQZ10]. Finally Sakr and Al-Naymat have
recently exposed an overview of different techniques for indexing and querying graph
databases [SAN11].

As a first version of our CGs storage and retrieval system we use the inverted index-
ing techniques to capture the appearance of terms (e.g. concept type) in the graphs (see
Section 3.2). Other indexing methods would be tackled in the next developments of our
system as mentioned in the prospects (see Section 5).

3 Proposed CGs Storage and Retrieval Engine

In this section, we present the overall architecture of our proposed CGs storage and
retrieval engine, the methods to store and index a CGs KB, and the implemented data
retrieval mechanisms.

3.1 System Architecture

The overall system architecture is shown in Figure 4. It consists of six main compo-
nents: user interface, CGs to RDF translator, indexer, expander, selector and RDF to
CGs translator. A brief description of these components follows:

1. User Interface (UI): the user accesses the system via a UI allowing to store CGs
KBs, to retrieve stored CGs via user queries and to display the results.

2. CGs to RDF Translator: it takes as input a CGs KB and translates it directly to an
RDF KB (e.g. a CGs fact is translated into an RDF named graph) which is stored
in an RDF quad store.

3. Indexer: it takes an RDF quad store as input and produces an index of the RDF
named graphs content.

4. Expander: it takes as input a structured user query and expands it according to the
vocabulary stored in the RDF quad store, i.e. it adds for each concept or relation
type its descendants.

5. Selector: it takes as input the expanded user query, and selects a set of candidates
RDF named graphs by exploring the created index.

6. RDF to CGs Translator: it takes as input a set of candidate RDF named graphs and
translate them into CGs facts.

In the following subsections, each component is discussed in detail.

3.2 Storage and Indexing

This subsection describes the mechanisms used to store and index a CGs KB. It consists
of translating a CGs KB into an RDF KB which is stored in an RDF quad store (CGs to
RDF Translator) and indexing the RDF quad store (Indexer).

96 K.B. Mohamed, B.C. Min Xian, and D. Lukose

Fig. 4. Overall system architecture of the CGs storage and retrieval engine

Translation from Conceptual Graphs to RDF. The translation from a CGs KB to an
RDF KB mostly relies on the work of Baget et al [BCG+10]. In this work, the authors
present sound and complete translations from CGs to RDF and from RDF to CGs. The
vocabulary and the facts are translated into RDF triples and vice versa without loss of
information (e.g. Figures 1 and 3).

We slightly adapt these translations by adding a new parameter, the graph name.
Thus for example we can gather together all the triples related to the CGs concept
types hierarchy into a named graph called “conceptTypeHierarchy”. This clustering will
speed up other processes (e.g. for the descendants of a concept type, we can quickly go
through the portion of triples corresponding to the concept types hierarchy by using the
quad store’s internal index). In addition the graph name will be used for building an
external index of the content of the named graphs for retrieval purpose. More precisely,
we extend the translation of Baget et al. from triples to quads as following:

• CGs Vocabulary to RDF Ontology
• Generate a unique graph identifier for the vocabulary’s hierarchies, say cth for

the concept types hierarchy and rth for the relation types hierarchy2

• For all concept types c, add (c, rdf:type, rdfs:Class, cth)
• For all concept types c1 and c2 s. t. c2 ≤ c1, add (c2, rdf:subClassOf, c1, cth)
• For all concept types c and its label l, add (c, rdfs:label, l, cth)

2 Note that a unique graph identifier could be generated for the concept types, the relation types
and the relations’ signatures.

System Architecture to Implement a CGs Storage 97

• For all relation types r, add (r, rdf:type, rdf:Property, rth)
• For all signatures (t1,t2) of a relation type r, add (r, rdfs:domain, t1, rth) and

(r, rdfs:range, t2, rth)
• For all relation types r1 and r2 s. t. r2 ≤ r1, add (r2, rdfs:subPropertyOf, r1,
rth)

• For all relation type r and its label l, add (r, rdfs:label, l, rth)
• CGs Fact g to RDF Named Graph

• Generate a unique graph identifier for g (say g-id)
• For all generic concept node c, assign to c a new blank node
• For all individual concept node c, assign to c the URI corresponding to its

individual marker
• For all concept node of type c and its assigned term (blank node or URI) t, add

(t, rdf:type, c, g-id)
• For all subgraph r(c1, c2) induced by a relation node r, add (c1, r, c2, g-id)

Figure 5 shows the quads obtained after applying the translation to the CGs in Figure 1.

<: A > < rdf : type > <: Human > <: g1 > <: A > <: hasFather > <: B > <: g1 >
<: B > < rdf : type > <: Man > <: g1 > <: B > <: hasMother > b1 <: g1 >
b1 < rdf : type > <: Woman > <: g1 >

<: D > < rdf : type > <: Woman > <: g2 > <: C > <: belongTo > <: D > <: g2 >
<: C > < rdf : type > <: Animal > <: g2 > <: C > <: hold > b2 <: g2 >
b2 < rdf : type > <: � > <: g2 >

Fig. 5. RDF quads obtained by translating the BCGs in Figure 1

External Index Construction. The next step consists of building an external index to
speed up the retrieval of the stored named graphs. We create three inverted indexes (one
for the concept types, one for the relation types and the last for the individuals) to index
the content of the named graphs. An inverted index is a two-column table, each row
representing a pair (term,{d1, . . . , dn}), where {d1, . . . , dn} is a set of data containing
term. In the following we only detail the concept types inverted index (CTII). The first
column of the CTII consists of concept type labels, and the second column consists of
sets of named graph labels. Each row represents a pair (c, gns) where c is a concept
type label and gns = {gn1, . . . , gnk} is a set of named graph labels in which c appears
(note that we do not consider the named graphs associated to the ontological part). In
the following an inverted index is viewed as a set of pairs (l, gns), where l is a label
and gns a set of named graph labels.

Algorithm 1 performs the construction of the inverted indexes. It takes a set of named
graphs gns = {gn1, . . . , gnn} as input and produces three inverted indexes namely
concept type inverted index (CTII), relation type inverted index (RTII) and individual
inverted index (III). The function isolatedNode takes a quad q = {s, p, o, gni} as input
and returns true if (s,p,o) represents an isolated node in the named graph (gni), false
otherwise.

Table 1 shows the inverted indexes built from the named graphs g1 and g2 created
from the CGs in Figure 1.

98 K.B. Mohamed, B.C. Min Xian, and D. Lukose

Algorithm 1. Inverted-Index-Builder(gn)
Input: a set of named graphs gns = {gn1, . . . , gnn}
Result: Three inverted indexes
begin

Let CTII , RTII and III be three empty inverted indexes ;
foreach named graph gni ∈ gns do

foreach quad q = {s, p, o, gni} s. t. p �= rdf:type OR isolatedNode(q) do
foreach term t ∈ {s, o} do

if t is an individual then
if (t, gns1) ∈ III then

Update III by replacing (t, gns1) with (t, gns1 ∪ {gni}) ;

else
Add (t, {gni}) to III ;

Let type(t) ← o1 s. t. q = {s, rdf:type, o1, gi} ∈ gi ;
if (type(t), gns2) ∈ CTII then

Update CTII by replacing (type(t), gns2) with (t, gns2 ∪ {gni}) ;

else
Add (type(t), {gni}) to CTII ;

if p �= rdf:type AND (p, gns3) ∈ RTII then
Update RTII by replacing (p, gns3) with (p, gns3 ∪ {gni}) ;

else
if p �= rdf:type then Add (p, gni) to RTII ;

return CTII , RTII and III ;
end

3.3 Retrieval Methods

In this section, we present the data retrieval methods which consist of expanding a user
query w.r.t. a vocabulary and selecting a set of candidate named graphs (i.e. in which an
answer may be found) by matching the expanded query to the inverted indexes. Several
heuristics to speed up the expansion of the query and the selection of the candidate
named graphs are also outlined.

Query Expansion. Once the knowledge base has been indexed, the end-user can start
retrieving its content by sending queries. In this paper we consider positive conjunctive
queries, which form a class of natural and frequently used queries and are considered
as the basic database queries [CM77], and we see them as a set of positive subgoals
q = {p1, . . . , pn}. Each subgoal is of the form c(x1) (resp. r(x2, x3)) where c is a
concept type (resp. r is a relation type) and x1, x2, x3 are variables or individuals (in
the following the variables start with a lowercase letter and the individuals start with a
capital letter). For example the query q = {Human(x), Human(B),�2(x,B)} asks
for all the humans who have any relation with the human B.

System Architecture to Implement a CGs Storage 99

Table 1. Inverted indexes built from the named graphs created from the CGs in Figure 1

CTII Concept Named Graphs
Human {g1}

Man {g1}
Woman {g1, g2}
Animal {g2}

T {g2}

RTII Relation Named Graphs
hasFather {g1}
hasMother {g1}
belongTo {g2}

hold {g2}

III Individual Named Graphs
A {g1}
B {g1}
C {g2}
D {g2}

To take into account the partial order between the concept (resp. relation) types, there
are two main methods:

1. Expanding CTII = {(c1, gns1), . . . , (cn, gnsk)} and RTII by propagating the
named graphs in which a concept (resp. relation) type appears to its ancestors (e.g.
if the concept type Man appears in the named graph gn and Man ≤ Human
then we add the information “Human appears in gn”. The main drawback of this
approach is that it is very time consuming since the slightest change in the type
hierarchies will force to either re-index the whole knowledge base or process heavy
procedures to rearrange the index.

2. Expanding the user query q, i.e. adding the descendants of the concepts and re-
lations appearing in q, thus “melting” the partial orders into q. Algorithm 2 and
its subalgorithm 3 give the details of the process. Note that Algorithm 2 takes as
input a preprocessed query q, i.e. a list composed of three sublists containing re-
spectively the concept types, relations types and individuals appearing in q. The
function descendants(t,V) returns all the descendants of t w.r.t. V .

Before giving an example, let us consider the following notions:

Definition 1 (Expanded Type). Let t be a type (concept or relation) and V a vocab-
ulary. The expanded type T of t is the set containing t and the set of its descendants
t1, . . . , tn w.r.t. V , i.e. T = {t, {t1, . . . , tn}} where ti ≤ t for i = 1 . . . n. We call t the
initial type and {t1, . . . , tn} the extension of t.

Definition 2 (Expanded Query). Let q = {c1, . . . , cm, r1, . . . , rn, I1, . . . , Ip} be a
(preprocessed) query. The expanded query EQ of q is obtained from q by replacing
each type t appearing in q by its expanded type T .

Example 1. Let us consider the query q = {Human(x), Human(B),�2(x,B)}. It
contains the concept type Human, the relation type �2 and the individual B. We start
expanding the concept type Human. According to the partial orders in Figure 2, the ex-
tension of the concept type Human is composed of the concept types Man and Woman.

100 K.B. Mohamed, B.C. Min Xian, and D. Lukose

Algorithm 2. Query-Expander(Q,d)
Input: a query q = {c1, . . . , cm, r1, . . . , rn, I1, . . . , Ip}
Result: the expanded query EQ of Q
begin

Let C ← ∅ and R ← ∅ ;
foreach concept type c appearing in q do

C ← C ∪ Type-Expander(c) ;

foreach relation type r appearing in q do
R ← R ∪ Type-Expander(r) ;

Let EQ ← {{C}, {R}, {I1, . . . , Ip}} ;
return EQ ;

end

Algorithm 3. Type-Expander(t)
Input: a concept type or relation type t
Data: a vocabulary V
Result: t and all its descendants
begin

D ←descendants(t,V) ;
if D is empty then return t ;
all − descendants ← ∅ ;
foreach ti ∈ D do

all-descendants ← all-descendants ∪ Type-Expander(ti) ;
return all-descendants ;

end

Thus we create the expanded concept C = {Human, {Man,Woman}}. We repeat
the process for�2 and we obtain the expanded relation
R = {�2, {belongTo, hold, hasParent, hasFather, hasMother}}. Finally we ob-
tain the expanded query EQ = {{C}, {R}, {B}}.

Candidate Graphs. The next step consists of “matching” the expanded query EQ to
the inverted indexes in order to retrieve a set of candidate named graphs, i.e. in which
an answer to the initial query may be found. It is roughly done through two main steps:
(1) let t be a concept type or a relation type (resp. an individual) in EQ and t1, . . . , tk
its extension. For each element e ∈ {t} ∪ {t1, . . . , tk} (resp. e ∈ {t}), we retrieve
from the index its assigned set of named graphs gns (empty if e does not appear in the
index). Then we compute the union of all obtained sets of named graphs. We repeat
this process for all concept types, relation types and individuals appearing in EQ and
eventually we obtain n unions of sets of named graphs (say U1, . . . , Un); (2) if there
exists an empty Ui ∈ {U1, . . . , Un} we return the empty set (there are no candidate
named graphs in which an answer to the initial query may be found, intuitively because
at least an element of the query can not be matched to any named graph). Otherwise we
return the set of candidate named graphs obtained from the intersection

⋂n
i=1 Ui.

System Architecture to Implement a CGs Storage 101

Example 2. Let us consider the expanded queryEQ= {{Human, {Man,Woman}},
{�2, {belongTo, hold, hasParent, hasFather, hasMother}}, {B}}. The matching
of each element of EQ to the indexes is given in Table 2. From the expanded concept
type we obtain U1 = {g1} ∪ {g1} ∪ {g1, g2} = {g1, g2}, from the expanded relation
type we obtain U2 = {g1, g2} and from the individual B we obtain U3 = {g1}. Finally
the set of candidate named graphs is gns = U1 ∩ U2 ∩ U3 = {g1}.

Table 2. Elements and the results of their matching to the inverted indexes

Human {g1}
Man {g1}

Woman {g1, g2}

�2 ∅
belongTo {g2}

hold {g2}
hasParent ∅
hasMother {g1}
hasFather {g1}

B {g1}

RDF to CGs Translator. This component takes as input a set of named graphs and
translate them into CGs. This translation also relies on the work done by Baget et al.
[BCG+10], excepted the manipulation of quads instead of triples. Then the candidate
CGs are returned to the user.

3.4 Heuristics

Finally we discuss several preprocess functions and heuristics which aim to meet end-
user requirements (e.g. response time) and speed up the retrieval processes. They con-
cern the query expansion and the candidate named graphs retrieval.

Type pruning. Let us consider the query containing the concept types c1 = Human
and c2 = Woman. According to the concept type hierarchy in Figure 2, their extensions
are respectively ext1 = {Man,Woman} and ext2 = ∅. It is straightforward to see
that the set of candidate named graphs retrieved by considering the concept types Hu-
man,Man,Woman (say U1) will include the candidate named graphs (say U2) retrieved
by considering the concept type Woman. As U2 ⊆ U1, the result of the intersection func-
tion U1∩U2 is U2. U1 is useless and thus c1 can be avoided without loss of information.
More generally, let q be a query, for each concept (resp. relation) type t appearing in
q, if a more specific concept (resp. relation) appears in Q then t can be avoided in the
retrieval processes.

Ordering of EQ elements. Notice that for each element of EQ if the computed union
(for expanded types) is empty then we can directly return the empty set, i.e. no candidate
named graphs fulfill the requirements of EQ. Note also that the intersection function
between two sets U1 and U2 is faster if one set is very small. Therefore in order to
prune as fast as possible an EQ (i.e. returning the empty set) or dealing as soon as
possible with a small set of candidate named graphs, the proposed heuristic consists of
ordering the treatment of the elements of EQ. The most “critical” elements would be

102 K.B. Mohamed, B.C. Min Xian, and D. Lukose

first analyzed. Individuals and the most specific concept types and relation types seem
the most critical elements, since it would be more difficult to find many named graphs
containing them than for example for a very general concept type with a big extension.

Type expansion depth. An option to speed up the retrieval process would be to restrict
the query expansion depth to a predefined constant. However in spite of the fact that a
more shallow expansion will increase the process speed, it will also imply a possible
loss of information since avoided specialized types could have led to an answer to the
query.

4 Experiments

In this section, we show a preliminary experimental work where we benchmark the two
heuristics Type Pruning and Ordering EQ described in Section 3.4.

4.1 Initial Setup

We consider a CGs KB which comprises a total of 81777 concepts, 45 relations, 23282
individuals and 1000 CGs facts of different sizes (from few different relation nodes
to more than 30). It has been automatically generated from a text document using an
intern text to CGs tool. The translation of the knowledge base into AllegroGraph quad
store took 18 seconds and the obtained quad store was set with an internal indexing on
graph names. The creation of the three inverted indexes took less than 5 minutes, and
the indexes were stored in three simple relational tables. In addition, we have randomly
generated a total of 3000 queries of different sizes. Table 3 shows the details of the three
generated query sets Q1, Q2 and Q3, each set containing 1000 random queries.

Table 3. Details of the generated query sets

Query Set Queries Content Queries Size
Q1 2 concept types, 1 relation type, 0 or 1 individual 3
Q2 3 or less concept types, 2 relation types, 1 individual 5
Q3 4 or less concept types, 3 relation types, 1 or 2 individuals 7

We measured the difficulty in terms of CPU time to expand the query, search the
index and retrieve the candidate named graphs. For each value of the varying parameter
(i.e. the query size), we considered 1000 queries and computed the mean search cost
of the results (i.e. the CPU time) on these queries. The program is written in Java.
The experiments were performed on a Dell Latitude E6410, equipped with a 2.6 GHz
Dual-Core CPU and 4G of RAM, under Windows.

4.2 Experimental Results

Figure 6 depicts the results obtained using four different heuristics (no heuristic, types
pruning, ordering and types pruning+ordering). As expected the increasing of the com-
plexity of the query (its size) increases the response time as well, since more processes
have to be done to expand, select and retrieve the candidate named graphs.

System Architecture to Implement a CGs Storage 103

Fig. 6. Influence of the heuristics to the execution time

Moreover we observe that the types pruning heuristic produces the worst results.
This is caused by the large concept types hierarchy, since the cost of checking if a
concept type is a subtype of another depends of the concept types hierarchy size. Indeed,
the difference is more obvious when there are more concept types in the query. For
example when query size = 7, it takes 15 seconds for the retrieval process. In contrast,
the ordering heuristic has the best response time for all the query sets. Relatively for all
queries, the retrieval process will take less than 2 seconds.

Finally, note that these are only preliminary results; further experiments are needed
in refining the results to provide a more comprehensive benchmarking evaluation.

5 Conclusion

In this paper, we propose a CGs storage and retrieval system architecture. On the one
hand we translate a CGs KB into an RDF KB which is stored in an RDF quad store and
create an external index of the CGs facts content, and on the other hand we retrieve a
set of candidates CGs facts in response to a query by expanding the query and filtering
the CGs facts based on several heuristics. Finally we provide a preliminary evaluation
of the system.

A direct perspective would be to extend the experiments to different datasets in order
to validate the preliminary results, to propose and validate new heuristics and finally to
compare our system with existing storage and retrieval systems.

104 K.B. Mohamed, B.C. Min Xian, and D. Lukose

Since the data retrieval would generally be computed at runtime in response of a user
query, a challenge would be to accurately estimate the required processing time by con-
sidering for example the structure and size of the knowledge base, the size of the index
and the query complexity. In addition, a desirable option would be to allow a timeout
ensuring that the user will get a set of candidate graphs to his query before reaching the
timeout. This implies major challenges s. t. how to orchestrate the processes in order
to fulfill the timeout requirement? The heuristics discussed in Section 3.4 offer a possi-
bility to partially handle this issue. Let us consider the type expansion depth heuristic:
if we first computed the average time needed to expand one level, we would be able to
estimate how deep we can expand the query in a certain time-frame.

References

[BCC10] Büttcher, S., Clarke, C., Cormack, G.: Information Retrieval: Implementing and
Evaluating Search Engines. MIT Press, Cambridge (2010)

[BCG+10] Baget, J.-F., Croitoru, M., Gutierrez, A., Leclère, M., Mugnier, M.-L.: Translations
between RDF(S) and conceptual graphs. In: Croitoru, M., Ferré, S., Lukose, D. (eds.)
ICCS 2010. LNCS, vol. 6208, pp. 28–41. Springer, Heidelberg (2010)

[CM77] Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in re-
lational databases. In: 9th ACM Symposium on Theory of Computing, pp. 77–90
(1977)

[CM09] Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation and
Reasoning—Computational Foundations of Conceptual Graphs. Advanced Informa-
tion and Knowledge Processing. Springer (2009)

[coga] The cogitant library
[cogb] Cogui: a graph-based visual tool for conceptual graphs
[dBC11] da Silva, B., Baget, J.-F., Croitoru, M.: Ontological conjunctive query answering

over semi-structured kbs. In: Proceedings of the 2011 IEEE 27th International Con-
ference on Data Engineering Workshops, pp. 118–123. IEEE Computer Society
(2011)

[DKC05] Dieng-Kuntz, R., Corby, O.: Conceptual Graphs for Semantic Web Applications. In:
Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596,
pp. 19–50. Springer, Heidelberg (2005)

[EL92] Ellis, G., Levinson, R.: The Birth of Peirce: A Conceptual Graphs Workbench. In:
Pfeiffer, H.D., Nagle, T.E. (eds.) Conceptual Structures: Theory and Implementa-
tion. LNCS, vol. 754, pp. 219–228. Springer, Heidelberg (1993)

[FCB12] Faye, D., Cure, O., Blin, G.: A survey of rdf storage approaches (2012)
[GM10] Gaignard, A., Montagnat, J.: Survey on semantic data stores and reasoning engines.

Research Report (2010)
[GS98] Genest, D., Salvat, É.: A Platform Allowing Typed Nested Graphs: How CoGITo Be-

came CoGITaNT. In: Mugnier, M.-L., Chein, M. (eds.) ICCS 1998. LNCS (LNAI),
vol. 1453, pp. 154–164. Springer, Heidelberg (1998)

[Hay04] Hayes, P.: Rdf semantics (2004)
[Inc10] Franz Inc. Allegrograph rdfstore version 3.3 lubm benchmark results (2010)
[PLF+12] Picalausa, F., Luo, Y., Fletcher, G.H.L., Hidders, J., Vansummeren, S.: A Structural

Approach to Indexing Triples. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O.,
Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 406–421. Springer, Heidelberg
(2012)

System Architecture to Implement a CGs Storage 105

[RKH] Rudolph, S., Krötzsch, M., Hitzler, P.: Quo vadis, cs?— on the (non)-impact of con-
ceptual structures on the semantic web (position paper)

[SAN11] Sakr, S., Al-Naymat, G.: An overview of graph indexing and querying techniques.
In: Sakr, S., Pardede, E. (eds.) Graph Data Management, pp. 71–88. IGI Global
(2011)

[Sow76] Sowa, J.F.: Conceptual graphs for a data base interface. IBM J. Res. Dev. 20(4),
336–357 (1976)

[Sow84] Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley (1984)

[YWZ+09] Yan, Y., Wang, C., Zhou, A., Qian, W., Ma, L., Pan, Y.: Efficient indices using graph
partitioning in rdf triple stores. In: Proceedings of the 2009 IEEE International Con-
ference on Data Engineering, pp. 1263–1266. IEEE Computer Society (2009)

[ZMR98] Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files for
text indexing. ACM Trans. Database Syst. 23(4), 453–490 (1998)

[ZQZ10] Zhao, B., Qian, W., Zhou, A.: Towards bipartite graph data management. In: Pro-
ceedings of the Second International Workshop on Cloud Data Management, pp.
55–62. ACM (2010)

Medical Archetypes and Information Extraction

Templates in Automatic Processing of Clinical
Narratives

Ivelina Nikolova1, Galia Angelova1,
Dimitar Tcharaktchiev2, and Svetla Boytcheva3

1 Institute of Information and Communication Technology,
Bulgarian Academy of Sciences, Sofia, Bulgaria

{iva,galia}@lml.bas.bg
2 University Specialised Hospital for Active Treatment of Endocrinology,

Medical University Sofia, Bulgaria
dimitardt@gmail.com

3 American University in Bulgaria, Blagoevgrad, Bulgaria
svetla.boytcheva@gmail.com

Abstract. This paper discusses the notion of medical archetype and the
manner how the archetype elements are documented in hospital patient
records. This is done by interpreting the archetypes as information ex-
traction templates in automatic text analysis of clinical narratives. The
extensive extraction experiments performed over thousands of anony-
mous discharge letters show the actual instantiation of the required and
expected items in the narrative clinical documentation; in fact much tacit
medical knowledge is implicitly presented in the real clinical texts. This
fact suggests that the archetype approach to defaults and inheritance
might need certain development.

Keywords: Clinical knowledge, Medical archetypes, NLP of clinical
narratives, Information extraction, Template filling.

1 Introduction

Archetypes are chunks of declarative medical knowledge that are designed to
capture maximally expressive and internationally reusable clinical information
units. They encode knowledge about clinical observations, evaluations, actions
and instructions in a coherent and holistic manner with the intension to present
language-independent specifications. Archetypes are based on conceptual struc-
tures of medical knowledge and provide standardised clinical content. Medical
ontologies conceptualise domain objects, actions and relationships among them;
the archetypes, representing the blueprints of defined medical domains, are fo-
cused on capturing clinical information about the patient. Archetypes are not
linked a priory to any medical terminology but they can refer to multiple exter-
nal medical classifications (e.g. SNOMED) from where controlled vocabularies

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 106–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Medical Archetypes and Information Extraction Templates 107

are incorporated as labels of archetype elements. The openEHR project1 aims
at the acquisition of a representative set of freely available archetypes thus en-
abling information sharing between clinical systems. Hundreds of archetypes in
ADL (Archetype Definition Language) are publicly available via the openEHR
Clinical Knowledge Manager. openEHR expresses health information systems
and interoperability mechanisms in UML (Unified Modelling Language).

Automatic processing of free clinical texts, however, might reveal whether
medical experts keep the requirements to document clinical units in a manner
which ensures their unambiguous export to other clinical systems. Analysing the
free text of 6,204 anonymous discharge letters of diabetic patients, we present
empirical observations whether the slots of the diabetic-relevant archetypes, pub-
lished by openEHR, are filled in by the necessary information of classification
codes or free text. In a sense we discuss how the theoretical models of clinical
knowledge are applied in practical settings when the medical case is documented.

The article is structured as follows. Section 2 overviews the notion of archetypes.
Section 3 discusses the archetypes as Information Extraction templates applied
in automatic text processing. Section 4 presents the experiments performed on
a large corpus of discharge letters. Section 5 contains some discussion and the
conclusion.

Fig. 1. The Clinical Investigator Record Ontology [1]

2 Archetypes as Conceptual Structures

Archetypes are designed during the last decade to make health information sys-
tems properly and safety interoperable [1]. They are based on the notion of
”recording” in medicine. The health record content is likely ”to be a small,
selective choice of notes about real events, situations etc. intended for interpre-
tation by other professionals rather than some more general notion of compre-
hensive fact representation”. Analysing the important types of information in

1 http://openehr.org, the openEHR Foundation.

http://openehr.org,

108 I. Nikolova et al.

the health care process, the authors propose the Clinical Investigator Record
Ontology where the observations (evidences) and opinions (inferences) are dif-
ferent categories as shown on Figure 1. This taxonomy provides the categories
in the Entry classes of the openEHR reference model. For our purposes we shall
be interested in the archetypes capturing the observations (findings of examina-
tions, measurement, questioning, or testing of the patient or related substance
like blood, tissue etc.), because automatic information extraction from clinical
narratives is most successful for declarative statements.

An archetype is a ”computable expression of a domain content model in the
form of structured constraint statements, based on a reference (information)
model” [2]. Archetypes define conceptual items and relationships among them as
well as constraints on the values of their instances: e.g. allowed types, ordering,
cardinality, (referent) values etc. We are interested mostly in the conceptual
background of the clinical archetype model which is defined together with the
openEHR software development requirements.

The Clinical Knowledge Manager supports two major kinds of archetypes:
the Electronic Health Record (EHR) Archetypes where patient-centered data is
kept and the Demographic Model Archetypes. The EHR Archetypes are Clus-
ters, Compositions, Elements, Entries, Sections and Structures. Figures 2–3 show
the Items of the ”Examination of thyroid” Cluster (the Header of the Cluster
is skipped as it contains metadata related to the creation, author, date etc.)
The indexing Keywords, included in the Header of this Cluster, are ”examina-
tion, physical, thyroid”. They are included manually in order to facilitate the
advanced search within the archetype collection. Figures 2–3 illustrate the hier-
archy of embedded (included) sub-clusters which are referred to by citation of the
archetype names e.g. an instance of openEHR-EHR-CLUSTER.inspection.v1 is
included in the description of the findings concerning the Left lateral lobe. We
note that a significant number of the descriptions are assumed to be typed in as
free or coded text, therefore the archetype is a kind of template where text frag-
ments might be entered in narrative form. Optional elements might be omitted
in the instances in case there is no abnormality observed during the examination.
Without entering in details we remind that declarative specifications are hard
to define and standardize for broader use; in addition the support and mainte-
nance of the archetype collection requires significant efforts. But despite these
shortcomings it is clear that the Archetype model responds to the needs of estab-
lishing standards in the EHR content (and the clinical documentation practice
in general) in order to ensure semantic interoperability between the healthcare
systems.

In 2008 the archetype approach to structuring patient-related records was ac-
cepted as ISO standard 13606-2:2008. It specifies the information architecture
required for interoperable communications between systems and services dealing
with EHR data [3]. In this way ISO 13606-2:2008 defines how to organise hier-
archically the EHR content, how to define the individual data items and their
aggregations, what types of values or measurement units are appropriate and
so on. Archetypes are viewed as a serialised representation, an exchange format

Medical Archetypes and Information Extraction Templates 109

Fig. 2. Items of the CLUSTER ”Examination of thyroid”

110 I. Nikolova et al.

Fig. 3. Items of the CLUSTER ”Examination of thyroid” (Continued)

Medical Archetypes and Information Extraction Templates 111

for communicating individual archetypes between archetype libraries. Current
efforts of the openEHR-related community are dedicated to the definition of
further archetypes at the optimal level of granularity and specificity in order to
ensure their wide adoption. In this way more medical experts could be involved in
the creation of archetype repositories. Best practices are sought to achieve multi-
professional clinical consensus. Having in mind all the recent developments, we
think that Natural Language Processing (NLP) of clinical narratives can help
much in the tests whether archetypes are properly defined. The automatic text
analysis might reveal the actual status of clinical event documentation and sug-
gest potential drawbacks in the archetype definition. This paper presents such
tests for some essential archetypes, related to diabetic patients.

Authoring and review of archetypes is viewed as a knowledge acquisition task
with highest priority. An Archetype Editorial Group has been established as
an expert clinical team to lead the authoring of archetypes within the openEHR
community. The national eHealth programs in several countries (Australia, Den-
mark, Singapore, Sweden, and UK) include archetype-related initiatives in order
to involve medical professionals, agencies and educational institutions into de-
velopment activities. International agreements should be sought by international
authorities (like the World Health Organisation and relevant standardisation
bodies). Actually the unification of clinical narrative content is a long process
which is still in its infantry. Nevertheless it is important that this process has
started and an ISO standard has been adopted.

At the end of this section we present the data fields included in two other
archetypes:

(i) Blood pressure (openEHR-EHR-OBSERVATION.blood pressure.v1) and
(ii) Body weight (openEHR-EHR-OBSERVATION.body weight.v1).

Extracting automatically these items from the discharge letters of diabetic pa-
tients we can check their availability and actual use in the clinical documentation.

3 Information Extraction Templates

Information Extraction (IE) is a popular technique for Natural Language Pro-
cessing (NLP) which aims at partial text understanding in order to provide fast
and efficient analysis of texts in specialised domains. The IE systems identify
specific events or topics, searching for relevant information only and disregard-
ing the remaining text fragments. IE typically extracts named entities and words
referring to objects or events in order to recognise their roles in event descrip-
tions. The identification is supported by the so called templates feature-value
structures that capture the entities recognised by the text analysers. Most gen-
erally, the IE success is measured by the accuracy of filling in the template slots
by proper words encountered in the text.

112 I. Nikolova et al.

Table 1. Entities included in the Blood Pressure (BP) archetype

Entity name Content Value

Systolic Peak systemic arterial BP Units: mm[Hg]

Diastolic Minimum systemic arterial BP Units: mm[Hg]

Mean arterial pres-
sure MAP

Average arterial pressure Units: mm[Hg]

Pulse pressure Difference between the systolic
and diastolic pressure

Units: mm[Hg]

Comment Comment about the measure-
ment

Free or coded text

Position Description Standing; Sitting; Reclining;
Lying; Lying with tilt to left

Confounding factors Free or coded text: factors that
may impact the measurement

For instance: level of anxiety;
pain or fever

Exertion Details about physical activity
undertaken at the time of mea-
surement

Includes openEHR-EHR-
CLUSTER.level of exertion.v1
and specialisations

Sleep status Supports interpretation of 24-
hours BP measurement

Alert & Awake; Sleeping

Tilt Surface craniocaudal tilt Angle, plane, degrees

Cuff size The size of the cuff used for the
measurement

Adult thigh; Large adult; Adult;
Small adult; Paediatric/Child;
Infant; Neonatal

Location /cluster

Location of measurement Body site where BP is recorded Right arm; Left arm; Left thigh;
Right wrist; Left wrist; Right
ankle; Left ankle; Finger; Toe;
Intra-arterial

Specific location Specific details about the site
where the BP is recorded

Free or coded text

Method Method of measurement Auscultation; Palpation; Ma-
chine; Invasive

Mean arterial pres-
sure formula

Formula used to calculate MAP Free or coded text

Diastolic endpoint Which Korotkoff sound is used Phase IV; Phase V

Device Details about the device used to
measure BP

Includes openEHR-HER-
CLUSTER.device.v1 and
specialisations

Event Description Any relevant event

24 hour average Estimate of the average BP Math function Mean

Early IE papers consider the template design as an essential step in the IE
system development. Templates are flat or object-oriented [4] and their design
should satisfy a number of requirements:

• descriptive adequacy - the template should represent all the information
necessary for the task at hand, having in mind that adding features often
requires to add further features;

Medical Archetypes and Information Extraction Templates 113

Table 2. Entities included in the Body Weight archetype, which is indexed by the
keywords weight, gain, loss, increase, decrease, mass, estimate, actual

Entity name Content Value

Weight, quantity Weight mass Units: kg, lb

Comment Comment about the measure-
ment of weight

Free or coded text

State of dress Description Lightly clothed/Underwear;
Naked; Fully clothed including
shoes; Nappy/diaper

Confounding factors Free or coded text: factors that
may impact the measurement

For instance: timing of men-
strual cycle, timing of recent
bowel motion, noting of ampu-
tation

Device Details about the weighing de-
vice

Includes openEHR-EHR-
CLUSTER.device.v1 and
specialisations

Event Description Any relevant event

• clarity - the ability to represent all the information in the template unam-
biguously;

• determinacy - there should be only one way of representing a given item or
a complex of items;

• perspicuity - the degree to which the design is conceptually clear to the
human analyst who will input or edit information in the template or work
with the results;

• monotonicity - the template should reflect the data content monotonically
or incrementally (adding a new value should not cause update, restructuring
or removal of the values in other template slots);

• application considerations - the particular task might impose constraints e.g.
evaluation metrics and further limitations; reusability the template objects
should be potentially reusable in other domains and applications.

It is easy to see the similarities between the definition of template (a chunck
of declarative knowledge automatically extracted from text) and archetype (an
ultimate, universal chunk of clinical knowledge, to be declared manually and
used as standard aggregation of atomic elements). Without loss of generality we
can consider the attributes, listed at Figures 2–3 and Tables 1–2, as prototypical
elements of flat templates to be used in IE from clinical texts. It is obvious that
simple conceptual graphs [5] can capture the semantics of the feature-value pairs
in Figures 2–3 and Tables 1–2. In the next section we shall present the results
of IE experiments using the archetypes listed above.

It should be added that the notion of template evolves in the NLP field; recent
papers suggest learning template structure automatically from raw text without
using predefined template schemes [6].

114 I. Nikolova et al.

4 Extracting Archetype Items from Clinical Texts

Here we report the results of experiments with 6,204 anonymised patient records
(PRs) of diabetic patient and assessment whether the archetype elements are
explicitly documented or not. Our attention is focused on the three archetypes
that have been previously discussed: examination of thyroid, measurement of
blood pressure (BP) and measurement of patient body weight. The experiments
are performed using an IE environment that has been recently developed by the
authors [7], [8].

4.1 Examination of Thyroid

More than 97% of the PRs in our corpus contain explicit descriptions of thyroid
examination. Many PRs contain more than one discussion of thyroid because
they include basic description in the Status section and more detailed tests
(like echography) in the Clinical tests and/or Consultations sections. Due to
this reason some 11,606 instances of the archetype are found in 6,058 PRs (see
Table 3).

Table 3. Availability of thyroid descriptions in 6,204 discharge letters

Total PRs 6,204

PRs with no explicit data for thyroid 146

PRs containing description of thyroid 6,058

Total extracted records for thyroid 11,606

Table 4. Availability of thyroid descriptions in 6,204 discharge letters

Items/Findings
Visible abnormality 1,556
Mobility of swallowing liquid 1,892
Left lateral lobe 1,836
Right lateral lobe 2,304
Isthmus 1,846

Items/Normal statements Normal statement 5,144

Our IE components identified text fragments describing certain abnormalities,
the left/right thyroid lobe, the mobility of the swallowing liquids and the isthmus
(see Table 4). More than 82% of the PRs (5,144 out of 6,204) contain a statement
about normality which can be positive or negative. Comparing the available
descriptions to the map view of the archetype in Figure 4 we see that almost all
data items are regularly filled in.

4.2 Measurement of Blood Pressure

About 78% of the PRs in our corpus contain explicit BP values. Table 5 il-
lustrates the findings. In the 2,111 PRs without explicit values, there could be

Medical Archetypes and Information Extraction Templates 115

Fig. 4. Map View of the ”Examination of thyroid” archetype

phrases referring to normal and default values like: ”Blood pressure in the norm”,
”No data/signals for Arterial Hypertonic illness” and so on. Some PRs contain
more than one occurrence of BP values and this explains the fact that 4,841
items were extracted from 4,093 PRs.

Table 5. Availability of BP descriptions in 6,204 discharge letters

Total PRs 6,204

PRs with no explicit data about BP 2,111

PRs containing data about BP 4,093

Total extracted records about BP 4,841

Further details about available descriptions are given in Table 6. Only 47 PRs
discuss the position when the BP measurement is performed (less than 0,01%
of all PRs). About 12,6% of the PRs discuss confounding factors. Both sys-
tolic and diastolic values are given in the 4,841 particular measurements cited
in the corpus. Some 8% of the PRs discuss the mean arterial BP. Pulse pres-
sure occurs in 57% of the analysed discharge letters. The abbreviation (RR)
in Protocol/Method denotes BP measurements taken with the technique of the
sphygmomanometer invented by Scipione Riva-Rocci. It occurs in 26,6% of all
PRs.

Comparing the extracted values to the map view in Figure 5, we see the
elements that are rarely instantiated: most items in State section (position, ex-
ertion, sleeping status, tilt) and in Protocol section (cuff size, location of mea-
surement, method, mean arterial pressure formula, diastolic endpoint).

4.3 Measurement of Body Weight

The absolute value of body weight is a factor when diagnosing with diabetes but
even more important is the deviation from the patients ordinary body weight.
For the professional it is necessary to know whether the patient has experienced
any significant change in the weight during the recent months or year(s). Along
with the thyroid gland, limbs and skin description, body weight change is one of

116 I. Nikolova et al.

Table 6. Recording measurements of BP values in 6,204 discharge letters

State/ Position

Standing 25
Sitting 3
Reclining 0
Lying 19
Lying with the tilt on the left 0

State/Confounding factors
Under therapy 350
Without Orthostatic Symptoms 428
With Orthostatic Symptoms 6

Data/ Systolic - Diastolic 4,841 - 4,841

Data/ Mean Arterial Pressure

Usually/Average 501
Max 456
Min 150

Data/ Pulse Pressure 3,566

Protocol/ Method RR 1,834

Fig. 5. Map View of the ”Blood Pressure measurement” archetype

the most often met PR descriptions. Table 7 summarizes the number of events
extracted from the patient records.

It is obvious from Table 7 that descriptions of increase or decrease of body
weight are almost twice the mentions of exact weight in our document collection.
Often when the weight is discussed in a PR, it is mentioned more than once de-
scribing the changes during the development of the disease and this also explains
why the percentage of files containing exact weight mentions (62%) is quite close

Medical Archetypes and Information Extraction Templates 117

Table 7. Available values of ”weight” and ”weight change” in 6,204 discharge letters

Total PRs 6,204

PRs containing data about exact weight 3,820

Total extracted occurrences of exact weight 3,884

PRs containing data about weight change 3,097

Total extracted occurrences of weight change 6,806

PRs containing data about increase of weight 2,613

Total extracted occurrences of increase of weight 5,533

PRs containing data about decrease of weight 1,083

Total extracted occurrences of decrease of weight 1,273

to the percentage of PRs containing weight change (52%). Mentions of increased
body weight are almost 3 times more often than mentions of decreased weight.

Most weight-related expressions include references to quantities:

(i) body weight change which can be found in the Anamnesis or Patient status
section and is expressed as an interval value, exact value or by an expression, all
of them showing the direction of the change:

”increased her body weight with about 10-12 kg in the last 6 months”
”reduction of body weight 15 kg for 2 years”
”overweight”

(ii) exact weight values which can be found in the Laboratory tests section:

”weight - 89 kg”
”170/86kg”

(iii) relative expressions referring to previous conditions like:

”succeeded to go back to his regular weight”

which are hard to interpret in absolute values and to fill in into archetype slots.
Our corpus contains no weight-related expressions that can provide input for

the archetype slots state of dress, confounding factors, device, and event (see
slots at Figure 6). Obviously these are not a subject of interest in endocrinology.

4.4 Extraction Accuracy and Discussion

Our IE components work in the following manner:

• The English terms, available in Figures 2–3 and Tables 1–2, are translated
to Bulgarian;

118 I. Nikolova et al.

Fig. 6. Map View of the ”Body weight” archetype

• Their synonyms (terms or paraphrases) are found in the dictionaries that we
have developed in our previous research;

• Then the target terms for the selected archetypes are searched in the texts
of the corpus PRs.

In this way we identify availability and type of the recognised descriptions. There
might be other items, expressed by different words that remain unidentified;
however, the observations centered on the terms mentioned in Figures 2–3 and
Tables 1–2, deliver a relevant generalised view about text content.

Here are some examples how we capture thyroid gland descriptions in our
data starting from the archetype description. The recognition modules are rule-
based and are built on archetype keywords and slot descriptions. We know from
previous experiments that the description of the Status of an anatomical organ
is normally present in a single sentence or in consequent sentences in various.
The rules are constructed to capture expressions starting from one mention of
the anatomical part of interest (thyroid gland in this case) and try to find subse-
quent descriptions of the archetype slots. Below are given examples that include
description of the left lobe and thyroid gland properties, which are listed one after
another and separated from the anatomical part by hyphen:

��������� 	
��� � ��������	

���
��� � ��	����	 �����������

(thyroid gland - enlarged... left lobe with elastic consistency)

��� �	 ������ 	
��� � ��������� �	������ �����������	

(echography of the thyroid gland - enlarged size, hypoechogenic)

��������� 	
��� � ��������	� ����	 ������������ ���������	 ��� ��
�

���� (thyroid gland - enlarged, solid consistency, sensitive when palpated)

Medical Archetypes and Information Extraction Templates 119

The performance accuracy of Information Extraction is measured by the pre-
cision (percentage of correctly extracted entities as a subset of all extracted
entities), recall (percentage correctly extracted entities as a subset of all entities
available in the corpus) and their harmonic mean (F-measure)

F = 2 ∗ Precision ∗Recall/(Precision+Recall).

Table 8 shows the extraction accuracy in the present experiment. Due to variety
of paraphrases and keywords in the blood pressure description, the precision is
relatively low. In contrary, only few words and their abbreviations describe the
thyroid and body weight in our training and test corpora, therefore the extraction
accuracy is very high.

Table 8. Accuracy of extraction of archetype slots from clinical narratives

Precision Recall F-measure

Thyroid 96.25% 93.42% 94.81%

Blood Pressure 71.37% 90.63% 79.86%

Body Weight 95.65% 94.02% 94.83%

Our IE module easily identifies expressions which contain terms used in the
archetype definition. However, narratives such as comments are difficult to cap-
ture. They are free text fields and their arbitrary content does not allow sug-
gesting any keyterms to search for. For exhaustiveness we rely on the linguistic
peculiarities of our data which usually contain one body part description within
a single sentence.

Summing up all finings of the experiment we see that medical doctors hardly
explicate in clinical narratives:

• hospital-dependent implicit knowledge when reporting about patient cases,
for instance type of devices (e.g. cuffs for blood pressure measurements);

• values that are irrelevant for the particular disease (e.g. exact weight of
diabetic patients and conditions when it was measured, or location where
the blood pressure is measured). Instead, they document relevant features
like weight change for given period which should be included in the archetype
as comment or event..

There is also tacit knowledge which holds in the respective domain and it is
regularly omitted in the particular texts. These observations show the difference
between theoretical information models in medicine and their practical applica-
tion. The standards of writing clinical documentation do not affect quickly the
established tradition in writing domain-specific texts.

5 Conclusion

In this paper we present evidences about availability of unified elements in clin-
ical descriptions. It is clear that the conceptual structures, designed to capture

120 I. Nikolova et al.

patient-related clinical information in order to ensure its systematic representa-
tion, need a long period of development, standardisation and wide adoption in
order to provide interoperable resources of clinical knowledge. Perhaps thinking
in terms of archetypes and conceptual structures needs to be incorporated in the
medical training as well. The Topic Maps, as illustrated in Figures 3, 5 and 6,
are a suitable visualisation tool that might help to advertise the archetype
methodology.

We propose that the archetype design process should integrate language tech-
nologies for information extraction which enable immediate verification whether
the theoretical conceptual model is aligned to the clinical practice of reporting
events and observations. For instance, if the checks show that the medical ex-
perts regularly omit device descriptions, then this element might be included
in the specific archetype instance by default for the particular clinical units. In
this way some information in the instantiated archetype might be imported from
a separate hospital unit description without burdening the clinicians with too
much documentation. Another possibility is to offer specific predefined menus
for item selection that are contextualised for the hospital unit. Simplifying the
documentation process will facilitate the wide archetypes adoption.

Acknowledgments. The research work presented in this paper is supported
by grant DO 02-292 ”Effective search of conceptual information with applica-
tions in medical informatics”, funded by the Bulgarian National Science Fund in
2009–2012.

References

1. Beale, T., Heard, S.: An Ontology-based Model of Clinical Information. In: Kuhn,
K., et al. (eds.) Proceedings MedInfo 2007, pp. 760–764. IOS Publishing (2007)

2. Beale, T., Heard, S. (eds.): Archetype Definitions and Principles. openEHR Report
(March 2007)

3. ISO 13606-2:2008 Health informatics - Electronic health record communication -
Part 2: Archetype interchange specification (2008)

4. Onyshkevych, B.: Template Design for Information Extraction. In: Proc. of the
TIPSTER Text Program: Phase I, Virginia, USA, pp. 141–145 (September 1993),
available in the ACL Anthology http://www.aclweb.org/anthology/X93-1015

5. Sowa, J.: Conceptual Information Processing in Mind and Machines, Reading, MA
(1984)

6. Chambers, N., Jurafsky, D.: Template-Based Information Extraction without the
Templates. In: Proc. of the 49th ACL Ann. Meeting, Oregon, pp. 976–986 (June
2011)

7. Boytcheva, S.: Structured Information Extraction from Medical Texts in Bulgarian.
In: Proc. of the SINUSWorkshop Semantic Technologies in the Humanities, Sozopol,
Bulgaria, June 7-8 (2012); to appear in a Special Issue of the Journal Cybernetics
and Information Technologies

8. Nikolova, I.: Unified Extraction of Health Condition Descriptions. In: Proc. of the
NAACL HLT 2012 Student Research Workshop, Montreal, Canada, June 3-8, pp.
23–28 (2012), http://www.aclweb.org/anthology-new/N/N12/N12-2005.pdf

http://www.aclweb.org/anthology/X93-1015
http://www.aclweb.org/anthology-new/N/N12/N12-2005.pdf

Using Conceptual Structures in the Design

of Computer-Based Assessment Software

Uta Priss, Nils Jensen, and Oliver Rod

Zentrum für erfolgreiches Lehren und Lernen
Ostfalia University of Applied Sciences

Wolfenbüttel, Germany
www.upriss.org.uk, {n.jensen,ol.rod}@ostfalia.de

Abstract. This paper discusses the use of conceptual structures in the
design of computer-based assessment (CBA) tools for e-assessment of
programming exercises. In STEM (science, technology, engineering and
maths) subjects, universities often observe high dropout and failure rates
among the first year students. There are a number of research initiatives
that investigate the use of interactive teaching methods and e-learning
technologies for improving STEM education. This paper presents a con-
ceptual model of programming exercises and discusses more generally
how conceptual structures can be employed for the implementation of
CBA tools.

1 Introduction

STEM (science, technology, engineering and maths) subjects are notoriously
difficult to learn and teach as demonstrated by high dropout and failure rates
among first year university students. There are a number of reasons for the diffi-
culty of such subjects. Researchers in Physics Education Research (for example,
Hestenes et al. (1992)) have observed that students often have misconceptions
which are not easily overcome by traditional lecturing methods even if these
include exercises and demonstrations. Hestenes et al. (1992) explain that mis-
conceptions are commonsense beliefs which can be regarded as reasonable hy-
potheses grounded in everyday experience. Unfortunately, commonsense belief
are not always correct. For example, Newtonian physics includes many concepts
that are contradictory to commonsense beliefs and in fact counter-intuitive. Stu-
dents find it very difficult to overcome such misconceptions. Even though they
may be able to apply Newtonian concepts in calculations by following an al-
gorithm (which is frequently sufficient for passing exams), if asked to provide
conceptual explanations students will often revert to non-Newtonian, incorrect
concepts. Furthermore, if students are passing an exam only by applying mem-
orised facts and algorithms, they will forget the subject matter quickly after the
end of the semester. On the other hand, as soon as students achieve a conceptual
understanding of a subject matter they will often retain such knowledge for 20
years and more (Conway et al., 1992).

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 121–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

122 U. Priss, N. Jensen, and O. Rod

A second problem is what can be called a “teacher’s dilemma”. McDermott
(2001) observes that at least in USA, the people who teach physics are not at
all like the undergraduate students they teach because teachers have achieved a
masters or doctoral level of understanding of the subjects whereas undergraduate
students have often no ambition or interest to progress in the subject any fur-
ther than required. By definition, teachers are usually not people who have ever
dropped out of university or experienced learning difficulties but instead usually
have been comfortable with the learning styles presented by traditional univer-
sity teaching. Teacher training attempts to help prospective teachers develop an
understanding of the students’ conceptual models. For example, Prediger (2010)
discusses the diagnostic competences that maths teachers need to develop in
order to be able to listen to students and to analyse and understand their think-
ing. Tall (1977) argues that learning of mathematics involves cognitive conflicts.
The acquisition of new concepts by a maths student is not a continuous process
but includes conceptual jumps and states of confusion and emotional upset. A
teacher must be able to detect occurrences of conflict in the mind of a learner
and select an appropriate approach for conflict resolution amongst many dif-
ferent possible approaches. A further potential challenge to be overcome are
teachers’ attitudes towards trying new teaching methods (Pundak et al. 2009).
Interestingly, changing a teacher’s pre-existing belief about teaching methods
may not be any easier than it is for students to overcome their misconceptions.

While traditional lecturing styles seem to be less than optimal in STEM sub-
jects, interactive engagement methods (Hake, 1998) appear to be more success-
ful. Hake defines “interactive engagement methods as those designed at least
in part to promote conceptual understanding through interactive engagement
of students in heads-on (always) and hands-on (usually) activities which yield
immediate feedback through discussion with peers and/or instructors”. An ex-
ample is Mazur’s (1996) peer instruction which uses cycles consisting of questions
that are voted on by the students, peer discussion, group discussion, debriefing
and then again the original questions. Apparently, while students might find
it difficult to learn from a teacher’s explanations, they find it easier to under-
stand complex concepts and resolve cognitive conflicts when they can discuss
these with other students (peers) who tend to be at a similar level of conceptual
development as they are. Thus peer instruction is a means of overcoming the
teacher’s dilemma. The teacher becomes more of a facilitator or coach than an
authoritarian source of information. A theoretical foundation for this approach
to teaching is a constructivist model of learning (e.g., Ben-Ari, 1998).

It would be of interest to replace the currently prevailing constructivist model
of learning with a Peircean pragmatist model. Levy (2007) observes that Peirce
already discussed a “teacher’s dilemma” because “in order to learn you must
desire to learn, and in so desiring not be satisfied with what you already incline
to think” (CP.1.135)1. But a teacher needs to be reasonably convinced of the

1 The usual manner of citing Peirce’ papers is adopted where CP refers to the Collected
Papers of Charles Sanders Peirce followed by volume and paragraph numbers.

Using Conceptual Structures in the Design of CBA Software 123

truthfulness of the subject matter to be able to teach. Thus the state of teaching
(a state of belief) is in contrast with the state of learning which is a state of
doubt. According to Levy, Peirce’s solution to the dilemma is that a teacher
must be willing to learn while teaching and that the learning process must be
a cooperation between teacher and student. Therefore, it can be argued that
Peirce anticipated interactive engagement teaching. A more in depth analysis of
the relevance of Peirce’s work for education would be of interest (in particular
with respect to a pragmatic instead of a constructivist philosophy). While that
is beyond this paper, the ICCS community might be a suitable audience for such
research.

The core application area of this paper within STEM education is teach-
ing programming to computer science students. In particular we are interested
in how conceptual structures can be used to support tools for teaching pro-
gramming such as computer based assessment (CBA) tools. With “conceptual
structures” we are referring to tools and technologies commonly used in the ICCS
community, for example, conceptual graphs and formal concept analysis. Section
2 introduces CBA tools. Section 3 describes a conceptual model of programming
exercises. Section 4 discusses more generally how conceptual structures can be
used to support CBA tools. The paper ends with a short concluding section.

2 Computer-Based Assessment Software

A large body of literature exists on the topic of STEM education. Our partic-
ular interest is the teaching of programming languages in computing or similar
formalisms in mathematics. In this domain, computer-based assessment (CBA)
software has been developed which allows students to submit code that is au-
tomatically evaluated (e.g. Pears et al. (2007), Rongas et al. (2004)). CBA
software is more narrow in scope than virtual learning environments or course
management systems which usually provide access to lecture materials, timeta-
bles and communication tools. If virtual learning environments provide automat-
ically evaluated assessments at all, these are of a simpler, more static nature such
as multiple-choice or fill-in the blanks tests. CBA tools without graded assess-
ments are quite popular as add-ons to on-line tutorials which contain pastebins
for sourcecode execution2. Advantages of using CBA tools in university courses
are according to Pears et al. (2007) the fact that even students in large classes can
be provided with detailed feedback in a timely manner. Automatic assessment
is often seen as more fair and objective than assessment by tutors. Since CBA
tools are employed in practicals, not lectures, they are more likely to be used
with interactive engagement methods. Drawbacks of CBA tools are that exercises
need to be specified very carefully to avoid misunderstandings. Furthermore au-
tomatic evaluation can miss problems. A student’s work could receive full marks
although it is written poorly and contains errors that were not anticipated by the

2 For example the Tryit editor at www.w3schools.com or the SQL tutorials at
sqlzoo.net

www.w3schools.com
sqlzoo.net

124 U. Priss, N. Jensen, and O. Rod

designers of the exercise. Unrestricted access to instant feedback can encourage
students to employ a trial-and-error approach to programming.

CBA tools should be deployed with a suitable pedagogical method as can
be found in the literature, for example, by Leron & Dubinsky (1995) since the
1990s. Without a sound pedagogical method or without being embedded into an
interactive engagement style of teaching, CBA tools may not provide any bene-
fits. If used correctly, CBA tools save time because the tools provide automated
feedback and can be used by large numbers of students simultaneously - only
limited by the size of the computer labs. Ideally the time lecturers save by not
having to provide feedback on simple mistakes which are automatically detected
by the CBA tool, lecturers should spend on helping students with conceptually
challenging problems (or misconceptions) that require more in depth discussion
(Priss et al. (2012b)).

Creating exercises for a CBA tool is more labour-intensive than creating other
exercises because CBA exercises need to be specified very precisely so that they
cannot be misinterpreted by students and they need to be tested before being
used. Furthermore, the algorithms used for automatically evaluating the student-
submitted code need to be provided usually either using software testing methods
or intelligent tutoring techniques. CBA tools are only labour-saving if tools are
provided that assist lecturers in the creation of exercises and the exercises can be
reused. Thus in addition to the software required for the CBA tools themselves,
one needs authoring tools and an infrastructure for the storage, retrieval and
exchange of exercises. These are the areas where we see conceptual structures
as potentially very useful. Although there are already many existing e-learning
tools and standards for exchanging exercises available, as Rey-Lopez et al. (2008)
observe these existing tools are not suited for the more detailed and content-rich
exercises used for teaching programming. The problem of exchanging program-
ming exercises and integrating CBA tools with other e-learning tools is according
to Rey-Lopez et al. still an unsolved problem.

3 A Conceptual Model of Programming Exercises

In order to improve authoring tools for CBA software and to support exchanging
exercises across tools and users, a solid understanding of the conceptual structure
of programming exercises is beneficial. This section discusses a conceptual model
of programming exercises developed using the Protege3 editor. The only reason
for using Protege was because it has a sophisticated, stable user interface and
many graphical output options. The functionality used was classes, is-a relations
and attributes (or slots) with value restrictions which are provided by many kinds
of conceptual structures tools. Thus the discussion in this section is not meant
to focus on the technology used but instead on the conceptual model that was
derived.

3 http://protege.stanford.edu/

http://protege.stanford.edu/

Using Conceptual Structures in the Design of CBA Software 125

Fig. 1. Overview of the model

126 U. Priss, N. Jensen, and O. Rod

Fig. 2. Feedback for an exercise can be provided by test, peer (student) or teacher

Figure 1 represents an overview of all of the classes of the conceptual model.
Figure 2 shows different types of feedback. An exercise can be evaluated by any
combination of automated tests, peer review from other students and feedback
from lecturers. The distinctions are useful because each type of feedback has a dif-
ferent functionality in the system. For example, evaluations by automated tests
and teachers contribute to the marking scheme. Feedback by students is some-
times considered a student-only affair which cannot be viewed by the teachers.
The attributes “line Number” and “location” are useful for the visual presenta-
tion of the feedback for the student. Automatically generated feedback usually
has a precise location, that is a particular line of code which raised an error or
a warning. Feedback that is written by other students or a lecturer can only be
economically connected to a location, if authoring tools are used that allow to
annotate code.

Resources as in Figure 3 tend to be provided as text or files. This distinction
is of technical interest because text and files are implemented differently. For
example, if students are asked to submit files, these need to be checked for file
size and type. In the early stages of a programming class, students are often
asked to write only parts of a program, for example, just a while loop. The
CBA tool can either provide a template to the student which contains the code
that the student is expected to modify or it can hide some code completely and

Using Conceptual Structures in the Design of CBA Software 127

Fig. 3. Resources that can be up- or downloaded can be textblocks or files

automatically attach it before or after a student-submitted code snippet. Each
resource has a “resource User” attribute which determines who has access to the
resource, in particular whether the students are allowed to see the resource.

Figure 4 shows that a programming exercise exists on three levels: a general
description independently of when and where the exercise is used; an “exercise
in course” which has additional attributes about deadlines and about the actu-
ally selected tests from all available tests; and an “exercise in execution” which
contains attributes about the student-submitted code, its evaluation results and
session and state information so that a student can return to an exercise which
has not been completed.

Exercises themselves are part of an ordered set: each exercise can have some
prerequisites which the students need to pass beforehand. This is particularly
useful if the CBA tool has intelligent tutor functionality. In order to avoid

128 U. Priss, N. Jensen, and O. Rod

Fig. 4. An exercise exists on three levels: abstract, in a course or submitted by a
student

plagiarism, it is helpful to have a larger question bank from which randomised
questions are selected so that not every student receives the same questions
(Russell & Cummings, 2005). This means that there needs to be an equivalence
relation on the exercises (“has Exclusion”) which shows which exercises are of
similar difficulty and content and can be used as alternatives.

Last but not least, Figure 5 provides examples of available tests. Many current
CBA tools use standard software engineering tests (unit, style checking and
code coverage tests) for evaluating student-submitted code. CBA tools often
incorporate standard testing software for such purposes so that the lecturers
need not learn new technologies for writing their tests. Some CBA tools support
writing blackbox tests which analyse the in- and output of a program.

Using Conceptual Structures in the Design of CBA Software 129

Fig. 5. Different types of tests

130 U. Priss, N. Jensen, and O. Rod

4 How Conceptual Structures Can Help

This section provides an analysis of the different aspects involved in preparing
and using exercises with CBA tools. Figure 6 shows a life cycle of CBA exer-
cises. As explained in Section 2, in order to be cost-effective the additional cost
required for creating exercises must be balanced by the benefit of reusing and
sharing of exercises. Thus a community must be established that shares and
reuses exercises. This community could range from just a few lecturers within a
department to lecturers in 100s of universities as, for example, the user group of
the Lon-Capa4 software. In order to share exercises, there must be a mechanism
that allows lecturers to find appropriate exercises which can be a challenging
task if there are large numbers of exercises available. The individual stages of
the life cycle are discussed in the subsections below with reference to how the
conceptual model developed in this paper can help.

finding
exercises

evaluating
exercises

community: individual:

creating
exercises

exchanging
exercises

improving
exercises

Fig. 6. The life cycle of CBA exercises

4.1 Searching and Finding Learning Materials

Large amounts of learning materials already exist and are available for reuse.
It is beyond this paper to review the literature on this topic in any detail. It
might suffice to mention the open educational resource (OER)5 efforts or the
fact that Lon-Capa contains more than 200,000 resources (Kortemeyer, 2006).
A major challenge in this area is how to build search tools that help lecturers to
find relevant materials. Most likely there are already many duplicate or similar
documents amongst the available materials simply because lecturers do not know
what is available. General purpose search engines only retrieve the most popular
documents which may not be the most relevant.

As an example, the Lon-Capa software provides metadata for its more than
100,000 exercises. Some of the metadata are created by the authors of the exer-
cises. Some are dynamically generated, for example, information about in how
many and which courses an exercise is used and what the student results are

4 http://www.lon-capa.org
5 http://en.wikipedia.org/wiki/Open_educational_resources

http://www.lon-capa.org
http://en.wikipedia.org/wiki/Open_educational_resources

Using Conceptual Structures in the Design of CBA Software 131

for each exercise. A review of the existing metadata recently revealed6 that the
manually created metadata are entirely useless for search purposes because they
are inconsistent and often missing (supporting what has been known in the li-
brary and information science community for decades). In fact in the future,
Lon-Capa may drastically reduce the collection of manually created metadata
and focus on the automatically generated data instead.

Currently most of the Lon-Capa exercises are of a more static nature and not
programming exercises. We argue that the metadata of programming exercises
according to the conceptual model in this paper is also manually created, but of a
different type than the already existing metadata in Lon-Capa. The information
recorded in the conceptual model is essential to the functioning of a programming
exercise. For example, it is necessary to specify what programming language and
what tests are to be used and how the marks are calculated. Once an exercise
has been created this information is precise and unambiguous. This metadata is
different from metadata, such as subject headings or keywords, which are more
subjective, optional and debatable.

We argue that a conceptual model of programming exercises as developed
in this paper can improve retrieval of programming exercises. In contrast to
manually created metadata which tend to be inconsistent, our model structures
only the essential data of the exercises which is thus rendered more accessible
for searching. Other search details can be obtained from automatically collected
metadata (such as the degree of difficulty of an exercise from the metadata about
student results). Typical, re-occurring examples of programming exercises (such
as the “Towers of Hanoi” or “Fibonacci numbers”) can be found by searching
within the full text of the exercises. Thus, an automatic exploitation of structured
data, automatically generated metadata and the full text of the exercise with
standard data mining methods is possible.

4.2 Exchanging Exercises

In order for exercises to be exchanged, a standard format needs to be defined
which represents the data and metadata of the exercise in a structured man-
ner. An XML representation of the conceptual model developed in this paper
could be an example of such a format. As mentioned before, Rey-Lopez et al.
(2008) observe that existing standards for learning materials are not suitable for
representing the greater amount of detail required for programming exercises.
Automatically-assessed programming exercises not only need a description of the
content of the exercise but also of the technical requirements, for example, as
to which programming language, which versions of the tools, and which testing
technologies are used. Furthermore, if the exercises are to be exchanged in a
manner that does not require extensive amount of manual editing for import-
ing exercises, then there need to be means for automatically detecting version
differences and to convert into formats required by a specific tool.

6 G. Kortemeyer, personal communication, August 31, 2012.

132 U. Priss, N. Jensen, and O. Rod

There is currently an effort to create an exchange format for programming
exercises undertaken by a working group as part of the eCULT project7 which
we are part of. Because that work is on-going and yet unpublished we cannot
discuss more details about the format in this paper. Our contribution to the
working group is based on the conceptual model developed in this paper. But
because not all members of the working group are familiar with conceptual
structures, the exchange format is represented in XML and not conceptually.
Our conceptual structures model is somewhat more detailed and abstract than
the format developed by the group and represents our view of the topic.

4.3 Creating Exercises

Creating programming exercises consists of creating the content and the tech-
nical implementation. With respect to developing appropriate content, Priss et
al. (2012a) discuss in detail how conceptual structures (in the form of Formal
Concept Analysis (FCA)) can be used for modelling conceptual difficulties in
learning processes in mathematics. A conceptual model as represented in this
paper provides structures for authoring tools for programming exercises that can
be used in implementations. Programming exercises need a detailed specification
of testing tools, versions and the tests themselves. Some details are repetitive
and could be supplied semi-automatically; other details are specific for each ex-
ercises and need to be manually supplied. In our experience it takes about 2
hours to convert an existing programming exercise into one that is usable with
a CBA tool. Using the conceptual model developed in this paper, it would be
possible to design templates that would shorten the time required for writing
exercises.

4.4 Evaluating and Improving Exercises

As mentioned in Section 2, the quality and precision of CBA exercises must be
higher than that of manually-assessed exercise. If a lecturer makes a mistake in
the wording of a manually-assessed exercise, this mistake can be rectified when
the exercise is marked, for example, by adjusting the marking scheme to reflect
that slightly different interpretations of the exercise are acceptable. If a CBA
exercise is ambiguously worded and thus provides misleading feedback to stu-
dents then the labour-saving effect of the exercise is lost because the lecturer
needs to contact every individual student to provide additional information to
remove the ambiguity. The resulting confusion could easily destroy any pedagog-
ical benefit of using a CBA tool. If the CBA tool is used for an exam, the exercise
may need to be manually-assessed after all. If the error is detected too late, the
whole assessment may become worthless; or if the error is not detected at all,
students will receive unjustified marks. Therefore exercises need to be well-tested
before they are used with larger groups of students. During and at the end of a
semester, the performance of the exercises needs to be evaluated, for example, by

7 http://www.ecult-niedersachsen.de/

http://www.ecult-niedersachsen.de/

Using Conceptual Structures in the Design of CBA Software 133

statistical analysis of the points students achieved for each exercise. High failure
rates for an exercise could indicate that there is a problem with the wording of
the exercise or it could be that the exercise highlights a misconception which
the students have that must be addressed by other learning materials. Based
on the evaluation, exercises (and supporting learning materials) should then be
improved before they are used again.

Evaluation and improvement of exercises can only be performed by individual
lecturers who use the exercises in their course. But the improvements of an exer-
cise then need to be shared again with the community. The Lon-Capa software
has essentially solved these problems by establishing mechanisms for creating
and maintaining copies of exercises that have been modified and for commu-
nicating changes to other current users of an exercise. Furthermore, Lon-Capa
provides mechanisms for alerting authors of exercises to potential problems de-
tected with an exercise. A conceptual model could further assist by providing
additional semi-automated checks, for example, if the version of a programming
language is changed for one exercises it could automatically be checked whether
other exercises might require a similar change.

5 Conclusion

This paper argues that teaching STEM topics is difficult by nature but peda-
gogical methods and tools exist that lead to improved teaching success. With
respect to teaching programming languages, CBA tools can be beneficial if they
are employed with a suitable interactive engagement style of teaching. The
creation, maintenance, exchange and retrieval of programming exercises is labour-
intensive but can be supported by conceptual structures. An example of a con-
ceptual model for programming exercise is presented in this paper. The model
is currently being used to guide our involvement in a working group for creat-
ing an exchange format for programming exercises and as a design aid in our
implementation of a CBA tool which is further described by Priss et al. (2012b).

Acknowledgements. This work has been partially funded by the German Fed-
eral Ministry of Education and Research (BMBF) under grant number
01PL11066H. The sole responsibility for the content of this paper lies with the
authors. We would also like to thank the other members of the eCULT work-
ing group on creating an exchange format for programming exercises: Sebastian
Becker, Stefan Bisitz, Helmar Gust, Sven Strickroth. We have been careful not
to use any materials from those discussions in this paper but it is likely that the
conceptual model developed in this paper has been influenced to some degree by
discussions of that group.

References

1. Ben-Ari, M.: Constructivism in computer science education. SIGCSE Bull. 30(1),
257–261 (1998)

2. Conway, M.A., Cohen, G., Stanhope, N.: Very long-term memory for knowledge
acquired at school and university. Applied Cognitive Psychology 6, 467–482 (1992)

134 U. Priss, N. Jensen, and O. Rod

3. Hake, R.R.: Interactive-engagement versus traditional methods: A six-thousand-
student survey of mechanics test data for introductory physics courses. American
Journal of Physics 66(1), 64–74 (1998)

4. Hestenes, D., Wells, M., Swackhamer, G.: Force Concept Inventory. Phys.
Teach. 30, 141–158 (1992)

5. Kortemeyer, G.: The Evolving Growth of LON-CAPA. Campus Technology (March
10, 2006), http://campustechnology.com/articles/2006/10/
the-evolving-growth-of-loncapa.aspx

6. Leron, U., Dubinsky, E.: An Abstract Algebra Story. The American Mathematical
Monthly 102(3), 227–242 (1995)

7. Levy, R.: Peirce’s Theory of Learning. Educational Theory 2, 151–176 (2007)
8. Mazur, E.: Peer Instruction: A User’s Manual. Prentice-Hall, New Jersey (1996)
9. McDermott, L.C.: Oersted Medal Lecture 2001: Physics Education Research-The

Key to Student Learning. American Journal of Physics 69(11), 1127–1137 (2001)
10. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., De-

vlin, M., Paterson, J.: A Survey of Literature on the Teaching of Introductory
Programming. SIGCSE Bull. 39(4), 204–223 (2007)

11. Prediger, S.: How to develop mathematics-for-teaching and for understanding: the
case of meanings of the equal sign. J. Math. Teacher Educ. 13, 73–93 (2010)

12. Priss, U., Riegler, P., Jensen, N.: Using FCA for Modelling Conceptual Difficulties
in Learning Processes. In: Domenach, Ignatov, Poelmans (eds.) Contributions to
the 10th International Conference on Formal Concept Analysis (ICFCA 2012), pp.
161–173 (2012a)

13. Priss, U., Jensen, N., Rod, O.: Software for E-Assessment of Programming Exer-
cises. In: Goltz, et al. (eds.) Informatik 2012, Proceedings of the 42. Jahrestagung
der Gesellschaft für Informatik, GI-Edition, Lecture Notes in Informatics, p. 208,
pp. 1786–1791 (2012b)

14. Pundak, D., Herscovitz, O., Shacham, M., Wiser-Biton, R.: Instructors’ Attitudes
toward Active Learning. Interdisciplinary Journal of E-Learning and Learning Ob-
jects 5, 215–232 (2009)

15. Rey-Lopez, M., Brusilovsky, P., Meccawy, M., Diaz-Redondo, R., Fernandez-Vilas,
A., Ashman, H.: Resolving the Problem of Intelligent Learning Content in Learning
Management Systems. International Journal on E-Learning 7(3), 363–381 (2008)

16. Rongas, T., Kaarna, A., Kalviainen, H.: Classification of Computerized Learning
Tools for Introductory Programming Courses: Learning Approach. In: Proceedings
of the IEEE International Conference on Advanced Learning Technologies (ICALT
2004), pp. 678–680. IEEE Computer Society (2004)

17. Russell, G., Cummings, A.: Online Assessment and Checking of SQL: Detecting and
Preventing Plagiarism. In: 3rd Workshop on Teaching Learning and Assessment in
Databases (TLAD 2005). HEA-ICS, pp. 46–50 (2005)

18. Tall, D.: Cognitive Conflict and the Learning of Mathematics. In: First Confer-
ence of The International Group for the Psychology of Mathematics Education at
Utrecht, Netherlands (1977)

http://campustechnology.com/articles/2006/10/the-evolving-growth-of-loncapa.aspx
http://campustechnology.com/articles/2006/10/the-evolving-growth-of-loncapa.aspx

Modeling Ontological Structures
with Type Classes in Coq

Richard Dapoigny and Patrick Barlatier

LISTIC/Polytech’Annecy-Chambéry
University of Savoie, P.O. Box 80439, 74944 Annecy-le-vieux cedex, France

richard.dapoigny@univ-savoie.fr

Abstract. In the domain of ontology design as well as in Conceptual Modeling,
representing universals is a challenging problem. Most approaches which have
addressed this problem rely either on Description Logics (DLs) or on First Or-
der Logic (FOL), but many difficulties remain especially about expressiveness.
In mathematical logic and program checking, type theories have proved to be ap-
pealing but so far, they have not been applied in the formalization of ontologies.
To bridge this gap, we present here the main capabilities of a theory for represent-
ing ontological structures in a dependently-typed framework which relies both on
a constructive logic and on a functional type system. The usability of the theory
is demonstrated with the Coq language which defines in a precise way what on-
tological primitives such as classes, relations, properties and meta-properties, are
in terms of type classes.

1 Introduction

On the one hand, many researchers are striving for an ontologically well-founded rep-
resentation language e.g., by adding new operators to Description Logics (DL) while
preserving decidability, while on the other hand, mathematical and logical theories built
on the Curry-Howard isomorphism have promoted the well-typedness as a foundational
paradigm (above intuitionistic logic) leading to highly powerful theorem provers. Most
modeling languages that have been proposed so far to express ontological constraints
(or rules) are based on very simple meta-conceptualization as underlined in [21]. These
languages offer appropriate structuring mechanisms such as classes, relationships and
subsumption (subclass relations). However, in the representation of a formula, some
structures have meaning whereas other do not make sense. This aspect requires "suit-
able ontological distinctions" understood as meta-properties of ontological structures as
pointed out in [16] (e.g., the principles of identity or rigidity). In addition, the distinction
of ontological meta-level categories such as types, kinds, roles, relations, etc., further
make accurate and explicit the real-world semantics of the terms that are involved in
domain representations. Not only an ontology is committed to represent knowledge of
reality in a way that is independent of the different uses one can make of it, but it is
intended to provide a certified and coherent map of a domain. All these constraints can
be fulfilled within a highly expressive language built on a solid logical background. For
that purpose in this paper, we propose a two-layered theory including a higher-order de-
pendent type theory as a lower layer and an ontological layer as upper layer. This theory

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 135–152, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

136 R. Dapoigny and P. Barlatier

referred to, as K-DTT (Knowledge-based Dependent Type Theory) [2] is derived from
[12] for the modeling of contexts. The logic in the lower layer operates on (names of)
types whose meaning is constrained in the upper (ontological) layer.

Dependent types are based on the notion of indexed families of types and provide
a high expressiveness since they can represent subset types, relations or constraints as
typed structures. They will be exploited for representing knowledge in an elegant and
secure way. This last aspect is analyzed in [8] where the authors investigate typing
applied to reasoning languages of the Semantic Web and point out that dependent types
ensure normalization. For example, type theory enjoys the property of subject reduction
which ensures that no illegal term will appear during the execution of a well-typed
query in a well-typed program. Alternatively, in [14], the authors have shown the ability
of the type-theoretical approach to cope with scalability on the SUMO foundational
ontology. Therefore, we introduce a a simple, coherent and decidable theory called K-
DTT (Knowledge-based Dependent Type Theory) departing from the existing ones such
as usual first-order logic theories. We will demonstrate with code fragments written in
the support language Coq that the theory is able to satisfy most of all the constraints
inherent in an expressive conceptual model.

2 Motivations for a Type-Theoretical Framework

In the conceptualization of information systems, Mylopoulos [32] has pointed out that
the related language should be able to "formally represent the relevant knowledge". This
assertion means that the conceptual language should (i) be expressive enough to rep-
resent the "relevant knowledge" and (ii) offer deduction capabilities to provide a valid
model. It follows that there are three possible ways for increasing both the expressive-
ness and the soundness of a conceptual language (i) controlling the semantics of the
conceptual language with a formal ontology (ii) using an expressive language e.g., an
Object-Oriented language or (iii) using existing logic-based approaches such as Con-
ceptual Graphs (CGs) or Description Logics. Let us review the basic features of these
approaches.

Some authors such as [19] claim that a foundational ontology should allow to evalu-
ate the "ontological correctness of a conceptual model" and to develop guidelines telling
how the constructs of a conceptual modeling language should be used (e.g., associa-
tion inclusion, specialization and redefinition). The author suggests that ontology ade-
quacy should be a measure of the distance between the models produced by a modeling
language and the real-world situations they are supposed to represent. To fulfill these
constraints, the author has proposed an ontologically well-founded modeling language
whose formal semantics is defined in a logical system as expressively as possible [20].

Object-Oriented languages [5], are the most significant formalisms for representing
knowledge. They stem from frames which are seen as data structures that glue pieces
of information together in their slots. In other words, OO languages are a computa-
tional implementation of frames. Classes correspond to frame descriptions while ob-
jects are identified to frame instances after filling in the slots. OO models offer two
salient properties (i) the analogy between software models and physical models and (ii)
the reusability of their components. The design of the program appears to be isomor-
phic to the components which result from the analysis of a given application with e.g.,

Modeling Ontological Structures with Type Classes in Coq 137

the UML tool. The central paradigm of OO languages is the notion of class. Classes
encapsulate data (fields) and their properties (methods) in a single structure. classes
are instantiated into objects which are designed to represent anything. Classes can be
arranged into hierarchies using inheritance. A class can inherit behavior (i.e., data and
properties) from another class called its superclass or parent class. Subsumption (i.e.,
polymorphism), is the ability to use a subclass where an object of its superclass is ex-
pected. However, many if not most, knowledgeable computing professionals recognize
that the object-oriented paradigm is not the best one for every problem. In particular, de-
spite some tentatives to add some logic to OO languages (e.g., F-logic [26]), the major
weakness is that it lacks an expressive logical background for reasoning. For example,
F-logic is very expressive but is generally undecidable.

The logical formalism of Conceptual Graphs (CGs)[43,7] originates in semantic net-
works and in the existential graphs of C.S. Peirce. It includes classes, relations, indi-
viduals and quantifiers with the purpose of providing a form humanly readable and
computationally tractable. A CG has direct translation to the language of first order
predicate logic, from which it takes its semantics. It results that CGs have the same
expressing power as predicate logic. Labeled graphs with entities and relationships be-
tween them describe knowledge. CGs offer a significant advantage over concurrent for-
malisms, they are easily interpreted by end-users provided that they are not too com-
plex. The model-theoretic semantics for the CGs is also specified in the ISO standard
for Common Logic (CL). Common Logic includes the usual predicate-calculus nota-
tion for first-order logic. While CL semantics may represent entities of any type, it lacks
ability for relating such entities to the internal structure of CL sentences. Reasoning in
CGs relies on six canonical formation rules at the semantic level [43]. One can extend
semantic operations with combinations of the rules, i.e., projection and maximal join.
Graph operations such as projections (i.e., graph homomorphisms) are a major form of
reasoning. A fundamental problem in simple CGs, i.e., deduction, starts with two simple
CGs as input and searches whether a projection from the first to the second exists. The
problem can be extended to a set of simple CGs (i.e., a knowledge base) and a simple
CG representing a query (query answering). In querying simple conceptual graphs with
negation, it has been shown that in the case of incomplete knowledge intuitionistic logic
can be very attractive for capturing an answer to the query [31]. Finally, while CGs are
efficient for representing natural language semantics, they do not support modality [44]
and contexts are not taken into consideration when reasoning with CGs.

Alternatively, Description logics (DLs) refers to a family of knowledge representa-
tion formalisms that represent the relevant concepts of the domain (its terminology)
together with properties of objects and individuals occurring in the domain. Semanti-
cally they are fragments of predicate logic, but their language is formed so that it would
be enough for practical modeling purposes and also so that the logic would have good
computational properties such as decidability. Very expressive DLs are likely to meet
inference problems of high complexity, or to become undecidable.

We follow the idea of using an ontology for controlling the semantics of a conceptual
model and will show in this paper how a well-founded model for the semantics, i.e., an
ontologically correct conceptual model can be designed. Alternatively, the conceptual
model must also be syntactically correct w.r.t. a set of rules and here we speak of a

138 R. Dapoigny and P. Barlatier

well-formed model (this part has widely been explored in the literature and will not be
addressed here). The analysis of ontological correctness boils down to design specifica-
tions. A specification has the same status as axioms of a mathematical theory, i.e., they
can be proved. More precisely, one can prove that a specification is consistent (it does
not include a contradiction), just as one can prove that the axioms of a theory are consis-
tent. For that purpose, a strong theoretical framework together with a core foundational
ontology are required. This ontology will rely on the classical dichotomy between uni-
versals and particulars. While some approaches exist, the selected framework should
emphasize expressiveness while assuming a strong formal theory.

Most philosophers have only some knowledge about First-Order Logic (FOL) and as
a consequence, most claims about universals, particulars, properties and relations have
a FOL-based logical bias. If now we rather adopt a constructive logic, then the picture
is different and if we associate this logic to a rich type system rooted in the lambda-
calculus, then a different but coherent picture can be drawn. Therefore, we exploit here
the Knowledge-based Dependent Type Theory (K-DTT) theory already introduced in
[2]. The interesting point is that available tools exist (e.g., the Coq theorem prover)
making more exploitable the theoretical picture. We will demonstrate with code frag-
ments, written in the support language Coq, that the theory is able to satisfy most of
all the constraints inherent in an expressive conceptual model. Using a higher-order
polymorphic type theory provides a lot of benefits. First, higher-order is useful (i) to
permit instances of categorization types to be types themselves, (ii) to abstract away
from level distinctions and (iii) to directly support quantification over sets and general
concepts. Second, the typed framework enjoys (i) the reduction of the search space
by restricting the domains/ranges of functions, predicates and variables to subsets of
the universe of discourse, (ii) a structured knowledge representation facilitating both
assertions and class-hierarchies and (iii) the detection of type errors with well-typed
formulas. Finally, using dependent types is crucial to offer a high expressiveness and
to enforce semantic conditions. The approach of [24] combining an order-sorted logic
with the ontological property classification is a first step in this direction. But we can
do more by including a type system with a strong proof theory. Using an unified theory
providing high expressiveness together with the ability to constrain semantics will give
the knowledge engineer the tools to produce models with certain guaranteed properties
in terms of ontological transparency, well-foundedness and re-usability. These aspects
are possible since properties are treated on a par with meta-properties (see section 6.2).
In addition, there are available theorem provers (e.g., Coq) which can be used to check
the well-formedness of user-defined typed structures.

We assume a layered structure including a logical level subsumed by an ontological
level. The lowest level is an intensional type theory based on previous works [9,36,46]
giving rise to a computational theory and, at the highest level, to knowledge struc-
tures whose semantics relies on a hierarchy of concepts (e.g., the DOLCE hierarchy
of particular categories) and the so-called meta-properties (as e.g., in Ontoclean). As a
consequence, all the ontological classes introduced in the following must have corre-
sponding structures satisfying typing mechanisms provided at the logical level. Unlike
most representation languages, K-DTT provide constructs able to distinguish among
terms having similar logical structure but different ontological meaning [18].

Modeling Ontological Structures with Type Classes in Coq 139

3 K-DTT: The Type-Theoretical Layer

The Type-Theoretical layer of K-DTT is both rooted in a constructive logic and on a
typed λ-calculus using dependent types. Dependent type theories allow a type to be
predicated on a value which makes them much more flexible and expressive than con-
ventional type systems [30]. The constructive logic pre-supposes a logic centered on
the concept of proof rather than truth and follows the Curry-Howard isomorphism [22]
in which proving is "equivalent" to computing (or querying a database). Reasoning in
K-DTT consists either in reducing types to their normal form or finding proofs for re-
duced types. In K-DTT, the type of a type is called a universe. Universes are partially
ordered and are organized into an infinite hierarchy of predicative type universes Typei
for data types together with an impredicative1 universe noted Prop for logic. This hi-
erarchy follows a kind of cumulativity: Prop ⊆ Type0 ⊆ Type1 ⊆ A universe is
seen as a type that is closed under the type-forming operations of the calculus. Using
the Curry-Howard isomorphism, terms of the type-theoretical layer can represent data
structures as well as properties of these structures and proofs of these properties.

Definition 1. Let Γ be a valid environment.
A term T is called a type in Γ if Γ T : U for some universe U .
A term M is called a proof object in Γ if Γ M : T for some type T .

The underlying theory, i.e., the Calculus of Constructions with inductive types and uni-
verses (see e.g., [3]), has given rise to the Coq language2 [10] which has recently pro-
moted very powerful primitives such as Types Classes (TCs) [41,45] for describing data
structures. TCs in Coq are a lot like type classes in Haskell, however Coq allows us to do
better by specifying the rules inside TCs. Coq both combines a higher-order logic and a
richly-typed functional programming language. All logical judgments in Coq are typing
judgments such as x : T , where x is a variable and T , a term. The type-checker checks
the correctness of proofs, that is, it checks using proof search that a data structure com-
plies to its specification. The proof engine also provides an interactive proof assistant
to build proofs using specific programs called tactics. The language of the Coq theorem
prover consists in a sequence of declarations and definitions. A declaration associates
a name with a specification. Specifications can be either logical propositions which re-
side in the universe Prop, mathematical collections which are in Set or abstract types
which belong to a universe Typei with i ∈ N . The theory includes dependent types
generalizing function spaces and Cartesian products.

Lemma 1. [10] Let A,B, two types defined in the current context Γ such that Γ s :
φ(x : A,B[x]) where φ denotes a dependent type, then the universe of φ(x : A,B[x])
is the maximum universe among the universes of A and B w.r.t. coercions.

Dependent types give new power to TCs while types and values are unified. TCs have
a structure derived from record types with fields, but they are more powerful by allow-
ing parametric arguments, inheritance and multiple fields. For example if one wants to
represent reflexive relations, we can introduce the Reflexive TC with:

1 Impredicativity is a kind of conceptual circularity.
2 The Coq language has reached a state where it is well usable as a research tool.

140 R. Dapoigny and P. Barlatier

Class Reflexive {A} {R : relation A} :=
reflexivity : forall x, R x x.

where { ... } denotes implicit arguments, A stands for any type and R : A → A →
Prop is a dependent type expressing mathematical relations. Notice that (i) the implicit
type of variable x is automatically resolved in Coq to x : A and (ii) relation refers
to the basic Coq library and complies with the above definition of R.

4 K-DTT: The Ontological Layer

To explain how to represent an ontology with K-DTT, we take the example of the
DOLCE taxonomy of particulars [29,15] which does not classify universals and leaves
room for conceptual choices about universal structures. The hierarchical taxonomy of
particular categories will serve as a backbone, referred to as DOLCE backbone. The
DOLCE backbone plus ontological commitments on appropriate structures expressed
within type theory will form the ontological layer of the K-DTT theory. It can be used
to express knowledge as long as the added features respect the core structures together
with their logical constraints (see e.g., [11]). All data structures will be expressed either
with operational TCs having a single field and returning a value in Typei or predicate
classes returning a truth value in Prop.

4.1 Representing Ontological Classes

We follow the position adopted by most formal ontologies in computer science, i.e.,
that universals are general entities which are further refined in subcategories (e.g., re-
lations) and that particulars are specific entities which exemplify universals but which
cannot have themselves instances. K-DTT objects are equipped with meanings using
the Curry-Howard isomorphism and assuming that any type (or typed structure) corre-
sponds to a universal. Notice that "type" here is a mathematical notion and is not itself
an object for ontological modeling. The fundamental ontological distinction between
universals and particulars can be informally understood using the typing relation ":".
Possible worlds which is a way of characterizing the distinction between descriptions
(i.e., intensions) and particulars corresponding to the descriptions (i.e., extensions) is
implicitly accounted for in K-DTT respectively with typed structures and sets of proof
objects3. Properties and relations which correspond to predicates in a logical language
are usually considered as universals. Terms of the ontological layer of K-DTT are built
from the category Universal, (the highest universe in the lower layer) which includes
the four basic categories (sub-universes in the lower layer), C, Rel, P and Rol which
stand respectively for concept types, relation types, property types and role types (see
fig 1). The last category is not discussed here but more details can be found in [2].

The universe of concepts includes the set of universes for the foundational ontol-
ogy {PT,AB,R, TR, T, PR, . . . , STV, ST, PRO, . . . , } which refers to the DOLCE
taxonomy. It classifies categories of particulars such as APO which stands for Agen-
tive Physical Object. Each of these universes is closed under the type formation rule

3 Proof objects are e.g., the result of queries on a database related to the ontology.

Modeling Ontological Structures with Type Classes in Coq 141

Fig. 1. Ontological categories in K-DTT

(lemma 1) and includes itself a set of sub-universes which can be defined in a domain
ontology. All universes are partially ordered by subsumption formalized here by co-
ercions [38] (e.g., ED is subsumed by PT , ...). In TCs, inheritance is implemented
with (i) implicit arguments and (ii) the :> operator. Concepts can be either primitive
or compound. Primitive concepts are in line with the existence of "natural types", i.e.,
they can be identified as types in isolation (see e.g., [42]). Each category of particulars
which belong to the DOLCE taxonomy is described with a TC where their position in
the hierarchy is computed w.r.t. the coercion rules. All terms of the ontological layer
must be well-formed.

Definition 2. (Well-formed concepts) A term T is well-formed if for some formal on-
tology O providing the environment, we have either O T : C or O T : R or
O T : P for some C ∈ C, R ∈ Rel and P ∈ P .

In the following, we often forget the environment for the sake of clarity, while any
assertion will be relative to an explicit environment (e.g., a foundational ontology).
For example, the judgment LegalPerson : SAG x : LegalPerson where SAG
denotes a Social AGent asserts that the variable x belongs to the concept LegalPerson
provided that it is a well-formed term, i.e., that LegalPerson belongs to the universe
SAG. A value for the variable x which can be e.g., JohnDoe, is called a proof object
because it is both considered as an object (from the programming language side) and as
a proof (from the logical side).

The relation of instantiation (:) between a universal and its instance corresponds here
to type inhabitation. However, when this relation connects a type and its universe, it
behaves like a Grothendieck universe [6] w.r.t. lemma 1. Unlike FOL-based ontologies,
it describes in a natural and simple way the relation between universals and particulars
without the need to introduce specialized ad hoc formulations. For example, in [40], the
proposed theory of Is_a and Part_of is based on a relation of instantiation between an
instance and a class and requires axioms for governing its use. In K-DTT, the relation
of instantiation is already part of the theory and does not require any further axioms.

The equality between terms in the ontological layer is ascribed to be coherent w.r.t.
the Leibniz equality of the lower layer (two types are logically identical iff they have

142 R. Dapoigny and P. Barlatier

the same properties). It relates to the usual definition of the identity condition for an
arbitrary property P , i.e., P (x) ∧ P (y)→ (R(x, y)↔ x = y) with a relation R satis-
fying this formula. This definition is carried out for any type in K-DTT since equality
between types requires the Leibniz equality. The major reason is that identity can be
uniquely characterized if the language is an higher-order language in which quantifica-
tion over all properties is possible [34]. This property yields that Leibniz’s Law, which
is at the basis of identity in the lower layer of K-DTT is expressible in this language.

Relation types are rooted in the mathematical structure of a relation over a set A.
The set is replaced by a general type A : Type and rules can be defined over the basic
TC relation as described in section 3. It can be seen as a generalization of the work
already presented in [11]. Specifications are a restriction of TCs with a first field for data
structure and a second field for the property. Furthermore, fields of TCs can reside in
any universe assuming the rule of lemma 1. Notice that proof objects for relation types
are tuples and are closely related to lines of a table in a database. Universes of relation
types are closed under type forming operations, i.e., Π-types and TCs constructs.

Property types reside in a sub-universe of Universal, which means that they are also
universals. Properties of concept instances correspond to quality types (the DOLCE
category Q) while properties of concept types correspond to meta-properties. Prop-
erty types (concept or instance type properties) are divided into two sub-categories
describing respectively mandatory properties (rigid properties) and possible properties
(anti-rigid properties). This choice complies with the constraints of [17] arguing that
anti-rigid properties cannot subsume rigid properties related to ontological distinctions
in the current practice of conceptualization. While we agree with the introduction of
three formal properties, i.e., identity, rigidity and dependence as proposed in [18], we
do not share the view of properties as unary predicates since it relies on the restricted
support of FOL (i.e., it has a logical bias).

4.2 Expressing Generalization

Generalization consists in deciding whether one category is "more general than" an-
other one and is formalized by the subsumption relation "A subsumes B" which says
that being a B logically implies being an A. The notion of subsumption has several
readings, the more important ones being extensional and intensional [47,33]. There are
some drawbacks to the extensional interpretation of subsumption because (i) determin-
ing whether the extension of one concept is included in the extension of another one
is often undecidable and (ii) observing that two concepts have the same extension does
not mean that they are identical.

In K-DTT, generalization and refinement are intensional and take advantage of two
mechanisms (i) the simple mechanism of coercive subtyping [38,28] and (ii) TCs [41].
The hierarchy of generic concept types from DOLCE is isomorphic to a stratified hi-
erarchy of universes in Coq (e.g., PD is (i) defined as a universe with the definition
:= Type (ii) ordered with the typing assertion : PT and (iii) explicitly coerced with
the parameter u1). In such a way, subsumption hierarchies can be designed provided
that the coherence between coercion paths is preserved. This coherence is automati-
cally checked in Coq (see e.g., [38]). The following fragment details this mechanism on
some DOLCE categories showing e.g., that every perdurant (PD) and every endurant
(ED) are also particulars (PT).

Modeling Ontological Structures with Type Classes in Coq 143

Definition PT : Concept := Type.
Definition PD : PT := Type.
Definition ED : PT := Type.
Parameter u1 : PD->PT. Coercion u1 : PD>->PT.
Parameter u2 : ED->PT. Coercion u2 : ED>->PT.

...

The other mechanism creates inheritance hierarchies by refining TCs. Using the :>
operator within a field of a TC means that any instance of the actual class is also an
instance of the parent class. It results that TCs are a kind of bounded quantification
where the subtyping relation needs not be internalized. When we represent higher and
higher structures, TCs avoid the set of arguments growing as well. Predicate classes also
support multiple inheritance which can be exploited in e.g., biomedical ontologies. Fur-
thermore, they allow overlapping multiple inheritance which enable inherited structures
to share components [45]. In such a way, very expressive hierarchies can be composed
out of predicate classes and operational classes based on inheritance.

For example, we can add a TC for transitive relations to the operational TC of section
3 in a similar way. Then, a pre-order TC can inherit of these classes as follows:

Class Reflexive {A} {R : relation A} : Prop :=
reflexivity : forall x, R x x.}

Class Transitive {A} {R : relation A} : Prop :=
transitivity : forall x y z, R x y -> R y z -> R x z.}

Class PreOrder {A}{R:relation A} : Prop := {
PreOrder_Reflexive :> @Reflexive A R;
PreOrder_Transitive :> @Transitive A R }.

Here, the syntax :> declares each projection (i.e., each field) of the TC PreOrder as
an instance of the respective TCs Reflexive and Transitive. It follows that each
pre-order can be seen as a reflexive and as a transitive relation. This simple example
highlights how multiple inheritance is implemented with implicit parameters.

5 Representing Relations

The strength of dependent types in type theory allows expressing relations as primi-
tives of the language. The first consequence is that they are terms of the logic and can
be involved in complex predicates. At the ontological level, relations are hierarchical
(e.g., subsumption or part-of relations4) or non-hierarchical (e.g., domain relations).
For the sake of simplicity, we only discuss here binary relations. Hierarchical relations
are discussed in detail in section 6.2 since they require the specification of properties.
Non-hierarchical relations denote tuples involving particulars and precisely correspond
to instances of TCs having a first and a second field which detail their component types
and a third one explaining how they are constructed and possibly other field(s) giving
the additional properties they are subject to (see section 6.2). The basic TC BinaryRel
defines the generic structure built out of a type A, another type B and a predicate type.
For example, a domain relation type expressing persons which may suffer from a given

4 We refer here to the part-of relation which is transitive by contrast with the partonomic relation
which is usually not (see [11] for more explanations).

144 R. Dapoigny and P. Barlatier

(or multiple) disease(s) inherits this basic structure through their implicit arguments.
The specification Class Person : APO assumes that Person belongs to the universe
APO which itself is a sub-universe of Concept. Implicit respective parameters A and
B are automatically resolved5 with Person and Disease giving rise to the relation
type SufferFrom:

Definition Disease : PRO := Type.
Parameter u20 : Disease->PRO. Coercion u20: Disease>->PRO.
Class Person : APO := { }.

Class BinaryRel {A B:PT} : Association := {
BinaryRel_arg1 : A;
BinaryRel_arg2 : B;
BinaryRel_rule : A->B->Prop}.

Class SufferFrom : Association := {
SufferFrom_struc :> @BinaryRel Person Disease}.

Instances of Person and Disease correspond respectively to a set of persons and
a set of diseases these persons are subject to. Notice that Disease is defined as a
universe since it cannot have direct instances. Each time an object having the type
@BinaryRel Person Disease is introduced, Coq will try to construct an object of
type SufferFrom. To clarify the meaning of relations in the typed framework, let us
consider the appropriate table within a database (proof objects are items in the table):

Person Disease

John_Doe
Influenza

AIDs

Mike_Hammer Herpes_Simplex

Henry_Mann Rhinovirus

Franck_Burch
Hepatitis_A
nail_infection

The relation type SuffersFrom belongs to the universe of (ontological) binary rela-
tions. A tuple 〈John_Doe,AIDs〉 is a proof for the type SuffersFrom. Here proof
objects are (constructively) obtained with requests to the database rather than by math-
ematical computation as usual.

Let us denote Tab and DB the respective contexts of the table related to the relation
and the whole database. The set of persons6 ObjTab(Person) = {John_Doe, Mike
Hammer,Henry_Mann, Franck_Burch} relative to the table does not rule out
the possibility to have other persons involved in other tables. We assume that DB is
a valid context which contains at least every component of Tab. Using the weaken-
ing rule for contexts with DB Person : Type and Tab Person : Type, we
can assert DB x : Person ⊃ Tab x : Person7. The same reasoning holds

5 Instance resolution is part of the Coq unifier.
6 More formally, the set of proof objects.
7 The symbol ⊃ denotes the logical implication in higher-order logic.

Modeling Ontological Structures with Type Classes in Coq 145

for the type Disease. Then using the extensionality of computational equality be-
tween inhabited types [9], it follows that ObjTab(Person) ⊂ ObjDB(Person) and
ObjTab(Disease) ⊂ ObjDB(Di sease). Furthermore, the diseases undergone by a
person is a subset of the diseases undergone by any person within the table.

These definitions for binary relations can be extended to n-ary relations but this as-
pect will not be discussed here. The TC BinaryRel is general and applies at any ab-
straction level which is less than PT. Then Coq checks for the coherence of subsumption
paths, for instance the sequence: [u20; u15; u14] : Disease >-> PD, [u20;
u15; u14; u1] : Disease >-> PT, [u20; u15] : Disease >-> STV, [u20]
: Disease >-> PRO] assumes that Disease is a Concept while providing the se-
quence of the coercion hops between these two terms. Notice that Coq checks for the
coherence of these paths by avoiding multiple paths between two terms. This exam-
ple illustrates how the types of the arguments are controlled throughout the refinement
process and highlights the benefit of TCs for capturing knowledge.

6 Representing Properties

6.1 Concept Instances Properties

Concept instance properties or quality types can be attributed to things or predicated
about them and then it can be said that objects exemplify quality types. In OO modeling,
qualities (attributes) are embedded within the scope of a class while in CGs and DLs
they rather have a relational flavor. In DOLCE, these qualities belong to a finite set of
quality types (e.g., color, size, shape, etc.) and inhere in specific individuals. It results
that two particulars cannot have the same properties (due to Leibniz equality) but they
can have the same qualities, and at any time, a quality cannot exist unless the entity
it inheres in also exists. A quality type is close to the "relational moment type" [20]
which is also existentially dependent on other particulars. The inherence relation is
isomorphic with type dependence on values. In K-DTT, the idea is to consider qualities
as represented by TCs and then to attach them to other concepts through dependent
arguments. Let us consider how a moment universal can be captured in K-DTT. We only
consider here (for the sake of simplicity) an intrinsic moment which uniquely depends
on a single particular. For example a person which has an attribute SSN (Social Security
Number) can be conceptualized with first introducing two TCs with their appropriate
coercions as follows:

Class SSN : Q := { SSN_Quale : nat}.
Class Person : APO := { . . . }.
Class HasSSN : Prop := {

SSN_Attr : Person->SSN;
SSN_mul : SelectArity Person (card_0_1 Person)}.

where SSN_Quale is a natural number describing the SSN value. The TC HasSSN
relates a person with its SSN through the type of the first field Person->SSN. The
second field describe the arity of the SSN (we presuppose that a person has 0 or 1
SSN). Each arity has a lower and an upper value. Arity 1 is assumed if the field is
a simple type declaration. Arity 0..1 can be represented with the predefined inductive
type option. This type has two constructors, one referred to as none says that there are
no elements having the type whereas Some t provides a term t having the type. Then,

146 R. Dapoigny and P. Barlatier

any arity value greater than 1, i.e., the arity 1..n is easily represented with the list type.
The resulting encoding formalizes these assumptions:

Inductive Arity (A:Type) : Type :=
card_1 : Arity A

| card_0_1 : Arity A
| card_0_n : Arity A.

Definition SelectArity (A:Type)(x:Arity A) : Type :=
match x with

| card_1 => A
| card_0_1 => option A
| card_0_n => list A

end.

With these definitions, it becomes easy to understand the second field in the HasSSN

TC. It means that the type person has an arity 0..1, that is he has 0 or 1 SSN. If the SSN
value is 0, then the related person has no SSN while any positive integer will provide
the person as output. In summary, to express that any concept has a quality, a predicate
TC (i) formalizes the dependency of the concept over the quality in a first field and (ii)
formalizes the arity which inheres in the link person-SSN.

For each instance of HasSSN, one must be able to (i) construct an object (e.g., "33")
having the type SSN and (ii) a proof that the cardinality 0..1 has been selected.

Instance SSNPerson : HasSSN := {
SSN_Attr John := (Build_SSN 33);
SSN_mul := Multiplicity0_1 (Build_SSN 33) John }.

with:
Definition Multiplicity0_1 (s:SSN)(p:Person) : option Person :=

match s with Build_SSN 0 => None
| Build_SSN s => Some p end.

On the one hand the dependent type allows to filter out unexpected values as arguments
and unexpected quality types for the structural part of the property seen as a predicate
TC, while on the other hand, inductive types provide a suitable mechanism for arity
checking. Rigid and anti-rigid properties are useful if one can reason about them in
a meta-schema as claimed in [17,18]. While basic constructors of type theory can be
used for that purpose (see e.g., [2]), reasoning can be made easier by supplying a sup-
plementary field to type classes, i.e., Quality_rig. Then this information can be used
in a process which automate the control of domain ontologies resulting in well-formed
hierarchies.

6.2 Concept Type Properties

Properties of concept types or meta-properties are described with rules, that is with
predicate classes. For example to introduce partial order relations (POR), a widely-
used concept in reasoning, one will extend the previous definitions for Reflexive and
Transitive type classes as follows:

Class Antisymmetric { A } {R : relation A} : Prop :=
antisymmetry : forall x y, R x y -> R y x -> x = y.

Modeling Ontological Structures with Type Classes in Coq 147

Class Irreflexive A R : relation A :=
irreflexivity : forall x, R x x -> False.

Class Asymmetric {A}{R:relation A} := {
Asym_Irreflexive :> @Irreflexive A R;
Asym_Antisymmetric :> @Antisymmetric A R }.

Class POR { A }{R:relation A} : Prop := {
POR_Reflexive :> @Reflexive A R;
POR_Antisymmetric :> @Antisymmetric A R;
POR_Transitive :> @Transitive A R }.

First, the coercions over class instances (e.g., @Reflexive A R) in the POR TC ex-
press multiple inheritance diagrams and second, the required types A and relation A

are general and can be applied to any kind of relation. It follows that such a kind of
inheritance diagram can be reused in any ontology-based application and give rise to
modular hierarchies of axiomatic structural properties.

7 Constructing Inheritance Hierarchies

Usual theories about part-whole relations do not consider categories of the entity types
involved in a part-whole relation and subsumption between these relations presuppose
that their arguments are identical. The K-DTT theory is able to control both the types of
each argument if required and inheritance between the type classes representing distinct
relation types. This property extends the expected expressiveness of the theory beyond
the usual power of ontology languages since it involves not only the predicates of re-
lation types but also all arguments for these types. Let us consider mereotopological
relations for endurants such as the has_3D property [25] which refers to both the en-
durant itself and the region (R) it occupies. The authors claim that the contained_in
relation which is widely used in biology, involves both parthood and containment and
can be captured with the first-order formula:

∀x, y(contained_in(x, y) � part_of(x, y) ∧R(x) ∧R(y) ∧
∃z, w(has_3D(z, x) ∧ has_3D(w, y) ∧ ED(z) ∧ ED(w))

In K-DTT, this dual property is expressed using multiple inheritance. The inheritance
diagram requires first the specification of a generic part-of relation. The inheritance
with instances of type classes (i.e., :> @PartOf R rr;) avoids the introduction of
a structural parthood in the taxonomy (see [25] for more details). Furthermore, simple
inheritance with restriction on the type of argument will describe the involved_in
relation, which relates two perdurants (see figure 2).

Definition ED : PT := Type;
Definition AB : PT := Type;
Definition R : AB := Type;
Class PartOf {A:PT}{rr:relation A} : Association := {

PO_prop :> @POR A rr }.
Class ProperPartOf {A:PT}{r:relation A} : Association := {

PPO_propAs :> @Asymmetric A r;
PPO_propTr :> @Transitive A r}.

148 R. Dapoigny and P. Barlatier

Class ContainedIn {rr: relation R} : Association := {
CIpartof_struct :> @PartOf R rr;
CIregion_struct :> @BinaryRel R ED}.

Class InvolvedIn {rt: relation PD} : Association := {
IIpartof_struct :> @PartOf PD rt}.

Then, assuming for example that we declare variable regions : relation R, we
can prove with a tactic that any relation of type ContainedIn is transitive. The fact
that we can apply transitivity to the arguments which belong to the class ContainedIn,
means that it is propagated along the TC hierarchy until it reaches the TC Transitive.
Then, applying twice the unification yields the result. Notice that tactics may be regis-
tered and reused which makes designer’s task more easy by abstracting away the logical
part.

Goal forall c:@ContainedIn regions, forall x y z:R, regions x y->
regions y z -> regions x z.

Proof.
intros.
eapply transitivity.
eassumption.
assumption.
Qed.

Fig. 2. An inheritance diagram in K-DTT

In a similar way, wider inheritance hierarchies can be investigated for describing ex-
pressive knowledge hierarchies in which type checking allow for proving well-formed
ontologies. Automated proof-search could be improved by specifying ad’hoc requests
on a database using parametrized requests (this aspect will be soon investigated).

8 Related Works

A subset of the CG theory called Prolog+CG is a Java implementation of Prolog where
CGs are first-class datatypes on a par with terms [23]. It includes also Object oriented

Modeling Ontological Structures with Type Classes in Coq 149

extensions. This approach is based on typed hierarchy of concepts which is a lattice
(The Sowa ontology) while our approach stems from the DOLCE foundational on-
tology and Ontoclean for the meta reasoning. Both approaches are using types but in
Prolog+CG, typing requires multiple programming layers since Prolog does not natu-
rally work with types. Instead, the K-DTT approach has a native typing system. While
Prolog+CG has a Prolog core, nothing is said about negation whose handling is prob-
lematic. Due to the intuitionistic framework of K-DTT based on proof construction
rather than discovering truth values, this problem is avoided. For that purpose, Coq has
a lot of built-in tactics, and many more are available in libraries. Typically in Prolog,
one expects the result(s) of the resolution and obtains a truth value while in Coq, one
has to say what type has to be proved and obtains more information since a type is iden-
tified with the set of its proof objects. The creation of instances requires a primitive goal
(CreateInstance) while Coq has a built-in notion of instanciation (:). The higher order
capabilities of the type-theoretical layer are a crucial advantage for meta-reasoning.

Description logics are widely described and many tools exist which allow develop-
ers of to export their ontologies into a DL formalism. However, in DL-based biomedi-
cal ontologies, analysis have been investigated to check how their terminology complies
with a basic set of ontological principles [4]. The authors have pointed out some inaccu-
racies of subsumption links, incomplete description and other conceptual ambiguities.
Alternatively, in spatial reasoning [1], some limitations of OWL (and therefore of DL)
are identified such as the difficulty of the language to represent the constraints which
govern the coordinates of spatial objects in containment hierarchies. The comparison of
datatype properties of individuals is the result of the lack of variables in DLs. Moreover,
since DLs are conceptually oriented, they lack a rule-based reasoning mechanism such as
the one found in logic programming (e.g., Horn clauses). Therefore, various approaches
have been proposed for integrating logic programming and description logics such as
[13,27,37]. Nevertheless, these reasoning techniques suffer from some limitations such
as the restriction of DLs to "safe rules" and complicate the reasoning process by adding
a translation mechanism between DLs and logic programming. More precisely, using
these languages for practical applications raises several challenges [35]. The restriction
to binary predicates in both SWRL and OWL is a first difficulty leading to violate safe
rules for expressing the higher-order nature of the rules that have to be constructed. The
main advantage of the present approach holds in the unified framework in which numer-
ical values can be manipulated, rules can be applied and proved and multiple inheritance
can be exploited while offering an expressive higher-order language.

9 Conclusion

The K-DTT theory is an attempt at constraining the semantics of knowledge repre-
sentation based on expressive typed structures. While the logical part of the repre-
sentation languages is neutral as concerns ontological choices, typing is not (e.g., the
DOLCE backbone). K-DTT is a unifying theory both sufficiently expressive and logi-
cally founded together with a logic which supports different abstraction levels. We have
(i) introduced the basic features of K-DTT and (ii) illustrated how modeling ontologi-
cal knowledge can be checked in the Coq theorem prover. It is demonstrated that type

150 R. Dapoigny and P. Barlatier

classes can model several non-trivial aspects of classes such as meta-level properties
and multiple inheritance. TCs unify the two representations of relations, i.e., the logi-
cal view in which relations are predicates and the conceptual modeling view where a
relation is seen as a set of tuples.

On the one hand, the present theory is more expressive than usual predicate logic
in which it is neither possible to apply a function symbol to a proposition, nor to bind
a variable except with a quantifier. In addition, the language of K-DTT is richer than
FOL-based languages in allowing proofs to appear as parts of the propositions so that
the propositions can express properties of proofs (and not only of individuals like in
FOL). On the other hand, the distinction between usual Object Oriented programming
and type theory relies on the ability of their representative computational structures
to correctly express the semantics of ontological components. While their expressive-
ness is comparable, many aspects of object-oriented programming can be preserved in
type theory since it unifies functional programming, component based programming,
meta-programming (MDA), and logical verification (see [39] for more details). Further
works include the realization of an interface between Coq and databases to collect proof
objects with requests and a tool for proving well-formed ontologies.

References

1. Alia, I., Abdelmoty, A.I., Smart, P.D., Jones, C.B., Fu, G., Finch, D.: A critical evaluation
of ontology languages for geographic information retrieval on the Internet. Journal of Visual
Languages & Computing 16(4), 331–358 (2005)

2. Barlatier, P., Dapoigny, R.: A Type-Theoretical Approach for Ontologies: the Case of Roles.
Applied Ontology 73, 311–356 (in press, 2012)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS
series. Springer (2004)

4. Bodenreider, O., Smith, B., Kumar, A., Burgun, A.: Investigating subsumption in SNOMED
CT: An exploration into large description logic-based biomedical terminologies. Artificial
Intelligence in Medicine 39, 183–195 (2007)

5. Booch, G.: Object-Oriented Design with Applications. Benjamin Cummings, Redwood City
(1991)

6. Bourbaki, N.: Univers, Séminaire de Géométrie Algébrique du Bois Marie Théorie des topos
et cohomologie étale des schémas (SGA 4), 1. Lecture notes in mathematics, vol. 269, pp.
185–217. Springer (1972)

7. Chein, M., Mugnier, M.L., Simonet, G.: Nested graphs: a graph-based knowledge represen-
tation model with FOL semantics. In: Procs. of KR 1998, pp. 524–534. Morgan Kaufmann
(1998)

8. Cirstea, H., Coquery, E., Drabent, W., Fages, F., Kirchner, C., Maluszynski, J., Wack,
B.: Types for Web Rule Languages: a preliminary study. Technical report A04-R-560,
PROTHEO - INRIA Lorraine - LORIA (2004)

9. Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3),
95–120 (1988)

10. Coq Development Team, The Coq Reference Manual, Version 8.3., INRIA, France (2010)
11. Dapoigny, R., Barlatier, P.: Towards Ontological Correctness of Part-whole Relations with

Dependent Types. In: Procs. of the Sixth Int. Conference (FOIS 2010), pp. 45–58 (2010a)

Modeling Ontological Structures with Type Classes in Coq 151

12. Dapoigny, R., Barlatier, P.: Modeling Contexts with Dependent Types. Fundamenta Infor-
maticae 104(4), 293–327 (2010b)

13. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming
with description logics for the semantic web. In: Proc. of Ninth Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR 2004), pp. 141–151. AAAI Press (2004)

14. Angelov, K., Enache, R.: Typeful Ontologies with Direct Multilingual Verbalization. In: Ros-
ner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 1–20. Springer, Heidelberg
(2012)

15. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies
with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI),
vol. 2473, pp. 166–181. Springer, Heidelberg (2002)

16. Guarino, N.: The Ontological Level. In: Casati, R., Smith, B., White, G. (eds.) Philosophy
and the Cognitive Science, pp. 443–456. Holder-Pivhler-Tempsky (1994)

17. Guarino, N., Welty, C.: An Overview of OntoClean. In: Handbook on Ontologies, pp. 151–
172 (2004)

18. Guarino, N.: The Ontological Level: Revisiting 30 Years of Knowledge Representation. In:
Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Founda-
tions and Applications. LNCS, vol. 5600, pp. 52–67. Springer, Heidelberg (2009)

19. Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological Foundations of Concep-
tual Modeling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS,
vol. 2503, pp. 65–78. Springer, Heidelberg (2002)

20. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of
Twente (Centre for Telematics and Information Technology) (2005)

21. Guizzardi, G., Masolo, C., Borgo, S.: In Defense of a Trope-Based Ontology for Conceptual
Modeling: An Example with the Foundations of Attributes, Weak Entities and Datatypes. In:
Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 112–125. Springer,
Heidelberg (2006)

22. Howard, W.A.: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and For-
malism. The formulae-as-types notion of construction, pp. 479–490. Academic Press (1980)

23. Kabbaj, A., Janta-Polczynski, M.: From PROLOG++ to PROLOG+CG: A CG Object-
Oriented Logic Programming Language, B. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000.
LNCS (LNAI), vol. 1867, pp. 540–554. Springer, Heidelberg (2000)

24. Kaneiwa, K., Mizoguchi, R.: Ontological Knowledge Base Reasoning with Sort-Hierarchy
and Rigidity. In: Procs. of KR 2004, pp. 278–288. AAAI Press (2004)

25. Keet, C.M., Artale, A.: Representing and reasoning over a taxonomy of part-whole relations.
Applied Ontology 3(1-2), 91–110 (2008)

26. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based lan-
guages. Journal of the ACM 42, 741–843 (1995)

27. Krötzsch, M., et al.: How to reason with OWL in a logic programming system. In: Procs. of
RuleML 2006 (2006)

28. Luo, Z.: Coercive subtyping. Journal of Logic and Computation 9(1), 105–130 (1999)
29. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library (D18).

Laboratory for Applied Ontology-ISTC-CNR (2003)
30. McKinna, J.: Why dependent types matter. In: Procs. of the 33rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, vol. 41(1), p. 1 (2006)
31. Mugnier, M.L., Leclère, M.: On querying simple conceptual graphs with negation. Data &

Knowledge engineering 60(3), 468–493 (2007)
32. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowledge

About Information Systems. ACM Trans. on Information Systems 8(4), 325–362 (1990)

152 R. Dapoigny and P. Barlatier

33. Napoli, A.: Subsumption and classification-based reasoning in object-based representations.
In: Procs. of the 10th European Conference on Artificial Intelligence (ECAI 1992), pp. 425–
429. John Wiley & Sons Ltd. (1992)

34. Noonan, H.: Identity. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2011),
http://plato.stanford.edu/archives/win2011/entries/identity/

35. Pires, L.F., van Sinderen, M., Munthe-Kaas, E., Prokaev, S.M.H., Plas, D.J.: Techniques
for describing and manipulating context information, Freeband/A MUSE D3.5v2.0, Lucent
Technologies (2005)

36. Paulin-Mohring, C.: Inductive Definitions in the System Coq - Rules and Properties. In:
Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345. Springer, Heidel-
berg (1993)

37. Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog. In: Proc.
of Tenth Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006),
pp. 68–78. AAAI Press (2006)

38. Saibi, A.: Typing algorithm in type theory with inheritance. In: Procs. of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1997),
pp. 292–301. ACM Press (1997)

39. Setzer, A.: Object-Oriented Programming in Dependent Type Theory. In: Trends in Func-
tional Programming, Intellect, vol. 7, pp. 91–108 (2007)

40. Smith, B., Rosse, C.: The Role of Foundational Relations in the Alignment of Biomedical
Ontologies. In: Fieschi, M., et al. (eds.) MEDINFO 2004. IOS Press, Amsterdam (2004)

41. Sozeau, M., Oury, N.: First-Class Type Classes. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)

42. Sowa, J.F.: Using a lexicon of canonical graphs in a semantic interpreter. Relational models
of the lexicon, pp. 113–137. Cambridge University Press (1988)

43. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Founda-
tions. Brooks Cole Publishing Co., Pacific Grove (2000)

44. Sowa, J.F.: Conceptual Graphs. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Hand-
book of Knowledge Representation, ch. 5, pp. 213–237. Elsevier (2008)

45. Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. Mathematical
Structures in Computer Science 21(4), 795–825 (2011)

46. Werner, B.: On the strength of proof-irrelevant type theories. Logical Methods in Computer
Science 4(3) (2008)

47. Woods, W.A.: Understanding Subsumption and Taxonomy: a Framework for progress. In:
Sowa, J. (ed.) Principles of Semantic Networks, pp. 45–94. Morgan Kaufmann (1991)

http://plato.stanford.edu/archives/win2011/entries/identity/

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 153–172, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Parse Thicket Representation for Multi-sentence Search

Boris A. Galitsky1, Sergei O. Kuznetsov2, and Daniel Usikov3

1 eBay Inc San Jose CA USA
boris.galitsky@ebay.com

2 Higher School of Economics, Moscow Russia
skuznetsov@hse.ru

3 Dept. of Physics University of Maryland MD USA
usikov@hotmail.com

Abstract. We develop a graph representation and learning technique for parse
structures for sentences and paragraphs of text. This technique is used to
improve relevance answering complex questions where an answer is included in
multiple sentences. We introduce Parse Thicket as a sum of syntactic parse trees
augmented by a number of arcs for inter-sentence word-word relations such as
coreference and taxonomic. These arcs are also derived from other sources,
including Rhetoric Structure theory, and respective indexing rules are
introduced, which identify inter-sentence relations and joins phrases connected
by these relations in the search index. Generalization of syntactic parse trees (as
a similarity measure between sentences) is defined as a set of maximum
common sub-trees for two parse trees. Generalization of a pair of parse thickets
to measure relevance of a question and an answer, distributed in multiple
sentences, is defined as a set of maximal common sub-parse thickets. The
proposed approach is evaluated in the product search domain of eBay.com,
where user query includes product names, features and expressions for user
needs, and the query keywords occur in different sentences of text. We
demonstrate that search relevance is improved by single sentence-level
generalization, and further increased by parse thicket generalization. The
proposed approach is evaluated in the product search domain of eBay.com,
where user query includes product names, features and expressions for user
needs, and the query keywords occur in different sentences of text.

Keywords: learning taxonomy, learning syntactic parse tree, syntactic
generalization, search relevance.

1 Introduction

The task of answering complex questions, where desired information is distributed
through multiple sentences in a document, becomes the bottleneck of modern search
engines. The demand for access to different types of information have led to a
renewed interest in answering questions posed in ordinary human language and
seeking exact, specific and complete answer. After having made substantial
achievements in fact-finding and list questions, natural language processing (NLP)

154 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

community turned their attention to more complex information needs that cannot be
answered by simply extracting named entities (persons, organization, locations, dates,
etc.) from single sentences in documents [4]. Complex questions often seek multiple
different types of information simultaneously, located in multiple sentences, and do
not presuppose that one single sentence could meet all of its information seeking
expectations. To systematically analyze how keywords from query occur in multiple
sentences in a document, one needs to explore coreferences and other relations
between words within a sentence and between sentences.

Modern search engines attempt to find the occurrence of query keywords in a
single sentence in a candidate search results [11]. If it is not possible or has a low
search engine score, multiple sentences within one document are used. However,
modern search engines have no means to determine if the found occurrences of the
query keywords in multiple sentences are related to each other, to the same entity,
and, being in different sentences, are all related to the query term.

In this study we attempt to systematically extract semantic features from
paragraphs of text using a graph-based learning, assuming that an adequate parse trees
for individual sentences are available. In our earlier studies [8,9] we applied graph
learning to parse trees at the sentence level, and here we proceed to learning the
structure of paragraphs, relying on parse thickets. Parse thicket is defined as a sum of
parse trees with additional arcs between nodes for words in different sentences. We
have defined the least general generalization of parse trees (we call it syntactic
generalization), and in this study we extend it to the level of paragraphs. We propose
parse thicket matching algorithm and apply it to re-rank multi-sentence answers to
complex questions. Computing generalization of a pair of paragraph, we performed a
pair-wise generalization for each sentence in paragraphs. This approach ignores the
richness of coreference information, and in the current study we develop graph
learning means specifically oriented to represent paragraphs of text as respective
parse thickets with nodes interconnected by arcs for a number of relations including
coreference. We consider a number of discourse-related theories such as Rhetoric
Structure and Speech Acts as source of arcs to augment the parse thicket. These arcs
will connect edges for words within as well as between parse trees for sentences.

Machine learning at the paragraph level is required for text classification problems,
where handling the meaning (via collection of keywords) at the sentence level is
insufficient, and taking advantage of coreference information is necessary [6]. In this
paper we will demonstrate how building adequate paragraph structure is necessary
when a paragraph is indexed for search. We will consider two cases for text indexing,
where establishing proper coreferences inside and between sentences links entities in
an index for proper match with a question (Fig. 1):

Text for indexing1: … Tuberculosis is usually a lung disease. It is cured by

doctors specializing in pulmonology.
Text for indexing2: … Tuberculosis is a lung disease… Pulmonology specialist

Jones was awarded a prize for curing a special form of disease.
Question: Which specialist doctor should treat my tuberculosis?

Fig. 1. Multi-sentence indexing cases

 Parse Thicket Representation for Multi-sentence Search 155

In the first case, establishing coreference link Tuberculosis → disease → is cured
by doctors pulmonologists helps to match these entities with the ones from the
question. In the second case this portion of text does not serve as a relevant answer to
the question, although it includes keywords from this question. Hence at indexing
time, keywords should be chained not just by their occurrence in individual sentences,
but additionally on the basis of coreferences. If words X and Y are connected by a
coreference relation, an index needs to include the chain of words X0, X1…X, Y0,Y1…
Y, where chains X0 , X1…X and Y0,Y1… Y are already indexed (phrases including X
and Y). Hence establishing coreference is important to extend index in a way to
improve search recall. Notice that usually, keywords from different sentences can
only be matched with a query keywords with a low score (high score is delivered by
inter-sentence match).

Since our problem concerns with finding the best sentence that contains the answer
to any given question, we need some mechanism that can measure how close the a
candidate answer is to the question. This allows us to choose the final answer which is
the one that matches the most closely to the question. To achieve this we need a
representation of the sentences that allows us to capture useful information in order to
accommodate the matching process. We also need an efficient matching process to
work on the chosen representation.

The evaluation of matching mechanism in this study is associated with improvement
of search relevance by checking syntactic similarity between query and sentences in
search hits, obtained via a search engine API. This kind of syntactic similarity is
important when a search query contains keywords which form a phrase, domain-specific
expression, or an idiom, such as “shot to shot time”, “high number of shots in a short
amount of time”. In terms of search implementation, this can be done in two steps:

1) Keywords are formed from query in a conventional manner, and search hits
are obtained taking into account statistical parameters of occurrences these
words in documents, popularity of hits, page rank and others.

2) Above hits are filtered with respect to syntactic similarity of the snapshots of
search hits with search query. Parse thicket generalization comes into play here.

Hence we obtain the results of the conventional search and calculate the score of the
generalization results for the query and each sentence and each search hit snapshot.
Search results are then re-ranked and only the ones syntactically close to search query
are assumed to be relevant and returned to a user.

2 Generalizing Portions of Text

To measure similarity of abstract entities expressed by logic formulas, a least-general
generalization was proposed for a number of machine learning approaches, including
explanation based learning and inductive logic programming. Least general
generalization was originally introduced in [14]. Its realization within the predicate logic
is opposite to the most general unification; therefore it is also called anti-unification.
In this study, to measure similarity between portions of text such as paragraphs,

156 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

sentences and phrases, we extend the notion of generalization from logic
formulas to sets of syntactic parse trees of these portions of text. The purpose of an
abstract generalization is to find commonality between portions of text at various
semantic levels. Generalization operation occurs on the levels of
Article/Paragraph/Sentence/Phrases (noun, verb and others)/Individual word.

At each level except the lowest one, individual words, the result of generalization of
two expressions is a set of expressions. In such set, expressions for which there exist
less general expressions are eliminated. Generalization of two sets of expressions is a set
of sets which are the results of pair-wise generalization of these expressions.

We outline the algorithm for two sentences and then proceed to the specifics for
particular levels (Fig. 2). The algorithm we present in this paper deals with paths of
syntactic trees rather than sub-trees, because it is tightly connected with language
phrases. We refer the reader to [8,9] for more details.

1) Obtain parsing tree for each sentence. For each word (tree node) we have the

word (lemma), part of speech and form of word information. This
information is contained in the node label. We also have an arc to the other
node.

2) Split parse trees for sentences into sub-trees which are phrases for each type:
verb, noun, prepositional and others; these sub-trees are overlapping. The
sub-trees are coded so that information about occurrence in the full tree is
retained.

3) All sub-trees are grouped by phrase types.

4) Extending the list of phrases by adding equivalence transformations

5) Generalize each pair of sub-trees for both sentences for each phrase type.

6) For each pair of sub-trees yield an alignment, and then generalize each node
for this alignment. For the obtained set of trees (generalization results),
calculate the score.

7) For each pair of sub-trees for phrases, select the set of generalizations with
highest score (least general).

8) Form the sets of generalizations for each phrase types whose elements are
sets of generalizations for this type.

9) Filtering the list of generalization results: for the list of generalization for
each phrase type, exclude more general elements from lists of generalization
for given pair of phrases.

Fig. 2. Sentence-level syntactic generalization algorithm

For a pair of phrases, generalization includes all maximum ordered sets of
generalization nodes for words in phrases so that the order of words is retained. In the
following example

To buy digital camera today, on Monday
Digital camera was a good buy today, first Monday of the month

 Parse Thicket Representation for Multi-sentence Search 157

Generalization is {<JJ-digital, NN-camera> ,<NN- today, ADV-*, NN-Monday>}
where the generalization for noun phrases is followed by the generalization by
adverbial phrase. Verb buy is excluded from both generalizations because it occurs in
a different order in the above phrases. Buy - digital - camera is not a generalization
phrase because buy occurs in different sequence with the other generalization nodes.
Further details on sentence level generalization are available in [8].

2.1 Direct Paragraph-Paragraph Match

We build a model of generalizing paragraphs taking into account coreference and
taxonomic relationship between words between sentences, as well as within
sentences. We will provide a number of examples to introduce the representation via
parse thicket. We start with a simple example of how a discourse can be visualized
by a forest.

Lady Gaga has revealed that her next album will be released as an app.
The singer confirmed that the album, called ARTPOP, will be a multimedia

experience.
 She says she wants fans to "fully immerse" themselves in the project.
 Content will include extra music, videos, chat options and games.

To answer cross-sentence questions, we need to establish connections between the

words of different sentences, taking into account that each consecutive sentence
elaborate on the previous one.

Question “multimedia experience from lady gaga” (Fig. 3) will need the path in
Parse Thiket Lad_Gaga <possession>→ album <same entity relation>→ album <is-
a relation> → multimedia_experience. Question “Does Lady Gaga rely on games
content” will involve the path “Lad_Gaga <possession>→ album <has-a
relation>→ content <has-a relation>→ games.

Fig. 3. Parse Thicket- supported search for a concert at StubHub/eBay

To establish the semantic relationships above, we need to use multiple sources.
Notice that we cannot rely on ontologies, only on syntactic information, searching in a
horizontal domain. Within a sentence, we use its parse tree. Same-entity relation is

158 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

based on anaphora resolution, and has-a relation is based on syntactic structure within
a sentence. Between sentences, we use the elaboration assumption that each
consecutive sentence elaborates on some entities from previous sentences. It turns out
that Rhetoric Structure theory provides a systematic framework to do that.

We now show a paragraph which includes four sentences with the relations
between the words. These relations can be established once taxonomy of domain
entities is available [3]. In this Section we are interested in the structure of the
paragraph, encoded by these relations. Below we will be representing and visualizing
arcs for these relations together with edges of constituency parse tree. We use the
relations Same entity/Sub-entity (a partial case)/Super-entity (more general)/Sibling
entity/New predicate for an entity.

We can visualize information flow in a paragraph by just showing the structure of
entities, without original sentences. Then it becomes clear how each sentence brings
in a new form of constraint for the entities from the previous set of sentences in a
paragraph. This structure is fairly important for answering a question: one needs to
determine which level of specificity is best to answer it. The structure of relations
must be taken into account indexing this paragraph for search in addition to keywords
for each sentence. The best match between the parse thicket for a question (usually, a
trivial parse tree) and the set of parse thickets for an answers does not only indicates
the best answer, but also the most appropriate sentences within this answer according
to desired specificity as expressed in the query.

Notice that the answer relevance to a question is measured by the cardinality of
maximal common sub-thicket. In a conventional search engine, the closer the answer
to the question, the higher the number of keywords common between the question and
the answer (weighted according to TF*IDF model and according to distances between
these keywords in the answer. Parse Thicket approach makes similarity measure more
linguistically aware to the structure of text by means of forming maximum common
sub-thicket.

Fig. 4. Parse thicket for a paragraph with super/sub-entity/new predicate relations

 Parse Thicket Representation for Multi-sentence Search 159

This parse thicket (Fig.4) is helpful to answer a question ‘How to serve a
corporation in United States’ where we need to link the second and the third sentences
via the nodes service and lawsuit.

In our third example, we visualize the discourse structure of customer review
(Fig.5). We now draw the detailed constituency parse thicket and augment it by all
possible arcs we discover for relations between words, including coreferences and
sub-entities. The text to be represented as parse thicket is as follows:

After numerous attempts to bring my parents into the digital world, I think I have

finally succeeded. I failed a few years ago with a Sony digital camera that they could
not quite figure out how to use and have succeeded only modestly with regards to the
computer and internet surfing. But, heck I decided to give it another try when they
asked about a digital camera the other day.

3 Extending Parse Thickets with Rhetoric Structure-Based Arcs

We have demonstrated how to build parse thicket based on coreference arcs and
similar/related-words arcs. In this section we attempt to treat computationally, with a
unified framework, two approaches to textual discourse:

• Rhetoric structure theory (RST [12]);

• Speech Act theory;

Although both these theories have psychological observation as foundations and are
mostly of a non-computational nature, we will build a specific computational
framework for them. We will use these theories to find links between sentences to
enhance indexing for search. For the concept structure based formalization of Speech
Act Theory, we refer to our earlier paper [7]. We proposed a graph-based mechanism
to represent a structure of a dialog using nodes for communicative actions and edges
for temporal and other relationships between them. We used a vocabulary of
communicative actions to

1) find their subjects,
2) add respective arcs to the parse thicket,
3) index combination of phrases as subjects of communicative actions

For RST, we introduce explicit indexing rules which will be applied to each
paragraph and:

1) attempt to extract an RST relation,
2) build corresponding fragment of the parse thicket, and
3) index respective combination of formed phrases (noun, verb, prepositional),

including words from different sentences.

People sometimes assume that whenever a text has some particular kind of discourse
structure, there will be a signal indicating that structure. A typical case would be a
conjunction such as ‘but’.

160 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Fig. 5. Parse thicket for coreference, sub-entity and part-of relations

What structure is seen depends vitally on the words and sentences of the text are,
but the relationship between words and text structure is extremely complex. Phrases
and syntactic patterns can also be used to signal discourse structure. One expects
discourse structure to be conveyed by signals. So the idea that discourse structure can
be conveyed without signals is unexpected. Even more unexpected is the fact that for
the discourse structure that RST represents, more than half is conveyed without
explicit signals. On a relation-by-relation basis, it appears that every relation can be
signaled in some contexts, and also that every relation can be conveyed without an
explicit signal.

 Parse Thicket Representation for Multi-sentence Search 161

RST was originally developed as part of studies of computer-based text generation
at Information Sciences Institute (part of University of Southern California) in about
1983 by Bill Mann, Sandy Thompson and Christian Matthiessen. The theory is
designed to explain the coherence of texts, seen as a kind of function, linking parts of
a text to each other. This coherence is explained by assigning a structure to the text,
which slightly resembles a conventional sentence structure. We adjust this structure
for the purpose of multi-sentence search ability.

 We write Syntactic template

Index(Part-of- Syntactic template)

where Syntactic template indicates how to extract a particular RST relation from text,
in syntactic generalization format, and

Index(Part-of- Syntactic template) is a set of expressions which will be indexed in
addition to the original sequence of words. Part-of- Syntactic template is a set of sub-
lists of Syntactic template.

For the purpose of search, we build syntactic templates to express RST Relational
classes. We don’t have to cover all RST relation, and we don’t have to be precise in
establishing them, unless relation type is matched with query term. We give examples
of some relations and respective templates we use to detect an RST links, and specify
respective indexing rules for how to add additional joined phrases to the search index.

- Consequence (N/S), Result, Cause, Cause-Result

Nonvolitional-cause: ImperMentalVB ...NP. Maybe... VP
--

index(NP, VP), {remember, recall, notice} ∈ ImperMentalVB.

In-response to NP ResponseVP
--

index(NP, ResponseVP)

NP AllowVP to ResultVP
--

index(NP, ResultVP), {allow, help, assist, give-ability}∈ ResultVP
- Manner, Means, Medium (‘Medium demonstrates … feature … of the

system’)

MeansNP DemoVB NP to ToNP

index(NP, ToNP), {show, demonstrate, indicate} ∈ DemoVB
- Temporal-before, Temporal-same-time, Temporal-after

VP until UntilVP

index(NP, UntilNP)

For the following text, we build parse thicket for RST (Fig. 6) and SpActT (Fig. 7).

162 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Recently I tried to log into my account.
I received an error message that my account had been locked.
The site informed me to contact their appeal email address.
I have done so several times; however:
I get an email message back from Paypal stating that I cannot receive an answer of how to

get into my account until I go to the site and login.
Well, this is impossible because my account is locked.

For the latter ParseThicket, we have the following structure of communicative

actions which form the inter-sentence arcs in Fig.7:

try [log-into-my-account]→ receive [error-message]
 /

Inform [to-contact…]-
contact [their-appeal-email-address] → do [contact … however]
 /
get [email message back]
state [I cannot]→ receive []
 answer [how to …]
 get [get into my account until I go to the site and login]

We can now define a generalization operation on two parse thickets.
Given two parse thickets Cx=(Vx, Ex) and Cy=(Vy, Ey), generalization denoted

Cx^Cy is defined as the set {G1, G2,…,Gk} of all inclusion-maximal common
subgraphs of Cx and Cy, such that each graph Gi ∈ Cx^Cy = (Vx, Ex) is characterized as
follows:

1) vi is a vertex in Gi iff vi is a vertex in both Cx and Cy which
corresponds to CAs of the same party (opponent or proponent;

2) (vx,vy) is a thick (resp. thin) arc in Gi iff (vi, vj) is a thick (resp. thin)
arc in Cx and Cy;

3) (vx,vy) is a thick (resp. thin) arc in Gi iff (vi, vj) is a thick (resp. thin)
arc in Cx and (vi, vj) is a thin (resp. thick) arc in Cy

4) Gi contains at least one thick arc (vi, vj).

Note that when (vi, vj) is of the same type (thin or thick) in both Cx and Cy, then that
type is adopted for (vi, vj) in Gi.

Condition 3) specifies that a thin arc (vi, vj). is adopted as an arc in Gi whenever
there are arcs (vi, vj) in Cx and Cy of different types (thin arcs are seen thus as a
weaker generalization of both thick and thin arcs).

By applying this definition of generalization we are now able to provide a criterion
for accepting/rejecting an answer by generalizing it with the question and earlier
approved/rejected answers. We outline a nearest neighbor approach to relating a new
answer to the class of relevant/irrelevant answer classes, on the basis of its similarity
with previous question-answer pairs in the training dataset.

 Parse Thicket Representation for Multi-sentence Search 163

Fig. 6. RST-based parse thicket

164 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Fig. 7. SpActT-based parse thicket

Full parse thicket for the same paragraph we used for RST is depicted in Fig.7.

 Parse Thicket Representation for Multi-sentence Search 165

4 Evaluation of Parse Thicket Generalization

Syntactic generalization and parse thicket-based search has been implemented for
entertainment-related domain at eBay’s site StubHub.com. The query includes the
desired performer, reference to a particular performance, as well as associated
sentiments and feelings. Naturally, all such search criteria occur in different
sentences, so the indexing system needs to find inter-sentence relations to verify that
performers, events and user feelings are all properly related to each other.

The notion of query is rather broad in our case, including a posting in a blog,
Facebook wall posting, or an email expressing an event attendance intent. The system
is designed to answer complex queries about all products and associated sentiments,
not just entertainment events. Queries are expected to include multiple sentences,
where it is essential to track similarity between a query and abstract to improve user
experience in search. In particular, the search is oriented to opinions data in linked
aggregated form from various sources. To search for an opinion, a user specifies a
product class, a name of particular products, a set of its features, specific concerns,
needs or interests. A search can be narrowed down to a particular source, otherwise
multiple sources of opinions (review portals, vendor-owned reviews, forums and
blogs available for indexing) are combined. Search phrase may combine multiple
sentences, for example: “I am a beginner user of digital camera. I want to take
pictures of my kids and pets. Sometimes I take it outdoors, so it should be waterproof
to resist rain”. Obviously, this kind of specific opinion request can hardly be
represented by keywords like ‘beginner digital camera kids pets waterproof rain’.

We conducted evaluation of relevance of syntactic generalization – enabled search
engine, based on Yahoo and Bing search engine APIs. For an individual query, the
relevance was estimated as a percentage of correct hits among the first ten, using the
values: {correct, marginally correct, incorrect} (compare with (Resnik, and Lin
2010)). Accuracy of a single search session is calculated as the percentage of correct
search results plus half of the percentage of marginally correct search results.
Accuracy of a particular search setting (query type and search engine type) is
calculated, averaging through 40 search sessions.

For our evaluation, we use customers’ queries to eBay entertainment and product-
related domains, from simple questions referring to a particular product, a particular
user need, as well as a multi-sentence forum-style request to share a recommendation.
In our evaluation we split the totality of queries into noun-phrase class, verb-phrase
class, how-to class, and also independently split in accordance to query length (from 3
keywords to multiple sentences). The evaluation was conducted by the authors.

To compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them according
to the score of the given search setting (syntactic generalization score and taxonomy-
based score). To evaluate the performance of a hybrid system, we used the weighted
sum of these two scores (the weights were optimized in an earlier search sessions).

Table 1 shows the search relevance evaluation results for single-sentence answers.
The third and fourth columns show baseline Yahoo and Bing searches. The fifth
column shows relevance of re-ranked search, and the last column shows relevance
improvement compared with the baseline, the averaged Yahoo and Bing relevance.

166 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Table 1. Evaluation of single-sentence search

Query phrase sub-
type

R
el

ev
an

cy

of

ba
se

li
ne

Y

ah
oo

se

ar
ch

,
%

,
av

er
ag

in
g

ov
er

 2
0

se
ar

ch
es

R
el

ev
an

cy

of

ba
se

li
ne

 B
in

g
se

ar
ch

,
%

, a
ve

ra
gi

ng
 o

ve
r

20

se
ar

ch
es

R
el

ev
an

cy

of

re
-

so
rt

in
g

by

ge
ne

ra
li

za
ti

on
,

%
,

av
er

ag
in

g
ov

er

40

R
el

ev
an

cy

im
pr

ov
em

en
t:

re

-
so

rt
ed

re

le
va

nc
e

/(
av

er
ag

ed

fo
r

B
in

g
&

 Y
ah

oo
)

3-4 word
phrases

noun phrase 86.7 85.4 87.1 1.012

verb phrase 83.4 82.9 79.9 0.961

how-to
expression

76.7 78.2 79.5
1.026

Average 82.3 82.2 82.2 0.999

5-10 word
phrases

noun phrase 84.1 84.9 87.3 1.033

verb phrase 83.5 82.7 86.1 1.036

how-to
expression

82.0 82.9 82.1
0.996

Average 83.2 83.5 85.2 1.022

2-3
sentences

one verb one
noun phrases

68.8 67.6 69.1
1.013

both verb
phrases

66.3 67.1 71.2
1.067

one sent of
how-to type

66.1 68.3 73.2
1.089

Average 67.1 67.7 71.2 1.056

We observe that using syntactic generalization improves the relevance of search in

cases where query is relatively complex. For shorter sentences there is a slight drop in
accuracy (-0.1%), for medium-length queries of 5-10 keywords we get 2%
improvement, and 5.6% improvement for multi-sentence query. As the absolute
performance of search naturally drops when queries become more complex, relative
contribution of syntactic generalization increases.

We did not find a significant correlation between a query type, phrase type, and
search performance with and without syntactic generalization for these types of
phrases. Verb phrases in questions did well for multi-sentence queries perhaps
because the role of verbs for such queries is more significant than for simpler queries
where verbs can be frequently ignored.

Modern search engines attempt to find the occurrence of query keywords in a
single sentence in a candidate search results. If it is not possible or has a low search
engine score, multiple sentences within one document are used. However, modern

 Parse Thicket Representation for Multi-sentence Search 167

search engines have no means to determine if the found occurrences of query
keywords:

Are related to each other / Are related to the same entity /Being in different
sentences, all related to the query term.

Fig. 8. Search results for the query requiring PARSE THICKET to provide relevance answers

To illustrate this statement, we search Google for ‘microvision laser projector
which fits in the palm of my hand’.

The expected/desired answer is as follows:

http://www.popularmechanics.com/technology/gadgets/4244056
I also saw another projection technology yesterday that looked pretty close to

production. A company called Microvision produces a tiny, portable projector that
uses red, green and blue lasers and a single tiny micromirror to project an image
much the way old cathode ray tube televisions did, by scanning lines to create 60
frames per second. The whole projector fits in the palm of your hand, but a lot of
that size comes from the battery; if you had an external power source, such as a USB,
this thing could be as small as your thumb.

Read more: Innovative Projectors Will Fit in Your Palm, Cellphone: Buzzword @
CES 2008 (With Video) - Popular Mechanics

168 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

First few hits obtained by Google are shown in Fig 8. We observe all of the above
tree problems in each of the search result. All answers are indeed about a ‘Microvison
projector’, but user needs is represented by neither search result snippet. And if the
keywords from the user need part of the query occur, they are not related to the main
entity, ‘Microvison projector’.

One can see that ‘Microvision’ (company name), ‘laser’ (type of product), ‘fits in
the palm of my hand’ (user need) are most likely occur in different sentences, so
matching of parse thicket is required to find a document with relevant information.
Parse thicket approach would work best at indexing time, however in this paper we
evaluate search relevance improvement in horizontal domain, re-ranking search
engine API results.

4.1 Evaluation of Multi-sentence Search

To conduct a multi-sentence search evaluation, we also use Yahoo and Bing search
APIs as for the single-sentence answers. We selected queries from eBay product
searches which included reference to a product and a number of user need. Frequently
expressions for these needs occurred in multiple sentences in product reviews,
shopping forums and blogs. We also automatically filtered out the cases which gave
satisfactory one-sentence answers to build multi-sentence parse thicket-based
evaluation set.

Discovering trivial (in terms of search relevance) links between different
sequences (such as coreferences) is not as important for search as finding more
implicit links provided by text discourse theories. We separately measure search
relevance when parse thicket is RST-based and SpActT-based. Since these theories
are the main sources for establishing non-trivial links between sentences, we limit
ourselves to measuring the contributions of these sources of links. Our hybrid
approach includes both these sources for links.

We now conduct specific evaluation where answers are distributed through two or
more sentences. If it is not the case, we exclude a query from our evaluation set. We
consider all cases of questions (phrase, one, two, and three sentences) and all cases of
search results occurrences (compound sentence, two, and three sentences) and
measured how parse thicket improved the search relevance, compared to original
search results ranking averaged for yahoo and Bing.

One can see that even the simplest cases of short query and a single compound
sentence gives more than 5% improvement. Parse thicket - based relevance
improvement stays within 7-9% as query complexity increases by a few keywords,
and then increases to 9-11% as query becomes one-two sentences. For the same query
complexity, naturally, search accuracy decreases when more sentences are required
for answering this query. However, contribution of the parse thicket does not vary
significantly with the number of sentences the answer occurs in.

 Parse Thicket Representation for Multi-sentence Search 169

Table 2. Search improvement results for parse thicket approach

Query Answer

R
el

ev
an

cy

of

ba
se

lin
e

Y
ah

oo

se
ar

ch
,

%
,

av
er

ag
in

g
ov

er

20

se
ar

ch
es

R
el

ev
an

cy
 o

f
ba

se
lin

e
B

in
g

se
ar

ch
,

%
, a

ve
ra

gi
ng

 o
ve

r
20

 s
ea

rc
he

s

R
el

ev
an

cy

of

re
-s

or
tin

g
by

pa

ir
-

w
is

e
se

nt
en

ce

ge
ne

ra
liz

at
io

n,

%
,

av
er

ag
in

g
ov

er
 4

0
se

ar
ch

es

R
el

ev
an

cy
 o

f
re

-s
or

tin
g

by
 f

or
es

t
ge

ne
ra

liz
at

io
n

ba
se

d
on

 R
ST

,
%

,
av

er
ag

in
g

ov
er

 2
0

se
ar

ch
es

R
el

ev
an

cy
 o

f
re

-s
or

tin
g

by
 f

or
es

t
ge

ne
ra

liz
at

io
n

ba
se

d
on

Sp

A
ct

T
,

%
, a

ve
ra

gi
ng

 o
ve

r
20

 s
ea

rc
he

s

R
el

ev
an

cy
 o

f
re

-s
or

tin
g

by
 h

yb
ri

d
R

ST
+

Sp
A

ct
T

 f
or

es
t g

en
er

al
iz

at
io

n,

%
, a

ve
ra

gi
ng

 o
ve

r
40

 s
ea

rc
he

s

R
el

ev
an

cy
 i

m
pr

ov
em

en
t

fo
r

 p
ar

se

th
ic

ke
t

ap
pr

oa
ch

,
co

m
p.

to

pa

ir
-

w
is

e
ge

ne
ra

liz
at

io
n

3-4 word
phrases

1 comp.
sentence

81.7 82.4 86.6 88.0 87.2 91.3 1.054

2 sent 79.2 79.9 82.6 86.2 84.9 89.7 1.086

3 sent 76.7 75.0 79.1 85.4 86.2 88.9 1.124

Average 79.2 79.1 82.8 86.5 86.1 90.0 1.087

5-10 word
phrases

1 comp.
sentence

78.2 77.7 83.2 87.2 84.5 88.3 1.061

2 sent 76.3 75.8 80.3 82.4 83.2 87.9 1.095

3 sent 74.2 74.9 77.4 81.3 80.9 82.5 1.066

Average 76.2 76.1 80.3 83.6 82.9 86.2 1.074

1 sentence 1 comp.
sent

77.3 76.9 81.1 85.9 86.2 88.9 1.096

2 sent 74.5 73.8 78. 82.5 83.1 86.3 1.101

3 sent 71.3 72.2 76.5 80.7 81.2 83.2 1.088

Average 74.4 74.3 78.7 83.0 83.5 86.1 1.095

2 sentences 1 comp.
sent

75.7 76.2 82.2 87.0 83.2 83.4 1.015

2 sent 73.1 71.0 76.8 82.4 81.9 82.1 1.069

3 sent 69.8 72.3 75.2 80.1 79.6 83.3 1.108

Average 72.9 73.2 78.1 83.2 81.6 82.9 1.062

3 sentences 1
sentence

73.6 74.2 78.7 85.4 83.1 85.9 1.091

2
sentences

73.8 71.7 76.3 84.3 83.2 84.2 1.104

3
sentences

67.4 69.1 74.9 79.8 81.0 84.3 1.126

Average 71.6 71.7 76.6 83.2 82.4 84.8 1.107

Average for all Query and Answer type 1.085

170 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

Notice that there is a noticeable improvement of accuracy in the comparable
cases between Tables 1 and 2. While single-sentence syntactic match gives 5.6%
improvement, multi-sentences parse thickets provides 8.7% for the comparable query
complexity (5.4% for single-sentence answer) and up to 10% for the cases with more
complex answers. One can see that parse thicket improves single sentence syntactic
generalization by at least 2%. On average through the cases of Table 2, parse thickets
outperforms single sentence syntactic generalization by 6.7%, whereas RST on its
own gives 4.6% and SpActT-4.0% improvement respectively. Hybrid RST + SpActT
gives 2.1% improvement over RST-only and 2.7% over SpActT only. We conclude
that RST links compliment SpActT links to properly establish relations between
entities in sentences for the purpose of search.

5 Related Work and Conclusions

Usually, classical approaches to semantic inference rely on complex logical
representations. However, practical applications usually adopt shallower lexical or
lexical-syntactic representations, but lack a principled inference framework. [2]
proposed a generic semantic inference framework that operates directly on syntactic
trees. New trees are inferred by applying entailment rules, which provide a unified
representation for varying types of inferences. The current work deals with syntactic
tree transformation in the graph learning framework, treating various phrasings for the
same meaning in a more unified and automated manner.

The set of semantic problems addressed in this paper is of a much higher semantic
level compared to SRL, therefore more sensitive tree matching algorithm is required
for such semantic level. In terms of this study, semantic level of classification classes
is much higher than the level of semantic role labeling or semantic entailment. SLR
does not aim to produce complete formal meanings, in contrast to our approach.
Unlike [19] who uses edit distance for finding optimal dependency tree matching, we
use maximal set of common sub-graphs which obeys logical properties of least
general generalization and is therefore better suited to ascend to semantic level (of
logical forms representation). This study operates on the level of paragraphs instead
of sentences and our previous studies [7, 8]. Also, we apply re-ranking to search
engine results and not a raw index. Lexical chain formalism can be considered as a
special case of parse thicket. Paper [5] considered keywords as condensed versions of
documents and short forms of their summaries. The authors treat the problem of
automatic extraction of keywords from documents as a supervised learning task.

In this study we introduced the notion of syntactic generalization to learn from
parse trees for a pair of sentences, and extended it to learning augmented parse
thickets for two paragraphs. Parse thicket is intended to represent syntactic structure
of text as well as a number of semantic relations for the purpose of indexing for
search. To accomplish this, parse thicket includes relations between words in different
sentences, such that these relations are essential to match queries with portions of
texts to serve as an answer.

 Parse Thicket Representation for Multi-sentence Search 171

We considered the following sources of relations between words in sentences:
Coreferences, Taxonomic relations such as sub-entity, partial case, predicate for

subject etc.; Rhetoric structure relation and Speech acts. Since the first and second
source of relations has been explored in details, we focus our evaluation on the
contribution of third and fourth sources. We demonstrated that search relevance can
be improved, if search results are subject to confirmation by sentence-level syntactic
generalization, if answer occurs in a single sentence, and by parse thicket
generalization, if answer occurs in multiple sentences.

Traditionally, machine learning of linguistic structures is limited to keyword forms
and frequencies. At the same time, most theories of discourse are not computational,
they model a particular set of relations between consecutive states. In this work we
attempted to achieve the best of both worlds: learn complete parse tree information
augmented with an adjustment of discourse theory allowing computational treatment.

Graphs have been used extensively to formalize ranking of NL texts [18]. Graph-
based ranking algorithms are a way of deciding the importance of a vertex within a
graph, based on global information recursively drawn from the entire graph. Using
semantic information for query ranking has been proposed in [1]. Moreover, relying
on matching of parse trees of a question and an answer has been the subject of [13].
However, we believe the current study leads the way in multi-sentence relevance
improvement, relying on learning parse trees and linguistic theories of the nature of
the coherence of texts.

Acknowledgments. The second author was supported by the project "Mathematical
Models, Algorithms, and Software Tools for Intelligent Analysis of Structural and
Textual Data" within the framework of the Basic Research Program at the National
Research University Higher School of Economics, Moscow, Russia.

References

1. Aleman-Meza, B., Halaschek, C., Arpinar, I., Sheth, A.: A Context-Aware Semantic
Association Ranking. In: Proc. First Int’l Workshop Semantic Web and Databases (SWDB
2003), pp. 33–50 (2003)

2. Bar-Haim, R., Dagan, I., Greental, I., Shnarch, E.: Semantic Inference at the Lexical-
Syntactic Level AAAI (2005)

3. Bhogal, J., Macfarlane, A., Smith, P.: A review of ontology based query expansion.
Information Processing & Management 43(4), 866–886 (2007)

4. Chali, Y., Hasan, S.A., Joty, S.R.: Improving graph-based random walks for complex
question answering using syntactic, shallow semantic and extended string subsequence
kernels. Inf. Process. Manage. 47(6), 843–855 (2011)

5. Ercan, G., Cicekli, I.: Using lexical chains for keyword extraction. Information Processing
& Management 43(6), 1705–1714 (2007)

6. Galitsky, B.: Natural Language Question Answering System: Technique of Semantic
Headers. Advanced Knowledge International, Australia (2003)

7. Galitsky, B., González, M.P., Chesñevar, C.I.: A novel approach for classifying customer
complaints through graphs similarities in argumentative dialogue. Decision Support
Systems 46(3), 717–729 (2009)

172 B.A. Galitsky, S.O. Kuznetsov, and D. Usikov

8. Galitsky, B., Dobrocsi, G., de la Rosa, J.L.: Inferring semantic properties of sentences
mining syntactic parse trees. Data & Knowledge Engineering 81-82, 21–45 (2012)

9. Galitsky, B., Dobrocsi, G., de la Rosa, J.L., Kuznetsov, S.O.: Using Generalization of
Syntactic Parse Trees for Taxonomy Capture on the Web. In: 19th International
Conference on Conceptual Structures, ICCS 2011, pp. 104–117 (2011)

10. Kapoor, S., Ramesh, H.: Algorithms for Enumerating All Spanning Trees of Undirected
and Weighted Graphs. SIAM J. Computing 24, 247–265 (1995)

11. Kim, J.-J., Pezik, P., Rebholz-Schuhmann, D.: MedEvi: Retrieving textual evidence of
relations between biomedical concepts from Medline. Bioinformatics 24(11), 1410–1412
(2008)

12. Mann, W.C., Christian, M.I., Matthiessen, M., Thompson, S.A.: Rhetorical Structure
Theory and Text Analysis. In: Mann, W.C., Thompson, S.A. (eds.), pp. 39–78. John
Benjamins, Amsterdam (1992)

13. Moschitti, A.: Efficient Convolution Kernels for Dependency and Constituent Syntactic
Trees. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI),
vol. 4212, pp. 318–329. Springer, Heidelberg (2006)

14. Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.)
Machine Intelligence, vol. 5, pp. 153–163. Elsevier North-Holland, New York (1970)

15. Punyakanok, V., Roth, D., Yih, W.: The Necessity of Syntactic Parsing for Semantic Role
Labeling. In: IJCAI (2005)

16. OpenNLP (2012), http://incubator.apache.org/opennlp/
documentation/manual/opennlp.html

17. Marcu, D.: From Discourse Structures to Text Summaries. In: Mani, I., Maybury, M. (eds.)
Proceedings of ACL Workshop on Intelligent Scalable Text Summarization, Madrid,
Spain, pp. 82–88 (1997)

18. Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts. In: Empirial Methods in
NLP (2004)

19. Punyakanok, V., Roth, D., Yih, W.: Mapping dependencies trees: an application to
question answering. In: Proceedings of AI & Math., Florida, USA (2004)

FCA-Based Models and a Prototype Data
Analysis System for Crowdsourcing Platforms

Dmitry I. Ignatov1, Alexandra Yu. Kaminskaya1,2, Anastasya A. Bezzubtseva1,2,
Andrey V. Konstantinov1, and Jonas Poelmans1,3

1 National Research University Higher School of Economics, Russia, 101000, Moscow,
Myasnitskaya str., 20
dignatov@hse.ru

http://www.hse.ru
2 Witology

http://www.witology.com
3 KU Leuven, Belgium

Abstract. This paper considers a data analysis system for collaborative
platforms which was developed by the joint research team of the National
Research University Higher School of Economics and the Witology com-
pany. Our focus is on describing the methodology and results of the first
experiments. The developed system is based on several modern mod-
els and methods for analysing of object-attribute and unstructured data
(texts) such as Formal Concept Analysis, multimodal clustering, associ-
ation rule mining, and keyword and collocation extraction from texts.

Keywords: collaborative and crowdsourcing platforms, Data Mining,
Formal Concept Analysis, multimodal clustering.

1 Introduction and Related Work

The success of modern collaborative technologies is marked by the appearance
of many novel platforms for holding distributed brainstorming or carrying out
so called “public examination”. There are a lot of such crowdsourcing companies
in the USA (Spigit [1], BrightIdea [2], InnoCentive [3] etc.) and Europe (Imag-
inatik [4]). There is also the Kaggle platform [5] which is most beneficial for
data practitioners and companies that want to select the best solutions for their
data mining problems. In 2011 Russian companies launched business in that area
as well. The two most representative examples of such Russian companies are
Witology [6] and Wikivote [7]. The reality as yet is far away from technologi-
cal breakthrough, though some all-Russian projects have already been finished
successfully (for example, Sberbank-21, National Entrepreneurial Initiative-2012
[8] etc.). The core of such crowdsourcing systems is a socio-semantic network
[9,10,11,12], which data requires new approaches to analyze. This paper is de-
voted to the new methodological base for the analysis of data generated by
collaborative systems, which uses modern data mining and artificial intelligence
models and methods. As a rule, while participating in a project, users of such

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 173–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.hse.ru
http://www.witology.com

174 D.I. Ignatov et al.

crowdsourcing platforms [13] discuss and solve one common problem, propose
their ideas and evaluate ideas of each other as experts. Finally, as a result of the
discussion and ranking of users and their ideas we get the best ideas and users
(their generators). For deeper understanding of users’s behavior, developing ad-
equate ranking criteria and performing complex dynamic and statistic analyses,
special means are needed. Traditional methods of clustering, community detec-
tion and text mining need to be adapted or even fully redesigned. Moreover,
these methods require ingenuity for their effective and efficient use (finding non-
trivial results). We briefly describe models of data used in crowdsourcing projects
in terms of Formal Concept Analysis (FCA) [14]. Furthermore, we present the
collaborative platform data analysis system CrowDM (Crowd Data Mining), its
architecture and methods underlying the key steps of data analysis.

The remainder of the paper is organized as follows. Section 2 contains descrip-
tions of the Witology crowdsourcing methodology and Sberbank-21 project. In
section 3 we describe some key notions from FCA, our data and methods. In sec-
tion 4 we discuss the analysis scheme of the developed system. In section 5 we
present the results of our first experiments with the Sberbank-21 data. Section 6
concludes our paper and describes some possible directions for future research.

2 Witology Crowdsourcing Methodology and Projects

One proverb says “Two heads are better than one”, but crowdsourcing projects
may take several thousands of heads. The term “crowdsourcing” is a portmanteau
of “crowd” and “outsourcing”, coined by Jeff Howe in 2006 [13]. There is no general
definition of crowdsourcing, but it takes some specific features. Crowdsourcing
is a process, both online and offline, that includes task solving by a distributed
and large group of people who are usually from different organisations, and not
necessarily paid by money for their work.

We shortly describe the methodology of the Witology crowdsourcing company,
Witodology, considering as an example its Sberbank-21 project. Note that the
company clearly says that Witodology is based on the notion of socio-sematic
networks [11,12]. In 2011, from October till November, Witology and Sberbank
launched one of the first successful crowdsourcing projects in Russia: Sberbank-
21. The Russian company Sberbank is the largest and oldest Russian bank which
history started in 1841; its name can be formally translated into English as
“Savings Bank of the Russian Federation”. The project was devoted to the theme
“Office of Sberbank in 2012 (Office SB-2012)”. The main project topics include
“Office of SB-21 for private clients”, “Office SB-21 for individual entrepreneurs”,
“Office SB-21 for small businesses”, “Internal filling of “physical” SB-21 office”, and
“Internal filling of “virtual” SB-21 office”. The goal was formulated as “a selection
of the best well-founded and innovative solutions for the formulated tasks, which
include format and content of the proposed solutions as well as reasons for their
appearance and adoption”. During the preliminary test, 450 experts were selected
out of 5198 people. Amongst them 33% were women and 67% were man, 21%
were Sberbank employees and 79% of them were either clients or other interested

FCA-Based Models for Crowdsourcing Platforms 175

persons. The main stages of the project were “Solution’s generation”, “Selection
of similar solutions”, “Generation of counter-solutions”, “Total voting”, “Solution’s
improvements”, “Solution’s stock”, “Final improvements” and finally “Solution’s
review”.

In total, 222 experts proposed 1581 solutions for 15 tasks which were grouped
into 5 topics. After “Selection of similar solutions” by participants, 24 574 an-
alytical operations including comparison, clustering, and filtering of ideas were
performed. As a result of this stage, 589 solutions were selected. The stage “To-
tal voting” resulted in the selection of 182 solutions. After the stage “Solution’s
stock” 75 solutions were left. From 15 remaining solutions after “Solution’s re-
view” 3 solutions were nominated as the best ones.

The first stage “Solution’s generation” is performed individually by each user.
A key difference between traditional brainstorming and the “Solution’s genera-
tion” stage is that nobody can see or listen to ideas of other participants. The
main similarity is the absence of criticism which was moved to later stages. In
the “Selection of similar solutions” phase participants are selecting similar ideas
(solutions) and their aggregated opinions are transformed to clusters of similar
ideas.

For Sberbank-21 projects all the proposed solutions were divided into 15 clus-
ters (tasks), three per topic: (Sberbank and private client: interface in 2021?,
Sberbank-21 service for every 21 years old person?, Unique service of 2021 for
private clients?), (Sberbank and entrepreneur: interface in 2021?, Service in 2021
for startupers?, Unique service in 2021 for entrepreneurs?), (Sberbank and small
businesses: interface in 2021?, Service in 2021 for new businesses?, Unique service
for small businesses?), (What will disappear in the “physical” office of SB-21?,
What will change in the “physical” office SB-21?, What will appear in the “phys-
ical” office of SB-21?) (What will disappear in the online office of SB-21?, What
will change in the online office of SB-21?, What will appear in the online office
of SB-21?).

Counter-solutions generation includes criticism (pros and cons) and evaluation
of proposed ideas by communication between an author and experts. During this
stage an idea’s author can invite other experts to his team taking into account
their contribution to discussion and criticism. Total voting is performed by eval-
uation of each proposed idea by all users in terms of their attitude and quality
levels of the solution (marks are integers between -3 and 3). Two stages, i.e. “So-
lution’s improvements” and “Final improvements”, involve active collaboration
by experts and authors who improve their solutions together.

The system calculates 10 user’s ratings based on their activity; among them
are “Popularity”,“Social capital”, “Performance”, “Gamer”, “Actor”, “Judge”, “Com-
menter”, “Importance”, “Influence”, and “Reputation”. For texts the company uses
the following rates: “Significance”, “Influence”, “Popularity”, “Quality”, “Attitude”
and also “Reputation”.

Solution’s stock is one of the most interesting game stages of the project when
all participants with a positive reputation rate accumulated on the previous
stages take money in internal currency “wito” and can perform stock trade.

176 D.I. Ignatov et al.

The solutions with the highest price become winners. Finally, during the review
of solutions, experts with high reputation make their final evaluations based
on several criteria in -3 to 3 scale: “Solution efficiency”, “Solution originality”,
“Solution performability”, and “Return on investment”.

We have to tell the reader about some best solutions but cannot go into
details because of non-disclosure requirements. For example, for the task “What
will disappear in the “physical” SB-21 office?” the best solution said that “You
shouldn’t to fill in the same documents several times”. For the task “What will
change in the SB-21 “physical” office” the solution was “Changing the access
mode for a safe deposit box to biometric data for corporate clients and Near
Based Communication (NFC) chips for private clients”. And the answer for the
question “What will appear in the SB-21 “physical” office?” was “Videowall”, a
sort of interface for communication with a distant operator and making regular
financial transactions.

3 Mathematical Models and Methods

At the initial stage of collaborative platform data analysis two data types were
identified: data without using keywords (links, evaluations, user actions) and
data with keywords (all user-generated content). These two data types totally
correspond with two components of a socio-semantic network. For the analysis
of the 1st type of data (with keywords) we suggest to apply Social Network
Analysis (SNA) methods, clustering (biclustering and triclustering [15,16,17],
spectral clustering), FCA (concept lattices, implications, association rules) and
its extensions for multimodal data, triadic, for instance [18]; recommender sys-
tems [19,20,21,22] and statistical methods of data analysis [23] (the analysis of
distributions and average values).

3.1 Formal Concept Analysis and OA-biclustering

Methods described in this paper are mainly from the multimodal clustering
block at the analysis scheme (see fig. 2). The protagonists of crowdsourcing
projects (and corresponding collaborative platforms) are platform users (project
participants). We consider them as objects for analysis. More than that, each
object can (or cannot) possess a certain set of attributes. The user’s attributes
can be: topics which the user discussed, ideas which he generated or voted for,
or even other users. The main instrument for analysis of such object-attribute
data is FCA [14]. Let us give formal definitions. The formal context in FCA is
a triple K = (G, M, I), where G is a set of objects, M is a set of attributes, and
the relation I ⊆ G × M shows which object possesses which attribute. For any
A ⊆ G and B ⊆ M one can define Galois operators :

A′ = {m ∈ M | gIm for all g ∈ A}, (1)
B′ = {g ∈ G | gIm for all m ∈ B}.

FCA-Based Models for Crowdsourcing Platforms 177

The operator ′′ (applying the operator ′ twice) is a closure operator : it is idem-
potent (A′′′′ = A′′), monotonous (A ⊆ B implies A′′ ⊆ B′′) and extensive
(A ⊆ A′′). The set of objects A ⊆ G such that A′′ = A is called closed. The
same properties hold for closed attribute sets, i.e. subsets of the set M . A cou-
ple (A, B) such that A ⊂ G, B ⊂ M , A′ = B and B′ = A, is called formal
concept of a context K. The sets A and B are closed and called extent and
intent of a formal concept (A, B) respectively. For the set of objects A the set
of their common attributes A′ describes the similarity of objects of the set A,
and the closed set A′′ is a cluster of similar objects (with the set of common
attributes A’). The relation “to be more general concept” is defined as follows:
(A, B) ≥ (C, D) iff A ⊆ C. We denote by B(G, M, I) the set of all concepts of a
formal context K = (G, M, I). The concepts of a formal context K = (G, M, I)
ordered by extensions inclusion form a lattice, which is called a concept lattice.
For its visualization a line diagram (Hasse diagram) can be used, i.e. the cover
graph of the relation “to be a more general concept”.

To represent datasets with numerical (e.g., age, word frequency, number of
comments) and categorical (e.g., gender, job) attributes there are many-valued
contexts. A many-valued context (G, M, W, I) consists of sets G, M and W and
a ternary relation I ⊆ G × M × W for which it holds that

(g, m, w) ∈ I and (g, m, v) ∈ I ⇒ w = v.

The elements of G are still called objects, those of M (many-valued) attributes
and the elements of W attribute values. Sometimes we write m(g) = w to show
that the object g has the value w of the attribute m.

We can transform the many-valued context into a one-valued one by means
of conceptual scaling [14].

In the worst case (Boolean lattice) the number of concepts is equal to
2{min |G|,|M|}, thus, for large contexts, FCA can be used only if the data is
sparse. Moreover, one can use different ways of reducing the number of formal
concepts (choosing concepts by stability [24] index or extent size). The alter-
native approach is a relaxation of the definition of formal concept as maximal
rectangle in object-attribute matrix which elements belong to the incidence re-
lation. One of such relaxations is the notion of object-attribute bicluster [16].
If (g, m) ∈ I, then (m′, g′) is called object-attribute bicluster with the density
ρ(m′, g′) = |I ∩ (m′ × g′)|/(|m′| · |g′|).

The main features of OA-biclusters are listed below:

1. For any bicluster (A, B) ⊆ 2G × 2M it is true that 0 ≤ ρ(A, B) ≤ 1.
2. OA-bicluster (m′, g′) is a formal concept iff ρ = 1.
3. If (m′, g′) is a bicluster, then (g′′, g′) ≤ (m′, m′′).

Let (A, B) ⊆ 2G × 2M be a bicluster and ρmin be a non-negative real number
such that 0 ≤ ρmin ≤ 1, then (A, B) is called dense, if it fits the constraint
ρ(A, B) ≥ ρmin. The above mentioned properties show that OA-biclusters differ
from formal concepts since unit density is not required. Graphically it means
that not all the cells of a bicluster must be filled by a cross (see fig. 1). Besides

178 D.I. Ignatov et al.

g

m

g''

m''

g'

Fig. 1. OA-bicluster

formal lattice construction and visualization by means of Hasse diagrams one
can use implications and association rules for detecting attribute dependencies
in data. Then, using the obtained results, it is easy to form recommendations (for
example, offering users the most interesting discussions for them). Furthermore,
structural analysis can be performed and then used for finding communities.
Statistical methods are helpful for frequency analysis of the different users’ ac-
tivities. Almost all of the above mentioned methods can be applied to data
containing users’ keywords (in this case they become attributes of a user).

3.2 Triadic FCA and OAC-triclustering

To deal with three-way data within FCA, an extension to Triadic Concept
Analysis (TCA) was proposed by Lehman and Wille [25,26]. In [18] the au-
thor introduced the TRIAS algorithm for mining all frequent triconcepts from
3-dimensional data and applied it to the popular Bibsonomy (users-tags-papers)
dataset. Voutsadakis [27] extended triadic concept analysis to n-dimensional
contexts.

There exist some known difficulties in mining binary data, such as a lack of
fault tolerance, an explosion of the number of patterns leading to large computa-
tional complexity and to many small patterns that appear to be false positive ob-
servations. In triadic or n-ary contexts these problems are seriously aggravated.
To cope with these issues, several techniques have been introduced for faster
selection of interesting patterns. For example, there is an extended box clus-
tering approach [28] and triadic concept factors [29]. Another approach, called
constraint-based mining, also scales up to n-ary relations and is discussed in
[30] and [31]. In [17] we also proposed a new triclustering approach for min-
ing so-called (dense) OAC-triclusters, where OAC stands for Object Attribute

FCA-Based Models for Crowdsourcing Platforms 179

Condition. This algorithm has a better theoretical time complexity than exist-
ing exact algorithms like TRIAS and is therefore better suited for very large
datasets. Moreover, during experimentations with the bibsonomy dataset, we
found the number of triclusters generated by our algorithm to be significantly
lower than the number of triconcepts extracted by TRIAS. Manual validation of
the extracted tricommunities revealed that the majority of them was meaningful.

A triadic context K = (G, M, B, Y) consists of sets G (objects), M (at-
tributes), and B (conditions), and ternary relation Y ⊆ G×M×B. An incidence
(g, m, b) ∈ Y shows that the object g has the attribute m under condition b.

For convenience, a triadic context is denoted by (X1, X2, X3, Y). A triadic
context K = (X1, X2, X3, Y) gives rise to the following diadic contexts

K
(1) = (X1, X2 × X3, Y

(1)),
K

(2) = (X2, X1 × X3, Y
(2)),

K
(3) = (X3, X1 × X2, Y

(3)),
(2)

where gY (1)(m, b) :⇔ mY (1)(g, b) :⇔ bY (1)(g, m) :⇔ (g, m, b) ∈ Y . The deriva-
tion operators (primes or concept-forming operators) induced by K

(i) are de-
noted by (.)(i). For each induced dyadic context we have two kinds of derivation
operators. That is, for {i, j, k} = {1, 2, 3} with j < k and for Z ⊆ Xi and
W ⊆ Xj × Xk, the (i)-derivation operators are defined by:

Z
→ Z(i) = {(xj , xk) ∈ Xj × Xk|xi, xj , xk are related by Y for all xi ∈ Z},
W
→ W (i) = {xi ∈ Xi|xi, xj , xk are related by Y for all (xj , xk) ∈ W}. (3)

Formally, a triadic concept of a triadic context K = (X1, X2, X3, Y) is a triple
(A1, A2, A3) of A1 ⊆ X1, A2 ⊆ X2, A3 ⊆ X3, such that for every {i, j, k} =
{1, 2, 3} with j < k we have A

(i)
i = (Aj × Ak). For a certain triadic concept

(A1, A2, A3), the components A1, A2, and A3 are called the extent, the intent,
and the modus of (A1, A2, A3). It is important to note that for interpretation
of K = (X1, X2, X3, Y) as a three-dimensional cross table, according to our
definition, under suitable permutations of rows, columns, and layers of the cross
table, the triadic concept (A1, A2, A3) is interpreted as a maximal cuboid full
of crosses. The set of all triadic concepts of K = (X1, X2, X3, Y) is called the
concept trilattice and is denoted by T(X1, X2, X3, Y).

To simplify notation, we denote by (.)′ all prime operators, as it is usually
done in FCA. For our purposes consider a triadic context K = (G, M, B, Y) and
introduce primes, double primes and box operators for particular elements of G,
M , B, respectively. In what follows, we write g′ instead of {g}′ for 1-set g ∈ G
and similarly for m ∈ M and b ∈ B: m′ and b′.

We do not use double primes, because of their rigid structure; they do not
tolerate exceptions like some amount of missing pairs. To allow missing pairs in
the operators results we introduce box operators:

g� = { gi | (gi, bi) ∈ m′ or (gi, mi) ∈ b′}
m� = { mi | (mi, bi) ∈ g′ or (gi, mi) ∈ b′} (4)
b� = { bi | (gi, bi) ∈ m′ or (mi, bi) ∈ g′}.

180 D.I. Ignatov et al.

Table 1. Prime and double prime operators of 1-sets

Prime operators of Their double prime
1-sets counterparts

m′ = { (g, b) |(g,m, b) ∈ Y } m′′ = { m̃ |(g, b) ∈ m′ and (g, m̃, b) ∈ Y }

g′ = { (m, b) |(g,m, b) ∈ Y } g′′ = { g̃ |(m, b) ∈ g′ and (g̃, m, b) ∈ Y }

b′ = { (g,m) |(g,m, b) ∈ Y } b′′ = { b̃ |(g,m) ∈ b′ and (g, m, b̃) ∈ Y }

Let K = (G, M, B, Y) be a triadic context. For a certain triple (g, m, b) ∈ Y , the
triple T = (g�, m�, b�) is called a OAC-tricluster based on box operators.

The density of a certain tricluster (A, B, C) of a triadic context K =
(G, M, B, Y) is given by the fraction of all triples of Y in the tricluster, that
is ρ(A, B, C) = |I∩A×B×C|

|A||B||C| .
The tricluster T = (A, B, C) is called dense if its density is greater than a

predefined minimal threshold, i.e. ρ(T) ≥ ρmin. For a given triadic context K =
(G, M, B, Y) we denote by T(G, M, B, Y) the set of all its (dense) triclusters.

The main features of OAC-triclusters are listed below:

1. For every triconcept (A, B, C) of a triadic context K = (G, M, B, Y) with
nonempty sets A, B, and C we have ρ(A, B, C) = 1.

2. For every triclucter (A, B, C) of a triadic context K = (G, M, B, Y) with
nonempty sets A, B, and C we have 0 ≤ ρ(A, B, C) ≤ 1.

Proposition 1. Let K = (G, M, B, Y) be a triadic context and ρmin = 0. For
every Tc = (Ac, Bc, Cc) ∈ T(G, M, B, Y) there exists a tricluster T = (A, B, C) ∈
T(G, M, B, Y) such that Ac ⊆ A, Bc ⊆ B, Cc ⊆ C.

In the table 2 we have 33 = 27 formal triconcepts, 24 with ρ = 1 and 3 void tricon-
cepts with ρ = 0 (they have either emptyset of users or ideas or tags). Although
the data is small, we have 27 patterns to analyze (maximal number of triconcepts
for the context size 3×3×3); this is due to the data being the power set triadic
context. We can conclude that users u1, u2, and u3 share almost the same sets of
tags and resources. So, they are very similar in terms of (term, idea) shared pairs
and it is convenient to reduce the number of patterns describing this data from 27
to 1. The tricluster T = ({u1, u2, u3}, {t1, t2, t3}, {i1, i2, i3}) with ρ = 0.89 is ex-
actly such a reduced pattern, but its density is slightly less than 1. Each of the
triconcepts from T = {(∅, {t1, t2, t3}, {i1, i2, i3}), ({u1}, {t2, t3}, {i1, i2, i3}), . . .
({u1, u2, u3}, {t1, t2}, {i3})} is contained, w.r.t. component-wise set inclusion,
in T .

FCA-Based Models for Crowdsourcing Platforms 181

Table 2. A toy example with Witology data for users {u1, u2, u3} describing ideas
{i1, i2, i3} by terms {t1, t2, t3}

t1 t2 t3
u1 × ×
u2 × × ×
u3 × × ×

i1

t1 t2 t3
u1 × × ×
u2 × ×
u3 × × ×

i2

i1 i2 i3
u1 × × ×
u2 × × ×
u3 × ×

i3

3.3 Socio-semantic Networks for Crowdsourcing

One of the possible models for crowdsourcing platforms is the so called socio-
semantic network [12]. A social network is usually modeled as a weighted multi-
graph

G = {V, E1, . . . , Ek; π, δ1, . . . , δk},
where

– V represents members of the network or crowdsourcing platform,
– E1, . . . , Ek ⊂ V × V denote different relations between the members, e.g.

being a friend, follower, relative, co-worker etc.
– π : V → Π is a user profile function, which stores personal information

about the network members.
– δi : Ei → Δi (i ∈ {1, . . . , k}) keeps parameters and details of the corre-

sponding relation.

The model of the content has a very similar definition. It is a multi-graph

C = {T, R1, . . . , Rm; θ, γ1, . . . , γm},

where

– T stands for the set of all elements of the generated content, e.g. posts,
comments, evaluations, tags etc.

– R1, . . . , Rm ⊂ T × T denote different relations on the content, e.g. being a
reply on, have the same subject, etc.

– θ : T → Θ stores parameters of the content;
– γi : Ri → Γi (i ∈ {1, . . . , k}), similarly, keeps parameters and details of the

corresponding relation.

The basic connections between the social graph and the content are defined by
the authorship relation A ⊂ V × T .

One can also consider other kinds of connections between users and generated
content items, but usually all of them could be modeled via introducing a new
type of content. For example, the relation John is interested in post “Announce-
ment” could be modeled by introducing a new content node interest evidence,
which points to “Announcement” (use the corresponding relation Ri here) and
is authored by John.

182 D.I. Ignatov et al.

Since we deal with binary relations between users and users, users and items,
and items and items, it is easy to turn the socio-semantic based models to FCA-
language and possibly, by so doing, obtain some benefits for finding communities,
groups of interests and making recommendations. For visualising socio-sematic
networks refer to [32].

3.4 FCA-Based Models for Crowdsourcing Data

From socio-semantic networks we move on to formal concept analysis. It is easy
to show that all key crowdsourcing platform data can be described in FCA terms
by means of formal contexts (single-valued, multi-valued or triadic).

1. The data below are described by a single-valued formal context K =
(G, M, J).

Let KP = (U, I, P) be a formal context, where U is a set of users, I is a
set of ideas, and P ⊆ U × I shows which user proposed which idea. Two other
contexts, KC = (U, I, C) and KE = (U, I, E), describe binary relations of idea
commenting and idea evaluation respectively.

The user-to-user relationships can also be represented by means of a single-
valued formal context K = (U, U, J ⊆ U × U), where u1Ju2 can designate,
for example, that user u1 commented some idea proposed by u2. Relationships
between content items can be modelled in the same way, e.g. K = (T, T, J ⊆
T × T), where t1Jt2 shows that t1 and t2 occurred together is some text (idea
or comment).

2. A multi-valued context K
W = (G, M, W, J) can be useful for representing

data with numeric attributes.
Let K

F = (U, K, F, J) be a multi-valued context, where U is a set of users, K
is a set of keywords, F is a set of keyword frequency values, J ⊆ U×K×F shows
how many times a particular user u applied a keyword k in an idea description or
while discussing some ideas. The context K

F can be reduced to a plain context
by means of (plain) scaling.

The commenting and evaluation relations can be described through multi-
valued contexts in case we count each comment or evaluation for a certain topic.
E.g, the multi-valued context K

V = (U, I, V = {−3,−2,−1, 0, 1, 2, 3}, J) de-
scribes which mark a particular user u assign to an idea i, where V contains
values of possible marks; it can be written as u(i) = w, where v ∈ V .

3. A triadic context KB = (G, M, B, Y ⊆ G × M × B) can be used for data
containing tags as descriptors.

Consider the formal context KT = (U, I, T, Y), where U is a set if users, I is
a set of ideas, T is a set of tags (e.g. keywords and keyphrases), Y shows that a
particular user u used keyword t in the description of an idea i.

It is worth to mention that all considered data can be sorted out into two
groups: 1) data with keywords K

F , KT and 2) data without them KP , KI , KE.
The main advantage of such a representation is that FCA can be applied to

community detection which is the main part of social network analysis. Social
network analysis is a popular research field in which methods are developed
for analysing 1-mode networks, like friend-to-friend, 2-mode [33,34,35], 3-mode

FCA-Based Models for Crowdsourcing Platforms 183

[18,36,17] and even multimodal dynamic networks [9,11,12]. Here we focused on
the subfield of bicommunity and tricommunity identification.

As it was shown above, crowdsourcing data can be represented as bipartite
or tripartite graphs. Standard techniques like “maximal bicliques search” return
a huge number of patterns (in the worst case exponential w.r.t. the input size).
Therefore we need some relaxation of the biclique notion and good interesting-
ness measures for mining biclique communities.

It is widely known in the social network analysis community (see,
e.g. [37,38,39,40,41]) that the notion of formal concept is (almost) the same
thing as a biclique.

A concept-based bicluster (OA-bicluster) [16] is a scalable approximation of
a formal concept (biclique). The advantages of concept-based biclustering are:

1. Less number of patterns to analyze;
2. Less computational time (polynomial vs exponential);
3. Manual tuning of bicluster (community) density threshold;
4. Tolerance to missing (object, attribute) pairs.

For analyzing three-mode network data like folksonomies [42] we also proposed a
triclustering technique [17]. The reader can refer to [43] to see how that approach
was empirically validated on real online social network data.

Thus every formal concept or OA-bicluster of contexts from paragraph 1 or
2 (after scaling) can be considered as a bicommunity of users sharing similar
interests or behaving similarly and every triconcept or tricluster of contexts
from paragraph 3 can be interpreted as a tricommunity of users, their ideas and
keywords they used. These patterns are crucial for team building and recommen-
dation of relevant topics and persons for discussions. According to practitioners
in the field, exploiting these patterns can make crowdsourcing work more com-
fortable and increase user’s activity.

3.5 FCA-Based Recommender Model

Two kinds of recommendations seem to be potentially useful for crowdsourcing.
The first one is a recommendation of like-minded persons to a particular user,
and the second one is able to find antagonists, users which discussed the same
topics as a target one, but with opposite marks.

1. Recommendations of like-minded persons and interesting ideas
Let KP = (U, I, P) be a context which describes idea proposals. Consider a
target user u0 ∈ U , then every formal concept (A, B) ∈ BP (U, I, P) containing
u0 in its extent provides potentially interesting ideas to the target user in its
intent and prospective like-minded persons in A \ {u0}.

Consider the set R(u0) = {(A, B)|(A, B) ∈ BP (U, I, P) and u0 ∈ A} of all con-
cepts containing a target user u0. Then the score of each idea or user to recommend
to u0 can be calculated as follows score(i, u0) = |{u|u∈A, (A,B)∈R(u0) and i∈u′}|

|{u|u∈A and (A,B)∈R(u0)}| or

score(u, u0) = |{A|u∈A and (A,B)∈R(u0)}|
|R(u0)| respectively. As a result we have a set of

184 D.I. Ignatov et al.

ranked recommendations R(u0) = {(i, score(i))|i ∈ B and (A, B) ∈ R}. One can
select the topmost N of recommendations from R ordered by their score.

2. Recommendations of antagonists
Consider two evaluation contexts: the multi-valued context K

W = (U, I, W =
{−3,−2,−1, 0, 1, 2, 3}, J) and binary context KE = (U, I, E). Then consider
(X, Y) from R(u0) = {(A, B)|(A, B) ∈ BP (U, I, P) and u0 ∈ A}. Set X contains
people that evaluated the same set of topics Y , but we cannot say that all of
them are like-minded persons w.r.t relation E. However, we can introduce a
distance measure, which shows for every pair of users from X how distant they
are in marks of ideas evaluation:

d(X,Y)(u1, u2) =
∑

u1,u2∈X

i∈Y

|i(u1) − i(u2)|. (5)

As a result we again have a set of ranked recommendations R(X,Y)(u0) =
{(u, d(i))|u ∈ U and (A, B) ∈ R}. The topmost pairs from Rd(u0) with the
highest distance contain antagonists, that is persons with the opposite views
on most of the topics which u0 evaluated. To aggregate R(X,Y)(u0) for different
(X, Y) from R(u0) into a final ranking we can calculate

d(u0,u) = max{d(X,Y)(u0, u)|(X, Y) ∈ R(u0) and u0, u ∈ X}. (6)

The proposed models need to be tuned and validated, and also assume several
variations such as using biclusters instead of formal concepts and other ways of
final distance calculation. An additional possible recommender model can exploit
triadic data structures for more diverse recommendations from the different sets
of a triadic context.

3.6 Keywords and Keyphrases Extraction

We consider Keywords (keyphrases) as a set of the most significant words (phrases)
in a text document that can provide a compact description for the content and
style of this document. In the remainder of this paper we do not always differen-
tiate between keywords and keyphrases, assuming that a keyword is a particular
case of a keyphrase. In our project two similar problems of keyword and keyphrase
extraction arise:

1. Keywords and keyphrases of the whole Witology forum;
2. Keywords and keyphrases of one user, topic etc.

In the first case we concentrate on finding syntactically well associated keywords
(keyphrases). In the second case specific words and phrases of a certain user or
topic are the subject of interest. Hence, we have to use two different methods for
each keyword (keyphras) extraction problem. The first one is solved by using any
statistical measure of association, such as Pointwise Mutual Information (PMI),
T-Score or Chi-Square [44]. To solve the second problem we may use TF-IDF

FCA-Based Models for Crowdsourcing Platforms 185

or Mutual Information (MI) measures that reflect how important the word or
phrase is for the given subset of texts. All the above mentioned measures define
the weight of a specific word or phrase in the text. The words and phrases of the
highest weight then can be considered as keywords and keyphrases. We are more
interested in the quality of extracted keywords and keyphrases than in the way
we obtain them. To tokenize texts we use a basic principle of word separation:
there should be either a space or a punctuation mark between two words. A
hyphen between two sequences of symbols makes them one word. To lemmatize
words we use the Russian AOT lemmatizer [45], which is far from being ideal,
but it is the only freely available one (even for commercial usage) for processing
Russian texts. To normalize bi- and tri-grams we use one of our Python scripts
that normalizes phrases according to their formal grammatical patterns. We are
going to use formal contexts based on sets of extracted keyphrases and people
who use them, the occurrence of keyphrases in texts and so on. By analogy,
keyphrases, texts and users all together form a tricontext for further analysis.
Moreover, keyphrases are an essential part of a socio-semantic network model,
where they are used for semantic representation of the network’s nodes.

4 Analysis Scheme

The data analysis scheme of CrowDM, which is developed now by the project and
educational team of Witology and NRU HSE is presented in figure 2. As it was
mentioned before, after downloading data from a platform database, we obtain
formal contexts and text collections. In turn, the latter become formal contexts
as well after keyword extraction. After that, the resulting contexts are analyzed.
The FCA and multimodal clustering blocks of CrowDM were implemented by
N. Romashkin and K. Blinkin in Python for the project.

5 First Experiments Results

We performed different experiments with the following methods: formal con-
cepts, iceberg-lattices and stability indices, biclustering, triclustering, implica-
tions, association rules, power law analysis, and SNA methods.

For carrying out experiments we constructed formal concepts where objects
are users of the platform and attributes are ideas which users proposed within
one of 5 project topics (“Sberbank and private client”). We selected only the ideas
that reached the end or almost the end of the project. An object “user” has an
attribute “idea” if this user somehow contributed to the discussion of this idea,
i.e. he is an author of the idea, commented on the idea and evaluated the idea
or comments which were added to the idea. Thus, the extracted formal concepts
(U, I), where U is a set of users, I is a set of ideas, correspond to so called
epistemic communities (communities of interests), i.e. the set of users U who are
interested in the ideas of I. Figure 3 displays the diagram of the obtained upper
part of a certain concept lattice.

186 D.I. Ignatov et al.

Text Collections
Linguistic

Preprocessing &
Analysis

Formal
Concepts

DB

Recommender
systems

Formal Concepts

Biclustering

Triclustering

Spectral
bi-, triclustering

Multimodal
clustering Attribute

dependence

Implications

Association rules

Spectral clustering

Fuzzy spectral
clustering

Clustering

 SNA methods
(community
detection,

Influence analysis)

Statistical methods
(histograms, Pareto

distribution etc.)

Structural and
Statistical analysis

Fig. 2. The data analysis scheme of CrowDM

FCA-Based Models for Crowdsourcing Platforms 187

Fig. 3. The order filter (iceberg-lattice) diagram of the concept lattice for a certain
users-tasks context with 24 concepts and minsupp = 7. The diagram is obtained by
CrowDM system.

Each node of the diagram coincides with one formal concept (in total the
lattice contains 198 concepts). A node cam be marked by the label of an object
(or the count of objects in a formal concept extent) or an attribute if this object
(moving bottom-up by diagram) or attribute (moving top-down) first appeared
in this node. It is obvious that the obtained diagram is too awkward to be
analyzed as a static image. Usually in such cases one can use order filters or
diagrams of the sets of stable concepts or iceberg-lattices for visualization. We
will showcase how to read a concept lattice using the lattice fragment in figure
4. Some first experiments were carried out using the program Concept Explorer
(ConExp) which was developed for applying FCA algorithms to object-attribute
data [46]. Later we applied our own data analysis system CrowDM. The system
is able to build the formal concepts and biclusters for a given context. Clicking
on a lattice node, one can see the objects and attributes corresponding to the
concept which this node represents. Objects are accumulated from below (in the
given example the set of objects contains User45 and User22), attributes come
from above (we have only one attribute, “Microcredits from 1000 to 5000”). This
means that User45 and User22 together took part in the discussion of the given
idea and nobody else discussed it.

We demonstrate the results of applying biclustering algorithms on the same
data below.

Let us explain the figure 5. During experiments we used the system for gene
expression data analysis BicAT [15]. Rows correspond to users, columns are ideas
of a given topic (“Sberbank and private client”), in the discussion of which users
participated. The color of the cell of the corresponding row and column inter-
section depicts the contribution intensity of a given user to a given idea. The
contribution is a weighted sum of the number of comments and evaluations to
that idea and takes into account the fact whether this user is an author of this

188 D.I. Ignatov et al.

Fig. 4. Fragment of concept lattice diagram obtained by ConExp

idea. The lightest cells coincide with zero contribution, the brightest ones (fig. 5,
top left cell) show the maximum contribution. After data discretization (0 –
zero contribution, 1 – otherwise) we applied the BiMax algorithm which found
some biclusters (see fig. 5 for example). Since one of the important crowdsourc-
ing project problems is the search for people with similar ideas, the presented
bicluster with 6 users is most interesting. The majority of the other found bi-
clusters contained less than 4-5 users (we constrained the number of ideas in a
bicluster to be strictly greater than 2).

Fig. 5. Bicluster with a large number of users

Then, to gain a better understanding of the evaluation process in the project,
the evaluation distribution was plotted in several ways. One of them is presented
in fig. 6; it shows the cumulative number of users, who made more than a certain
amount of evaluations during the entire project.

FCA-Based Models for Crowdsourcing Platforms 189

Fig. 6. Evaluation distribution

The horizontal axis displays the amount of submitted evaluations. The vertical
axis represents the number of users, who made more than a fixed amount of
evaluations. For instance, there is only one participant, who produced more
than 5000 evaluations, and one more person, who made more than 3000 but less
than 5000 evaluations. Thus, the rightmost dot on the X-axis shows the first
participant (the y-coordinate is 1), and the next dot shows both of them (the y-
coordinate is 2). The total number of users, who have once evaluated something,
is 167. The set of graph points is explicitly split into two parts: the long gentle
line (from x = 0 to 544 inclusive) and the steep tail. The fact, that both lines
seem almost straight in logarithmic scales, indicates that the evaluation activity
on the project might follow a Pareto distribution. It is reasonable to seek the
individual distribution functions for the main and the tail parts of the sample,
as testing the whole sample for goodness of fit to a Pareto distribution results
in strong rejection of the null hypothesis (H0: “The sample follows a Pareto
distribution”).

We perform further analysis with two subsamples of the initial sample by
means of Matlab tools from [23]. This analysis implies useful consequences ac-
cording to the well-known “80:20” rule:

W = P (α−2)/(α−1),

which means that the fraction W of the wealth is in the hands of the richest P of
the population. In our case, 70% of users make 80% of all evaluations (α = 3.48,
p-value= 0.78 for x ∈ [614, 5020]). Thus, the situation is quite wealthy and there
is no serious disproportions in evaluations. But if one finds strong disproportion
in evaluation or commenting activity like 20% of users make 80% of actions, it
implies that facilitators, who is responsible for monitoring and control in the
crowdsourcing system, should involve more inactive users into the process. We
also built a typology of Witology platform users [47].

190 D.I. Ignatov et al.

6 Conclusion

The results of our first experiments suggest that the developed methodology
will be useful for data analysis of crowdsourcing systems. The most important
directions for future work include the analysis of textual information generated
by users, applying multimodal clustering methods and using them for develop-
ing recommender systems. Development and experimental validation of recom-
mender models, including FCA-based, are in R&D plan of the company. Some
interesting results concern regression between different user’s ratings and vari-
ous measures of actor importance in SNA were obtained; for example, one of the
Witology ratings was well-described by such SNA measures as user’s centrality
and degree. Thus SNA can be a good tool for developing and redesigning the
Witology ranking methods.

Acknowledgments. The main part of this work was performed by the project
and educational group “Algorithms of Data Mining for Innovative Projects Inter-
net Forum”. Further work was supported by the Basic Research Program at the
National Research University Higher School of Economics in 2012 and performed
in the Laboratory of Intelligent Systems and Structural Analysis. We also would
like to thank Oleg Anshakov, Sergei Kuznetsov and Rostislav Yavorsky for their
valuable comments and the rest of our group: Nikita Romashkin, Konstantin
Blinkin, Ekaterina Chernyak, Olga Chugunova, Daria Goncharova, Daniil Nedu-
mov, Fedor Strok.

References

1. Spigit company, http://spigit.com/
2. Brightidea company, http://www.brightidea.com/
3. Innocentive comp., http://www.innocentive.com/
4. Imaginatik company, http://www.imaginatik.com/
5. Kaggle, http://www.kaggle.com
6. Witology company, http://witology.com/
7. Wikivote company, http://www.wikivote.ru/
8. Sberbank-21, national entrepreneurial initiative-2012, http://sberbank21.ru/
9. Roth, C.: Generalized preferential attachment: Towards realistic socio-semantic

network models. In: ISWC 4th Intl Semantic Web Conference, Workshop on Se-
mantic Network Analysis. CEUR-WS Series, Galway, Ireland, vol. 171, pp. 29–42
(2005) ISSN 1613-0073

10. Cointet, J.-P., Roth, C.: Socio-semantic dynamics in a blog network. In: CSE (4),
pp. 114–121. IEEE Computer Society (2009)

11. Roth, C., Cointet, J.P.: Social and semantic coevolution in knowledge networks.
Social Networks 32, 16–29 (2010)

12. Yavorsky, R.: Research Challenges of Dynamic Socio-Semantic Networks. In: Ig-
natov, D., Poelmans, J., Kuznetsov, S. (eds.) CDUD 2011 - Concept Discovery in
Unstructured Data, CEUR Workshop Proceedings, vol. 757, pp. 119–122 (2011)

13. Howe, J.: The rise of crowdsourcing. Wired (2006)
14. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st

edn. Springer-Verlag New York, Inc., Secaucus (1999)

http://spigit.com/
http://www.brightidea.com/
http://www.innocentive.com/
http://www.imaginatik.com/
http://www.kaggle.com
http://witology.com/
http://www.wikivote.ru/
http://sberbank21.ru/

FCA-Based Models for Crowdsourcing Platforms 191

15. Barkow, S., Bleuler, S., Prelic, A., Zimmermann, P., Zitzler, E.: Bicat: a biclustering
analysis toolbox. Bioinformatics 22(10), 1282–1283 (2006)

16. Ignatov, D.I., Kaminskaya, A.Y., Kuznetsov, S., Magizov, R.A.: Method of Biclus-
terzation Based on Object and Attribute Closures. In: Proc. of 8th International
Conference on Intellectualization of Information Processing (IIP 2011), Cyprus,
Paphos, October 17-24, pp. 140–143. MAKS Press (2010) (in Russian)

17. Ignatov, D.I., Kuznetsov, S.O., Magizov, R.A., Zhukov, L.E.: From Triconcepts
to Triclusters. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H., Mirkin, B.G. (eds.)
RSFDGrC 2011. LNCS, vol. 6743, pp. 257–264. Springer, Heidelberg (2011)

18. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS–An Algo-
rithm for Mining Iceberg Tri-Lattices. In: Proceedings of the Sixth International
Conference on Data Mining, ICDM 2006, pp. 907–911. IEEE Computer Society,
Washington, DC (2006)

19. Ignatov, D.I., Kuznetsov, S.O.: Concept-based Recommendations for Internet Ad-
vertisement. In: Belohlavek, R., Kuznetsov, S.O. (eds.) Proc. CLA 2008. CEUR
WS, vol. 433, pp. 157–166. Palacký University, Olomouc (2008)

20. Ignatov, D., Poelmans, J., Zaharchuk, V.: Recommender System Based on Algo-
rithm of Bicluster Analysis RecBi. In: Ignatov, D., Poelmans, J., Kuznetsov, S.
(eds.) CDUD 2011 - Concept Discovery in Unstructured Data. CEUR Workshop
Proceedings, pp. 122–126 (2011)

21. Ignatov, D.I., Poelmans, J., Dedene, G., Viaene, S.: A New Cross-Validation Tech-
nique to Evaluate Quality of Recommender Systems. In: Kundu, M.K., Mitra,
S., Mazumdar, D., Pal, S.K. (eds.) PerMIn 2012. LNCS, vol. 7143, pp. 195–202.
Springer, Heidelberg (2012)

22. Ignatov, D.I., Konstantinov, A.V., Nikolenko, S.I., Poelmans, J., Zaharchuk, V.:
Online recommender system for radio station hosting. In: [48], pp. 1–12

23. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661–703 (2009)

24. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1-4),
101–115 (2007)

25. Lehmann, F., Wille, R.: A Triadic Approach to Formal Concept Analysis. In: Ellis,
G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43.
Springer, Heidelberg (1995)

26. Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)
27. Voutsadakis, G.: Polyadic concept analysis. Order 19(3), 295–304 (2002)
28. Mirkin, B.G., Kramarenko, A.V.: Approximate Bicluster and Tricluster Boxes

in the Analysis of Binary Data. In: Kuznetsov, S.O., Ślęzak, D., Hepting, D.H.,
Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 248–256. Springer, Hei-
delberg (2011)

29. Belohlavek, R., Vychodil, V.: Factorizing Three-Way Binary Data with Triadic
Formal Concepts. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES
2010, Part I. LNCS, vol. 6276, pp. 471–480. Springer, Heidelberg (2010)

30. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Data peeler: Contraint-based
closed pattern mining in n-ary relations. In: SDM, pp. 37–48. SIAM (2008)

31. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Closed patterns meet n-ary
relations. ACM Trans. Knowl. Discov. Data 3, 3:1–3:36 (2009)

32. Drutsa, A., Yavorskiy, K.: Socio-semantic network data visualization. In: Tagiew,
R., Ignatov, D.I., Neznanov, A.A., Poelmans, J. (eds.) EEML 2012 - Experimental
Economics and Machine Learning. CEUR Workshop Proceedings, vol. 757 (2012)

33. Latapy, M., Magnien, C., Vecchio, N.D.: Basic notions for the analysis of large
two-mode networks. Social Networks 30(1), 31–48 (2008)

192 D.I. Ignatov et al.

34. Liu, X., Murata, T.: Evaluating community structure in bipartite networks. In:
Elmagarmid, A.K., Agrawal, D. (eds.) SocialCom/PASSAT, pp. 576–581. IEEE
Computer Society (2010)

35. Opsahl, T.: Triadic closure in two-mode networks: Redefining the global and local
clustering coefficients. Social Networks 34 (2011) (in press)

36. Murata, T.: Detecting communities from tripartite networks. In: Rappa, M., Jones,
P., Freire, J., Chakrabarti, S. (eds.) WWW, pp. 1159–1160. ACM (2010)

37. Freeman, L.C., White, D.R.: Using galois lattices to represent network data. Soci-
ological Methodology 23, 127–146 (1993)

38. Freeman, L.C.: Cliques, galois lattices, and the structure of human social groups.
Social Networks 18, 173–187 (1996)

39. Duquenne, V.: Lattice analysis and the representation of handicap associations.
Social Networks 18(3), 217–230 (1996)

40. White, D.R.: Statistical entailments and the galois lattice. Social Networks 18(3),
201–215 (1996)

41. Roth, C., Obiedkov, S., Kourie, D.: Towards Concise Representation for Tax-
onomies of Epistemic Communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek,
R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg
(2008)

42. Vander Wal, T.: Folksonomy Coinage and Definition (2007),
http://vanderwal.net/folksonomy.html (accessed on March 12, 2012)

43. Gnatyshak, D., Ignatov, D.I., Semenov, A., Poelmans, J.: Gaining insight in social
networks with biclustering and triclustering. In: [48], pp. 162–171

44. Manning, C.D., Schütze, H.: Foundations of statistical natural language processing.
MIT Press, Cambridge (1999)

45. Russian project on automatic text processing, http://www.aot.ru
46. Grigoriev, P.A., Yevtushenko, S.A.: Elements of an Agile Discovery Environment.

In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843,
pp. 311–319. Springer, Heidelberg (2003)

47. Bezzubtseva, A., Ignatov, D.I.: A New Typology of Collaboration Platform Users.
In: Tagiew, R., Ignatov, D.I., Neznanov, A.A., Poelmans, J. (eds.) EEML 2012 -
Experimental Economics and Machine Learning. CEUR Workshop Proceedings,
vol. 757, pp. 9–19 (2012)

48. Aseeva, N., Babkin, E., Kozyrev, O. (eds.): BIR 2012. LNBIP, vol. 128. Springer,
Heidelberg (2012)

http://vanderwal.net/folksonomy.html
http://www.aot.ru

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 193–209, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Toward a Peircean Theory of Human Learning:
Revealing the Misconception of Belief Revision

Mary Keeler and Uta Priss

Ostfalia University of Applied Sciences
Wolfenbüttel, Germany
mkeeler@uw.edu

www.upriss.org.uk

Abstract. Belief Revision was conceived to model how humans do think, and
has found application in machine learning. This paper argues that Peirce’s
theory of inquiry conceives how we must think, if we want to keep improving
our knowledge. Distinguishing between these two views, psychological
(empirical) and pragmatic (normative), is crucial to our improvement of human
learning methodology, especially as we develop interactive engagement
methods for learning STEM concepts. Examining efforts to model Belief
Revision in AI can reveal the limitations of this conceptualization for human
learning, due to its misconception of Peirce’s pragmatic theory of inquiry.

1 Introduction

In AI research, “Belief Revision” refers to the process of changing beliefs to
accommodate new information, as part of the knowledge representation challenge to
model learning by machine cognition. This research originates in early pragmatist
philosophy, especially C.S. Peirce’s essay, “The Fixation of Belief” [1877] and
Dewey’s learning theory. AI researchers have adopted Peirce's term “abductive
reasoning” to explain belief revision as “guessing right” or “inference to the best
explanation.” Peirce considered abduction (or retroduction) to be a valid form of
logical reasoning, but logical empiricists in cognitive science consider it to belong
properly to psychology. Although he struggled to distinguish his logic of reasoning
(as normative science) from psychology (as empirical science), the significance of
this distinction remains unexamined, leaving cognitive research fundamentally
confused about belief and reasoning in the process of human learning.

If, as Peirce explains, “the essence of belief is the establishment of a habit, and
different beliefs are distinguished by the different modes of action to which they give
rise” [“How to Make Our Ideas Clear” (1878)], and yet the purpose of logical
reasoning (as inquiry, or learning) is to find the truth (which is an ideal limit we never
reach, but must hope will keep our reasoning effectively progressing), then belief and
reasoning are at odds in purpose. In fact, we might say that belief must be suspended
during logical reasoning, so that it does not “block the way of inquiry,” in Peirce’s
terms. Perhaps inquiry suspends belief, and belief suspends inquiry? If so, we might
clarify the confusion in cognitive research by distinguishing belief from reasoning to
enable more effective study of human learning. This effort begins to clear the way
toward improvement upon the prevailing constructivist theory of learning, especially

194 M. Keeler and U. Priss

for teaching STEM subjects, by replacing Dewey’s version of pragmatism with
Peirce’s pragmatic theory of inquiry—to advance the how toward the why of learning.
The following sections respond to basic questions: What is the difference between
belief and reasoning? What role can belief have in learning? Can we learn to use
beliefs effectively in learning?

2 Belief Revision Theory: From Philosophy to AI

Tracing the history of Belief Revision (BR) development reveals the theoretical
misunderstanding among philosophers, cognitive and computer scientists, linguists,
and economists that we should expect in interdisciplinary research. Many in AI who
have developed learning systems that incorporate some version of BR have ignored
conceptual difficulties identified by philosophers. Even researchers who explicitly
address conceptual problems, such as P. Thagard, have increased the confusion by
simplifying theoretical fundamentals in their early work. The complexity of issues in
that history is beyond this paper’s scope, but we briefly cover its origins and
evolution.

Although Frontiers in Belief Revision [Williams and Rott 2001] informs us that BR
theory first came into focus in the work of the philosophers W. Harper [1976; 1977]
and I. Levi [1977; 1980; 1991], we find evidence in [Doyle] that it began to take
shape in the work of H. Kyburg [1961] who, in his delineation of the fundamentals
from antiquity, erroneously conflates Peirce’s with Dewey’s pragmatism.

There are two fundamentally distinct ways of thinking about thinking about the world. One
is contemplative; the other is oriented toward action. One seeks pure knowledge; the other is
pragmatic. One leads to hedged claims; the other leads to categorical claims in a hedged way.
Both approaches to thinking about the world have ancient roots: Socrates, seeking wisdom;
Alexander, the man of action. Both are represented in contemporary philosophy: Carnap
wanted to associate with each statement of our language its appropriate degree of
confirmation, relative to what we know; Peirce and Dewey took the impetus for deliberation
to be the necessity to choose an action, and the outcome to be the act. Both approaches are
represented in artificial intelligence: the probabilists taking the correct representation of our
trans-evidential conclusions about the world to be hedged statements (the probability of rain
tomorrow is .67), and the logicists taking the representation to be categorical statements (it
will rain tomorrow), appropriately hedged in a non-monotonic logic—the conclusions can be
withdrawn in the face of new evidence. [Kyburg 1994: 1-2]

In 1985, C. Alchourrón, P. Gärdenfors, and D. Makinson introduced their model
(AGM) based on their earlier work (1978-82) [see Gärdenfors 1992, 2011], to address
a critical problem. In simple terms, their work responds to: “how do you update a
database of knowledge in the light of new information? What if the new information
is in conflict with something that was previously held to be true? An intelligent
system should be able to accommodate all such cases” (using an established set of
postulates). The AGM model represents beliefs as sentences in some formal language
that does not capture all aspects of belief:

The beliefs held by an agent are represented by a set of such belief-representing sentences. It
is usually assumed that this set is closed under logical consequence, i.e., every sentence that

 Toward a Peircean Theory of Human Learning 195

follows logically from this set is already in the set. This is clearly an unrealistic idealization,
since it means that the agent is taken to be “logically omniscient.” However, it is a useful
idealization since it simplifies the logical treatment; indeed, it seems difficult to obtain an
interesting formal treatment without it. In logic, logically closed sets are called “theories”. In
formal epistemology they are also called “corpora”, “knowledge sets”, or (more commonly)
“belief sets.” [Stanford Encyclopedia of Philosophy (SEP): plato.stanford.edu/]

Levi [1984, 1986] clarified the nature of this idealization, pragmatically (in Dewey’s
sense of “pragmatic”): “a belief set consists of the sentences that someone is
committed to believe, not those that she actually believes in” [SEP]. According to
Levi’s analysis, we are logically committed to believe in all the consequences of our
beliefs, but typically our performance does not live up to this logical commitment.
The belief set (as the set of an agent's epistemic commitments) is therefore larger than
the set of her actually held beliefs. C. Misak’s review of Levi’s analysis hints at the
confusion in its philosophical derivation:

Levi's approach to the revision of belief and the growth of knowledge belongs, as he says, in
the pragmatist tradition. Such an approach to epistemology emphasizes the context of inquiry
and is teleological and decision oriented. Revisions of knowledge—scientific or otherwise—
are taken to be central, and they are value laden in the sense that they are always made
relative to the aims the agent is committed to promoting and to the agent's existing corpus of
belief. Levi's decision theory is erected on these pragmatist foundations, and it promises to
go a long way in clarifying how we should conduct our inquiries. But with respect to the
foundations, the relationship between Levi and his predecessor Peirce is one of coincidence
rather than supersession. [Misak, 264]

The original core assumption of belief revision was minimal change: the knowledge
before and after the change should be as similar as possible. In the case of update, this
principle formalizes the assumption of inertia. In the case of revision, this principle
enforces the assumption of preservation of much information as possible in the change.
In 1990, Thagard surveyed and assessed accounts of the psychological functions of
concepts, and suggested that “conceptual change can come in varying degrees, with the
most extreme consisting of fundamental conceptual reorganizations. … Understanding
epistemic change requires appreciation of the complex ways in which concepts are
structured and organized and of how this organization can affect belief revision” [255].
Researchers in AI began describing their work in terms of combining BR and abduction
[see Santos 1991; Boutilier and Becher 1993; survey of methods in Walliser, Zwirn, and
Zwirn 2004]. Thagard took his work beyond belief revision, in Conceptual Revolutions
[1992], to the question of revolutionary conceptual change.

Theorists in philosophy, psychology, and artificial intelligence have proposed different views
of the nature of concepts. A rich account of concepts and conceptual change is needed to
overcome the widely held view that the growth of scientific knowledge can be understood
purely in terms of belief revision with no reference to conceptual change. Concepts serve
many psychological functions, and can be understood as complex computational structures
organized into kind-hierarchies and part-hierarchies. Such structures involve rules that can
combine to explanations. [33]

Based on his earlier work, Computational Philosophy of Science [1988], Thagard
advocated that techniques derived from AI could be used “to understand the structure

196 M. Keeler and U. Priss

and growth of scientific knowledge,” and reciprocally, “The theory of revolutionary
conceptual change developed is germane to central issues in cognitive psychology and
artificial intelligence, as well as to the philosophy of science” [3]. Thagard explained
what had become the accepted view of abduction in AI—at the core of confusion
between psychological and logical views of inference (emphasis added to points that
will be examined, below).

The problem of inference to explanatory hypotheses has a long history in philosophy and a
much shorter one in psychology and artificial intelligence. Scientists and philosophers have
long considered the evaluation of theories on the basis of their explanatory power. In the late
nineteenth century, C.S. Peirce discussed two forms of inference to explanatory hypotheses:
hypothesis, which involved the acceptance of hypotheses, and abduction, which involved
merely the initial formation of hypotheses (Peirce 1931-1958; Thagard 1988). Researchers in
artificial intelligence and some philosophers have used the term “abduction” to refer to both
the formation and the evaluation of hypotheses. [62: Thagard lists Pople 1977, Peng and
Reggia 1990, Josephson et al. 1987, and Hobbs, Stickel, Appelt 1990, and Martin, Charniak
and McDermott 1973, 1986]

Thagard proposed a theory of explanatory coherence (TEC) as “central to the general
theory of conceptual change in science,” which would “account for a wide range of
explanatory inferences,” in terms of principles to encompass the considerations “that
suffice to make the judgments of explanatory coherence.” He demonstrated the
sufficiency of these principles by implementing his theory in a connectionist
computer program called ECHO, which was applied to “complex cases of scientific
and legal reasoning” [62-63; and see Thagard 1978: “Best Explanation: Criteria for
Theory Choice”; and Van Fraassen’s “The Pragmatics of Explanation”].

We abbreviate Thagard’s summary of BR history in the following outline
comparing philosophical to cognitive science perspectives and warning of
terminological confusion.

1. Contemporary analytic philosophers take sentences to be the objects of epistemological
investigation.

2. Knowledge is something like true justified belief, so increasing knowledge entails adding
to what is believed.

3. Epistemology primarily evaluates strategies for improving stocks of beliefs, construed as
sentences or attitudes toward sentence-like propositions (e.g., Gärdenfors models an
individual’s epistemic state as a consistent set of sentences that can change by expansion
and contraction) [1992, 19].

4. Cognitive psychologists pay less attention to BR and far more attention to “what is the
nature of concepts?”

5. Cognitive researchers in AI often follow philosophers’ analysis of BR, but also pay
attention to how knowledge can be organized in conceptual structures, or frames (Minsky
1975; for reviews see Thagard 1984, 1988).

6. Even philosophers who take cognitive science seriously consider BR to be the center of
epistemology and pay little attention to conceptual change (e.g., A. Goldman 1986). The
central question for epistemology has been: “when are we justified in adding and deleting
beliefs from the set of beliefs judged to be known?” Epistemology should also address
another question: “what are concepts and how do they change?” Concepts are relevant to
epistemology if the question of conceptual change is not identical to the question of belief
revision. [Based on Thagard 1992, 20]

 Toward a Peircean Theory of Human Learning 197

Thagard’s thesis of non-identity between conceptual change and belief revision did
not attract serious response from belief-revision theorists, which W. Park [2010] finds
“especially curious in view of the fact that theory of belief revision—with the AGM
paradigm at its core—has over the past two decades expanded its scope far beyond
epistemic logic and philosophy of science to include computer science, artificial
intelligence, and economics.” Various critiques of BR have appeared [see Aliseda
1997; Boutilier, Friedman, and Halpern 1998, 2008; Nebel 1989: Rott 2000, Darwich
and Pearl 1997; Friedman and Halpern 2000; Gilles 2002; Nayak et al. 2003; van
Benthem 2004; Jin and Thielscher 2007; Olsson and Enqvist 2011]. In their more
recent critique, Friedman and Halpern [2008] identified methodological problems,
and argued that careful study of belief change will require explicit ontology or
scenario representation of the process.

By the late 1990s, it became clear that BR theory could be related to formal
learning theory, as K. Kelly explains in his rationale for bridging between the two
theories in “The Learning Power of Belief Revision” [1998, 111]:

The guiding principle of belief revision theory is to change one’s prior beliefs as little as
possible in order to maintain consistency with the new information. Learning theory focuses,
instead, on learning power: the ability to arrive at true beliefs in a wide range of possible
environments. … learning power depends sharply on details of the methods. Hence, learning
power can provide a well-motivated constraint on the design and implementation of concrete
belief revision methods.

Perhaps, BR research has been a constructive model of itself? Certainly it has raised
core questions that reveal its own theoretical confusion: What is the motivation for
revising beliefs (why change), beyond maintaining consistency and coherence, and
what constitutes new information (why is it selected)? Attempts to model theory
change provoked the need to explain the how of explanatory coherence, exposing
deeper questions of why, what motivates consistency and coherence in representation?
While AI research has focused on the how questions, the why questions have been
neglected, and must be addressed in learning theory.

3 Belief as an Instinct

The evolutionary study of human cognition is also an interdisciplinary challenge
(involving cognitive and computer sciences, philosophy, economics, and linguistic
anthropology). Chomsky’s and Pinker’s theories of “the language instinct” are now
well known [Pinker and Bloom 1999], and can be traced back to W. von Humboldt in
the eighteenth century, whose ideas were embraced by nineteenth century
anthropologists [Humbolt 1999].

The earliest book-length account of “Evolutionary Psychology” as a discipline is
an undergraduate text by evolutionary epistemologist H. Plotkin. His Evolution in
Mind: an Introduction to Evolutionary Psychology [1998] traces its origins back to
Darwin and contemporaries, carried forward by the early pragmatists such as James.
Plotkin explains that the early use of instinct to account for human behavior was an
irresponsible extension of Darwin’s theory of the continuity among species.

198 M. Keeler and U. Priss

The hunt for human instincts around the turn of the [18th] century and during its first and
second decades marks a low point in human sciences. Without empirical or theoretical
justification of any kind, thousands of human instincts were invented, many of them
extraordinarily trivial and silly. Worse still, some writers attributed putative characteristics
of whole nations to instincts. … ideology and, in this case chauvinism, intruded into the
application of a concept derived from evolutionary theory to human psychology. This early
phase of ascribing human action to instincts cannot be called either science or psychology of
any description. Although William James himself had come, after a time and with some
qualms, to champion the idea of the existence of at least some human instincts, even his great
reputation could not save so weak a conceptual edifice. The net effect of the work of the
eugenicists and instinct theorists during this sorry episode in the human sciences was not
only to discredit the idea of instincts, but by association, seriously to weaken the influence of
evolutionary ideas within psychology. [28-29]

Workman and Reader further explain:

… the concept of instinct was dropped from social scientists’ terminology in the twentieth
century partly because it was considered too imprecise a term to be scientifically meaningful
(see Bateson, 2000). Furthermore, many so-called instinctive behaviours are capable of
being modified by experience, in which case it is difficult to see where instincts finish and
learning begins. A final reason why the concept of instinct fell out of favour is that a new
approach to the social sciences denied their existence and saw culture rather than biology as
being the principal determiner of human behaviour [11-12].

J. Tooby and L. Cosmides [1992] took issue with the dominant, non-evolutionary model
in the social sciences (Standard Social Science Model) for its assumptions, which in
turn were a reaction to the preceding biological determinist assumptions [see Workman
and Reader 2004, 12]. F. Coolidge and T. Wynn, in The Rise of Homo Sapiens: The
Evolution of Modern Thinking [2009], explain the motivation for evolutionary
psychologists, who over the last two decades “have used reverse engineering to argue
for the selective reasons behind a large array of human cognitive abilities, including
spatial cognition (Irwin Silverman and Eals, 1992), language (Steve Pinker, 1997),
cheater detection (Leda Cosmides, 1989), and even religion (Pascal Boyer, 2001).” All
are convinced that “the current structure of human cognition preserves traces of its
evolutionary past,” features of an “earlier evolutionary adaptedness.” A major tenet of
evolutionary psychology is that our minds are adapted to a time when humans lived in
small hunting and gathering groups, not the modern world, which helps explain many
current psychological problems.

Workman and Reader mention that the study of genetics was dominated by “DNA-
thinking,” but that recently many researchers have conceived non-DNA methods of
heritability, in the new field of epigenetics (“so new there is still no generally
accepted definition of it”) [52]. They find support in epigenetics for their proposal:
“We now hypothesize that some neural mutation or epigenetic event led to a
reorganization of the brain that enabled modern thinking” [55].

Another recent critical introductory text [Swami 2011] evaluates research from
“the last decade of dramatic change in our understanding of the way in which the
mind operates and the reasons behind a myriad of human behaviours.” Evolutionary
psychological explanations have supplanted the traditional idea that “nurture trumps
nature” in human behavior by positing that shared mental architectures govern our
behavior.

 Toward a Peircean Theory of Human Learning 199

Evolutionary psychology (EP) tries to identify human psychological traits that are evolved
adaptations … Applying the same adaptationist thinking about physiological mechanisms
common in evolutionary biology, evolutionary psychology argues that the mind has a
modular structure similar to the body’s. Different modular adaptations serve different
functions, so that much of human behavior is the evolutionary result of psychological
adaptations to solve recurrent problems in human ancestral environments. As an effort to
integrate psychology into the other natural sciences, EP understands psychology as a branch
of biology. … a framework that not only incorporates the evolutionary sciences on a full and
equal basis, but that systematically works out all of the revisions in existing belief and
research practice that such a synthesis requires. [11]

Most recently, this research trend toward “behavioral genetics” has encouraged some
to conclude that beliefs are genetically determined in brain function, not directly but
through traits that are, like personality. Psychologist M. Shermer [2011] argues (in
The Believing Brain: how we construct beliefs and reinforce them as truths) that we
may like to think our beliefs come from experience, but instead they come first and
then we devise reasons for believing. Our brains are “belief-generating machines,” to
avoid uncertainty and find patterns to follow. Even scientists operate under
paradigms, but science has “built-in self-correcting mechanisms that check belief
claims. … Most guesses are false-positive (low-cost errors), … even scientists start
out with beliefs, which they then try to justify” [278].

Shermer claims that, without science (“the ultimate bias detection machine”), our
brains convince us that we are always right. He describes a dozen major tendencies in
judgment (biases and effects) identified by researchers.

The Confirmation Bias (The Mother of All Cognitive Biases, because it gives birth in one
form or another to most of the other heuristics): the tendency to seek and find
confirmatory evidence in support of already existing beliefs and ignore or reinterpret
disconfirming evidence.

Hindsight Bias (a type of time-reversal confirmation bias): the tendency to reconstruct the
past to fit with present knowledge. Once an event has occurred, we look back and
reconstruct how it happened.

Self-Justification Bias (related to the hindsight bias): the tendency to rationalize decisions
after the fact to convince ourselves that what we did was the best thing we could have
done. Once we make a decision about something in our lives we carefully screen
subsequent data and filter out all contradictory information related to that decision, leaving
only evidence in support of the choice we made.

Attribution Bias (several kinds: situational, dispositional, intellectual, and emotional): the
tendency to attribute different causes for our own beliefs and actions than that of others
(common in political and religious beliefs).

Sunk-Cost Bias: the tendency to believe in something because of the cost sunk into that
belief.

Status Quo Bias: the tendency to opt for whatever it is we are used to, that is, the status quo.
Endowment Effect: the tendency to value what we own more than what we do not own.
Framing Effects: the tendency to draw different conclusions based on how data are

presented. Framing effects are especially noticeable in financial decisions and economic
beliefs.

Anchoring Bias: the tendency to rely too heavily on a past reference or on one piece of
information when making decisions, when we have no objective anchor for comparison.

Availability Heuristic: the tendency to assign probabilities of potential outcomes based on
examples that are immediately available to us, especially those that are vivid, unusual, or
emotionally charged, which are then generalized into conclusions upon which choices are
based.

200 M. Keeler and U. Priss

Representative Bias (related to the availability bias): the tendency to judge an event probable
to the extent that it represents the essential features of its parent population or generating
process.

Inattentional Blindness Bias: the tendency to miss something obvious and general while
attending to something special and specific. [Based on Shermer 259-272, and he lists 25
additional biases.]

If our beliefs cause instinctive behavior, evolved under conditions we no longer need
to respond to, how can they be “updated,” or what is their role in learning?

4 A Peircean Theory of Learning?

No doubt many belief biases and effects were operating among BR researchers, but
even our superficial untangling of their confusion points to the pervasive influence of
Levi’s theory of inquiry (based on Dewey’s pragmatism), as R. Hilpinen reminds us:

Peirce’s account of abduction and induction as the main forms of non-demonstrative
reasoning has inspired Levi’s theory of inquiry and belief revision, articulated in several
recent publications [Levi 1997; 1991; 1996; 2000]. In contemporary methodology, abduction
is generally recognized as a distinctive form of reasoning, and models of abductive reasoning
are being studied in applied logic, cognitive science and artificial intelligence, and in the
theory of diagnostic reasoning. (See Josephson and Josephson, 1994; Magnani et al., 1999;
Gabbay et al., 2000; Flach and Kakas, 2000.) [2004, 652]

We identify three fundamental ways that Levi’s influence prevents BR from
effectively modeling human learning as the improvement of knowledge, rather than as
merely updating a database of biased beliefs. Learning as inquiry must challenge
assumptions, not “fix” them by maintaining their consistency and coherence as we
experience new information. Levi’s misconceptions can instruct us how to make
better use of Peirce’s theory of inquiry.

1. Levi confuses Peirce’s fallibilism with Popper’s falsificationism [see Levi 1984,
112], a pervasive problem in philosophy and consequently in AI, especially in efforts
to model scientific inquiry. As explained in [Keeler 2008]: “Peirce’s inductive
fallibility is a metaphysical condition, not to be confused with Popper's falsification,
which is strictly a deductive procedure (see Haack, Evidence and Inquiry, p. 131).”
Misak charges, “Isaac Levi uses C. S. Peirce's fallibilism as a foil for his own
‘epistemological infallibilism’” [256]. Levi insists that both the proximal and ultimate
purpose of inquiry is to eliminate error (to produce true, maximally consistent belief
systems [Levi 1991]). As Misak points out, Peirce’s “critical commonsensism” agrees
with Levi that we do not doubt what we believe; but she clarifies:

by “infallibilism” [Peirce] means the position which is opposed to his own fallibilism; the
position that our beliefs (or at least some of them) are incorrigible, or not the sort of things
that are ever in need of revision. Fallibilism insists that an inquirer must “be at all times
ready to dump his whole cartload of beliefs, the moment experience is set against them”
(Peirce 1931, 1.55). He cannot have “any such immovable beliefs to which he regards
himself as religiously bound to be loyal” (Peirce 1931, 6.3). Such an attitude would block the
path of inquiry because our minds would be closed, and hence, we would never be motivated

 Toward a Peircean Theory of Human Learning 201

enough to inquire. One of Peirce's reasons for endorsing fallibilism is the fact that our
faculties sometimes fail us, and we cannot be sure when these failures occur. … Even the
greatest mathematicians, he notes, are susceptible of making the simplest mistakes in
arithmetic—all it takes is a little lapse of attention. [1987, 259]

2. Levi misconceives Peirce’s abduction [even dismisses it, see Note 1], which
results from his misinterpretation of Peirce’s fallibilism and his reliance on Peirce’s
early essay on inquiry, “The Fixation of Belief” [see Kasser 2011]. Misak describes
Peirce’s early “doubt-belief” model of inquiry.

The notion of inquiry is central in Peirce's epistemology. He characterizes it as the struggle
to rid ourselves of doubt and achieve a state of belief. An agent has a body of settled belief: a
set of statements which are not, in fact, doubted. Statements in this body, however, are
susceptible to doubt, if it is prompted by some “positive reason,” such as a surprising or
recalcitrant experience. A body of settled belief is presupposed for the operation of inquiry in
that there has to be something settled for surprise to stir up. Doubt is not voluntary, and
hence, we cannot simply do it, as Descartes suggests, at will. But when it impinges upon us,
it “essentially involves a struggle to escape it” (Peirce 1931, 5.372, n.2) and so, as soon as
we are thrown into doubt, inquiry is ignited. It continues until we reach a settled belief—a
belief that we regard as “infallible, absolute truth.” So Peirce characterizes the path of
inquiry as follows: settled belief, doubt, inquiry, settled belief. [259]

However, Peirce’s abduction evolved with his theory of inquiry [see Anderson 1986;
and for discussions of Peirce’s mature theory of abductive reasoning, see Hintikka,
1998, 2007, Hilpinen 2004, and Kapitan 1997]. After careful consideration of BR
theory’s interpretation of abduction, J. Hintikka concludes that abduction “cannot be
thought of as an inference to the best explanation” [2007, 42]. A. Aliseda even
advocates finding new terminology for abduction in AI [2010, 9]. Hintikka returns to
Peirce’s own notion of inference, for clarification: “I call all such inference by the
peculiar name, abduction, because its legitimacy depends upon altogether different
principles from those of other kinds of inference” [Collected Papers (CP) 6.524
(1901]. He points to T. Kapitan’s summary of those “different principles.”

(1) Inference is a conscious, voluntary act over which the reasoner exercises control (5.109,
2.144).

(2) The aim of inference is to discover (acquire, attain) new knowledge from a consideration
of that which is already known (MS 628: 4).

(3) One who infers a conclusion C from a premise P accepts C as a result of both accepting P
and approving a general method of reasoning according to which if any P-like proposition
is true, so is the correlated C-like proposition (7.536, 2.444, 5.130, 2.773, 4.53–55, 7.459,
L232:56).

(4) An inference can be either valid or invalid depending on whether it follows a method of
reasoning it professes to and that method is conducive to satisfying the aim of reasoning—
namely, the acquisition of truth (2.153, 2.780, 7.444, MS 692: 5). [Kapitan, 479; in
Hintikka 2007, 44]

Hintikka explains that Peirce is “going beyond rules of inference that depend on the
premise-conclusion relation alone and is considering also rules or principles of
inference ‘of an altogether different kind.’ These rules or principles are justified by
the fact that they exemplify a method that is conducive to the acquisition of new
knowledge.” Furthermore:

202 M. Keeler and U. Priss

the validity of an abductive inference is to be judged by strategic principles rather than by
definitory (move-by-move) rules. This is what makes an abductive inference depend for its
legitimacy “upon altogether different principles from those of other kinds of inference.”
What these “different principles” were in Peirce’s mind can be gathered from his various
statements. One typical expression of the difference is Peirce’s distinction between the
validity and the strength of an argument. … it is only in Deduction that there is no difference
between a valid argument and a strong one (“Pragmatism as the Logic of Abduction,” p. 17).
Thus an argument can be logical but weak. [2007, 44-45]

Hintikka illustrates the “vantage point” of this “interrogative approach”:

Peirce’s terminology can be claimed merely to follow ordinary usage when he calls an
interrogatively interpreted abductive step an inference. The reasoning of the likes of Sherlock
Holmes or Nero Wolfe is not deductive, nor does it conform to any known forms of
“inductive inference.” The “deductions” of great detectives are in fact best thought of as
question–answer sequences interspersed with deductive inferences (I have argued). Yet
people routinely call them “deductions” or “inferences” accomplished by means of “logic”
and “analysis.” They now turn out to be right strategically speaking, though not literally
(definitorily) speaking. From the strategic vantage point, we can say thus that any seriously
asked question involves a tacit conjecture or guess. [2007, 55]

Hilpinen agrees and further explains:

Peirce’s distinction between abduction and induction has sometimes been associated with the
logical empiricist’s distinction between the context of discovery (the discovery or invention
of an explanatory hypothesis) and the context of justification (the confirmation or
disconfirmation of a hypothesis by empirical evidence) [Reichenbach 1938]. Many logical
empiricists regarded only the latter as a proper subject of logical and philosophical
investigation, and thought that the study of the discovery of hypotheses belongs to
psychology rather than logic. It is clear that Peirce’s rules of abduction [see Note 2] can be
said to “justify” a hypothesis in the way in which inductive reasoning can justify its
conclusions: a good abduction justifies a hypothesis as a potential explanation worthy of
further empirical testing. In Peirce’s words, we can say that abduction justifies an
interrogative attitude towards a hypothesis. … an abduction leads to a “conjecture” and can
justify only an “interrogative” attitude towards a proposition. According to Peirce,
“Induction shows that something actually is operative, Abduction merely suggests that
something may be.” [652; CP 5.171 (1903); emphasis added]

Kapitan’s careful analysis concludes that Peirce’s abduction as a form of valid
inference forces us to broaden the concept of validity [2004, 491] in Peirce’s theory of
inquiry: “[abduction] is the only logical operation which introduces any new ideas;
for induction does nothing but determine a value, and deduction merely evolves the
necessary consequences of a pure hypothesis” [CP 5.171 (1903); and see “Grounds of
Validity of the Laws of Logic …” CP 5.341-357 (1868-93)].

3. Levi’s BR theory was originally conceived for and applied to changes in belief
of a single individual and in a computerized database. S. Hansson explains five
major differences in modeling of scientific knowledge processes that traditional BR
theory fails to account for:

The Processes of Change are Collective
The Data/Theory Division
A Partly Accumulative Process

 Toward a Peircean Theory of Human Learning 203

Explanation-Management Rather than Inconsistency-Management
The Irrelevance of Contraction

The transformation of high probabilities to full belief can be described as a process of
uncertainty-reduction, or “fixation of belief” (Peirce 1877). It helps us to achieve a
cognitively manageable representation of the world, thus increasing our competence and
efficiency as decision-makers. This transformation is just as necessary in the collective
processes of science as it is in individual cognitive processes. In science as well, our
cognitive limitations make it impossible to keep track of an extensive net of interconnected
probabilities. We cannot (individually or collectively) deal with a large body of human
beliefs such as the scientific corpus in the massively open-ended manner that an ideal
Bayesian subject would be capable of. As one example of this, since all measurement
practices are theory-laden, no reasonably simple account of measurement would be available
to a Bayesian approach (McLaughlin 1970). [In Olsen and Enqvist 2011, Belief Revision
Meets Philosophy of Science, 48-50.]

However, as Levi and Hintikka agree, “Epistemologists ought to care for the
improvement of knowledge rather than its pedigree” [Levi 1980, 1; Hintikka 2007].
Encouraging that direction, T. Deacon’s Incomplete Nature: How Mind Evolved from
Matter gives us a neuroscientist’s examination our current “ecology” of cognition.

People tend to be masters of believing incompatible things and acting from mutually
exclusive motivations and points of view. Human cognition is fragmented, our concepts are
often vague and fuzzy, and our use of logical inference seldom extends beyond the steps
necessary to serve an immediate need. This provides an ample mental ecology in which
incompatible ideas, emotions, and reasons can long co-exist, each in its own relatively
isolated niche. Such a mix of causal paradigms may be invoked in myths and fairy tales, but
even here such an extreme discontinuity is seldom tolerated. Science and philosophy
compulsively avoid such discontinuities. More precisely, there is an implicit injunction
woven into the very fabric of these enterprises to discover and resolve explanatory
incompatibilities wherever possible, and otherwise to mark them as unfinished business.
Making do with placeholders creates uneasiness, however, and the longer this is necessary,
the more urgent theoretical debate or scientific exploration is likely to be. [2011, 63]

Peirce even eliminates belief from the collaborative learning in science.

Full belief is willingness to act upon the proposition in vital crises, opinion is willingness to
act upon it in relatively insignificant affairs. But pure science has nothing at all to do with
action. The propositions it accepts, it merely writes in the list of premisses it proposes to use.
Nothing is vital for science; nothing can be. Its accepted propositions, therefore, are but
opinions at most; and the whole list is provisional. The scientific man is not in the least
wedded to his conclusions. He risks nothing upon them. He stands ready to abandon one or
all as soon as experience opposes them. Some of them, I grant, he is in the habit of calling
established truths; but that merely means propositions to which no competent man today
demurs. It seems probable that any given proposition of that sort will remain for a long time
upon the list of propositions to be admitted. Still, it may be refuted tomorrow; and if so, the
scientific man will be glad to have got rid of an error. There is thus no proposition at all in
science which answers to the conception of belief. [CP 5.635 (1898)]

Extending this view, we argue that Peirce’s theory of scientific inquiry represents the
logical (not psychological) essence of learning as collectively engaging in the
deliberate, continuous improvement of knowledge. Hintikka’s interpretation of
Peirce’s abduction clarifies it as a strategic procedure for gaining self-critical control

204 M. Keeler and U. Priss

of our belief biases, rather than as mere guessing. Furthermore, we must point out,
Peirce’s abduction also gives us the true “Mother of All Beliefs,” the pragmatic aim
(or normative constraint), the “why” that motivates all learning: the tendency to hope
that we can continue to improve knowledge, by engaging with the community of
inquirers [see CP 5.311 (1878)].

5 Didactic Implications

STEM subjects (science, technology, engineering and maths) are often difficult to
teach as demonstrated, for example, by high drop-out and failure rates among first
year university students. A significant amount of research has been dedicated to
understanding why such subjects are difficult to teach and learn and how to help
students in such subjects. As an example, Physics Education Research has come to the
conclusion that students have pre-existing “misconceptions” about physics concepts
that are counter-intuitive [Hestenes et al., 1992]. Students can usually learn to operate
with such concepts in formulas (and thus pass exams) but if their understanding of
such concepts is questioned, they fail [Hake, 1998]. Physicists have developed
“concept inventories” [Hestenes et al., 1992] which are lists of questions about
difficult concepts expressed mostly in everyday language. Using these
concept inventories one can measure how much students know at the start and end of
a semester. The learning gain in introductory physics courses measured in this manner
is often very small if the courses employ standard teaching methods, but apparently
students learn much more if “interactive engagement” teaching methods are used
[Hake, 1998].

Interactive engagement methods include “peer instruction” (where students explain
and discuss concepts with each other [Mazur, 1996], “problem-based” or “inquiry-
based” learning, “flipped classroom” (where students read the lectures at home and
practice during the lecture time) and “just-in-time teaching” (where lecturers respond
to student questions instead of presenting a fixed lecture). But not all of these methods
are guaranteed to be successful. For example, Loviscach [2012] reports that his
flipped classroom with video-recorded lectures is very popular with students but has
not led to significant improvements of students' marks. Noschese and Burk
[Noschese, 2011] coin the term “pseudoteaching” for teaching that is on the surface
very good, well liked by students and staff and where students think that they are
learning a lot, but does still not lead to deep and substantial learning. Thus while not
all interactive engagement teaching methods are successful, some are. Therefore the
question arises as to what is the reason for the success of some methods.

It should be stressed that this paper is concerned with the learning and
understanding of difficult concepts in STEM subjects. Other types of learning (such
as learning a skill or learning vocabulary) might require different teaching
approaches. But with respect to students overcoming their pre-existing
misconceptions, the problem appears to be essentially the problem of “making ideas
clear” and “fixing beliefs” as discussed by Peirce. Thus our hypothesis is that
teaching methods are successful in changing students' beliefs if they encourage
students to conduct inquiry in Peirce's sense. On the one hand, a better understanding
of how to practically use Peirce's inquiry could make it easier for educators to predict

 Toward a Peircean Theory of Human Learning 205

which teaching methods are likely to be successful. On the other hand, educational
methods that help students overcome misconceptions could be studied as examples of
successful inquiry. At the moment the main philosophical grounding of interactive
engagement methods appears to be constructivism [Ben-Ari, 1998], which is certainly
an improvement over Cartesian views of science but could be further improved by a
Peircean pragmaticist view.

6 Conclusions

According to Peirce, belief relies on assumptions—the attenuation of doubt; while
reasoning progresses by suppositions—the perpetuation of doubt. A belief is a
cognitive rule (or habit telling us how to think) for guiding action; while reasoning
constructs rules of thought to relate facts (explaining why repeatable observations fit
together). A belief can be accepted without regard for facts (without asking “why”)
and, to the extent that such habits are not consciously formed, they can become
addictive. Recent evolutionary views of cognition have encouraged psychologists to
consider whether our belief capability is instinctive, a form of adaptivity that often
limits learning. While we can reason to construct rules to be tested in “learning by
experience,” belief can lead us to misjudge experience: making us overconfident
about what we know, risk-averse to searching for disconfirming evidence, and prone
to interpret evidence to preserve established beliefs. Peirce explains that in ordinary
everyday life we act from instinct, with just enough reasoning necessary to connect
these habits of thought with specific occasions. In learning, however: “when ones
purpose lies in the line of novelty, invention, generalization, theory—in a word,
improvement of the situation … —instinct and the rule of thumb manifestly cease to
be applicable. The best plan, then, on the whole, is to base our conduct as much as
possible on Instinct, but when we do reason to reason with severely scientific logic”
[CP 2.176-78 (1902)]. That logic accounts for learning in the conduct of inquiry as
the tasks of abduction, induction, and deduction.

We encourage Conceptual Structures researchers to pursue Peirce’s theory of
inquiry as a logical, rather than psychological, basis for pragmatically (strategically)
improving our ability to learn. Hintikka’s suggestion of “games of inquiry”
[2007:183, 222], and Gärdenfors’s “geometry of thought” [see 2000] inspire our hope
that Conceptual Structures research can make significant contributions in the future
[and see Keeler 2007, 2008, 2010]. Friedman and Halpern’s [2008] call for “explicit
ontology or scenario representation” in BR presents an invitation to research how a
Peircean theory might lead us to more effective human learning.

Note 1. In The Fixation of Belief and Its Undoing, Changing Beliefs Through Inquiry [1991],
Levi even dismisses abduction: “Peirce devoted substantial effort to characterizing the
differences between deduction, abduction, and induction as differences in the formal structure
of arguments. At the beginning of the twentieth century he abandoned the project. It would be
useful if contemporary writers would take the lessons Peirce learned nearly a century ago to
heart.” [See p. 172; he gives no references for this claim, but should have been aware at least of
Peirce’s 1908 essay, “Neglected Argument for the Reality of God,” which features his stages of
inquiry (CP 6.468-473).]

206 M. Keeler and U. Priss

Note 2. Hilpinen explains that Peirce’s “logic of abduction,” as rules for good abductions, was
an important aspect of his pragmatism. “An abduction is an inference which leads to a
conjectured explanation, thus the logic of abduction may be expected to include conditions of
adequacy for explanatory hypotheses as well as rules of discovering explanatory hypotheses.”

Rule of Abduction 1: The hypothesis (the “conclusion” of an abduction) must be capable of
being subjected to empirical testing.

Rule of Abduction 2: The hypothesis must explain the surprising facts. Peirce observes that an
explanation may be a deductive explanation which renders the facts “necessary,” or it may
make the facts “natural chance results, as the kinetic theory of gases does” [CP 7.220]. These
rules have counterparts in the more recent theories of explanation, for example, in Carl G.
Hempel and Paul Oppenheim’s account. RA1 and RA2 correspond to Hempel and
Oppenheim’s “logical conditions of adequacy” for scientific explanations [Hempel and
Oppenheim 1948/65, 247-248]. Peirce’s logic of abduction also contains a rule which may be
called the Principle of Economy:

Rule of Abduction 3: In view of the fact that the hypothesis is one of innumerable possibly
false ones, in view, too, of the enormous expensiveness of experimentation in money, time,
energy and thought, is the consideration of economy. Now economy, in general, depends upon
three kinds of factors: cost, the value of the thing proposed, in itself, and its effect upon other
projects. Under the head of cost, if a hypothesis can be put to the test of experiment with very
little expense of any kind, that should be regarded as giving it precedence in the inductive
procedure. [CP 7.220 n. 18); Hilpinen, 651-52]

References

Alchourrón, C., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: Partial Meet
Contradiction and Revision Functions. Journal of Symbolic Logic 50(2), 510–530 (1985)

Aliseda, A.: Abduction Reasoning, Logical Investigations into Discovery and Explanation.
Studies in Epistemology, Logic, Methodology, and the Philosophy of Science, Synthese
Library (2010),
http://www.scribd.com/doc/8145990/Aliseda-Abductive-Reasoning

Amini, M.: Logical Machines: Peirce on Psychologism. Disputatio: International Journal of
Philosophy II, 335–348 (2008)

Anderson, D.: The Evolution of Peirce’s Concept of Abduction. Transactions of the Charles S.
Peirce Society 22(2), 145–164 (1986)

Ben-Ari, M.: Constructivism in Computer Science Education. SIGCSE Bulletin 30(1), 257–261
(1998)

van Benthem, J.: Dynamic Logic for Belief Revision. Journal of Applied Non-Classical
Logics 17(2), 129–155 (2004)

Bacchus, F., Grove, A., Halpern, J., Koller, D.: A Response to Believing on the basis of
evidence. Computational Intelligence (1994) (Article first published online April 2, 2007),
doi:10.1111/j.1467-8640.1994.tb00141.x

Boutilier, C., Becher, V.: Abduction As Belief Revision: A Model of Preferred Explanations.
In: AAAI 1993 Proceedings, pp. 642–648 (1993)

Coolidge, F., Wynn, T.: The Rise of Homo Sapiens: The Evolution of Modern Thinking.
Wiley-Blackwell (2009)

Cosmides, L., Tooby, J.: The Adapted Mind: Evolutionary Psychology and the Generation of
Culture. Oxford U. Press (1992)

 Toward a Peircean Theory of Human Learning 207

Darwiche, A., Pearl, J.: On the Logic of Iterated Belief Revision. Artificial Intelligence 89(1-2),
1–29 (1997), ftp://cobase.cs.ucla.edu/pub/stat_ser/R202.ps

Deacon, T.: Incomplete Nature: How Mind Emerged from Matter. Norton & Company (2011)
Doyle, J.: Inference and Acceptance. Computational Intelligence 10(1), 46–48 (1994),

http://www.csc.ncsu.edu/faculty/doyle/publications/kyburg94.pdf
Friedman, N., Halpern, J.: Belief Revision: A Critique. Journal of Logic and

Computation 18(5), 721–738 (2008)
Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States. MIT Press

(1988)
Gärdenfors, P. (ed.): Belief Revision, Cambridge Tracts in Theoretical Computer Science, vol.

29. Cambridge U. Press (1992)
Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. MIT Press (2000)
Gillies, A.: Two More Dogmas of Belief Revision: Justification and Justified Belief Change

(2002), http://rci.rutgers.edu/~thony/just_and_revision.pdf
Hake, R.: Interactive-engagement Versus Traditional Methods: A six-thousand-student Survey

of Mechanics Test Data for Introductory Physics Courses. American Journal of
Physics 66(1), 64–74 (1998)

Hansson, B.: Infallibility and Incorrigibility. Philosophical Quarterly 18, 207–215 (2006)
Harper, W.: Rational Belief Change, Popper Functions and Counterfactuals. Synthese 30(1-2),

221–262 (1975)
Hestenes, D., Wells, M., Swackhamer, G.: Force Concept Inventory. Physics Teacher 30, 141–

158 (1992)
Hilpinen, R.: Peirce’s Logic. In: Handbook of the History of Logic, pp. 611–658. Elsevier BV

(2004)
Hintikka, J.: Knowledge and Belief. Cornell U. Press (1962)
Hintikka, J.: Socratic Epistemology: Explorations of Knowledge-Seeking by Questioning.

Cambridge U. Press (2007)
Hobbs, J., Stickel, M., Martin, P., Edwards, D.: Interpretation as Abduction. In: ACL 1988

Proceedings, 26th Annual Meeting of Association for Computational Linguistics, pp. 95–
103 (1988)

von Humboldt, W.: Humbolt: On Language. Cambridge U. Press (1999)
Kapitan, T.: Peirce and the Structure of Abductive Inference. In: Houser, Roberts, Van Evra

(eds.) Studies in the Philosophy of Charles Sanders Peirce, pp. 477–496. Indiana U. Press
(1997)

Kasser, J.: Peirce’s Supposed Psychologism. Transactions of the Charles S. Peirce
Society XXXV, 501–526 (1999)

Kasser, J.: How Settled are Settled Beliefs in ‘The Fixation of Belief’? Transactions of the
Charles S. Peirce Society 47(2), 226–247 (2011)

Keeler, M.A., Pfeiffer, H.D.: Building a Pragmatic Methodology for KR Tool Research and
Development. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI),
vol. 4068, pp. 314–330. Springer, Heidelberg (2006)

Keeler, M.A.: Revelator Game of Inquiry: A Peircean Challenge for Conceptual Structures in
Application and Evolution. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS
(LNAI), vol. 4604, pp. 443–459. Springer, Heidelberg (2007)

Keeler, M.A., Majumdar, A.: Revelator’s Complex Adaptive Reasoning Methodology for
Resource Infrastructure Evolution. In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS
(LNAI), vol. 5113, pp. 88–103. Springer, Heidelberg (2008)

208 M. Keeler and U. Priss

Keeler, M.A.: Learning to Map the Virtual Evolution of Knowledge. In: Croitoru, M., Ferré, S.,
Lukose, D. (eds.) ICCS 2010. LNCS (LNAI), vol. 6208, pp. 108–124. Springer, Heidelberg
(2010)

Kelly, K.: The Learning Power of Belief Revision. Recommended citation (1998),
 http://respository.cmu.edu/philosophy/389
Kyburg, H.: Probability and the Logic of Rational Belief. Wesleyan U. Press (1961)
Kyburg, H.: Believing on the Basis of Evidence. Computational Intelligence 10, 3–22 (1994)
Lehmann, D.: Belief Revision, Revised. In: Proceedings of the 14th International Joint

Conference on Artificial Intelligence, vol. 2, pp. 1534–1540. Morgan Kaufmann (1995)
Levi, I.: Belief and Action. The Monist 48, 306–316 (1964)
Levi, I.: The Enterprise of Knowledge. The MIT Press, Cambridge (1980)
Levi, I.: Decisions and Revisions. Cambridge University Press (1984)
Levi, I.: Hard Choices: Decision Making Under Unresolved Conflict. Cambridge U. Press

(1986)
Levi, I.: The Fixation of Belief and Its Undoing. Cambridge U. Press (1991)
Levi, I.: For the Sake of Argument: Ramsey Test Condtionals, Inductive Inference, and

Nonmonotonic Reasoning. Cambridge University Press (1996)
Loviscach, J.: Vorlesungsaufzeichnungen auf YouTube. Herausforderungen, Werkzeuge,

Erfahrungen (2012), http://www.youtube.com/watch?v=A34kAqyw8kM
Misak, C.: Peirce, Levi, and the Aims of Inquiry. Philosophy of Science 54(2), 256–265 (1987)
Mazur, E.: Peer Instruction: A User’s Manual. Prentice Hall (1996)
Nayak, A., Pagucco, M., Peppas, P.: Dynamic Belief Revision Operators. Artificial

Intelligence 146(2), 193–228 (2003)
Nesher, D.: Peirce’s Essential Discovery: ‘Our Senses as Reasoning Machines’ Can Quasi-

Prove Our Perceptual Judgments. Transactions of the Charles S. Peirce Society XXXVIII,
175–206 (2002)

Noschese, F.: What is pseudoteaching? (2001), http://fnoschese.wordpress.com/
2011/02/21/pt-pseudoteaching-mit-physics/

Olsson, E., Enqvist, S. (eds.): Belief Revision Meets Philosophy of Science. Logic,
Epistemology, and the Unity of Science, vol. 21. Springer (2011)

Park, W.: Belief Revision vs. Conceptual Change in Mathematics. In: Magnani, L., Carnielli,
W., Pizzi, C. (eds.) Model-Based Reasoning in Science and Technology. SCI, vol. 314, pp.
121–134. Springer, Heidelberg (2010)

Pinker, S., Bloom, P.: Natural language and natural selection. Behavioral and Brain
Sciences 13(4), 707 (1990)

Peirce, C.: The Fixation of Belief. Popular Science Monthly (1877)
Peirce, C.: Logical Machines. The American Journal of Psychology I, 165–170 (1887)
Peirce, C.: Collected Papers of Charles Sanders Peirce. In: Hartshorne, C., Weiss, P. (eds.)

Elements of Logic, vol. II. Belknap Press of Harvard U. Press, Cambridge (1960)
Plotkin, H.: Evolution in Mind, An Introduction to Evolutionary Psychology. Harvard U. Press

(1998)
Rott, H.: Two Dogmas of Belief Revision. The Journal of Philosophy 97(9), 503–522 (2000)
Santos, E.: On the Generation of Alternative Explanations with Implications for Belief Revsion.

In: Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, pp.
339–347. Morgan Kaufmann (1991)

Shermer, M.: The Believing Brain: How We Construct Beliefs and Reinforce Them as Truths.
Henry Holt and Co., LLC (2011)

Subramanian, S., Mooney, R.: Combining Abduction and Theory Revision. Artificial
Intelligence 92, 168 (1992)

 Toward a Peircean Theory of Human Learning 209

Swami, V. (ed.): Evolutionary Psychology: A Critical Introduction. British Psychological
Society & Blackwell Publishing Ltd. (2011)

Thagard, P.: The Best Explanation: Criteria for Theory Choice. The Journal of
Philosophy 75(2), 76–92 (1978)

Thagard, P.: Computational Philosophy of Science. MIT Press (1988)
Thagard, P.: Concepts and Conceptual Change. Synthese 82(2), 255–274 (1990)
Thagard, P.: Conceptual Revolutions. Princeton U. Press (1992)
Van Fraassen, B.: The Pragmatics of Explanation. American Philosophical Quarterly 14(2),

143–150 (1977)
Walliser, B., Zwirn, D., Zwirn, H.: Abductive Logics in a Belief Revision Framework.

Language and Information 14(1), 87–117 (2004)
Williams, M.-A., Rott, H.: Frontiers in Belief Revision. Kluwer Academic Publishers (2001)
Workman, L., Reader, W.: Evolutionary Psychology, an Introduction. Cambridge U. Press

(2004)

The First-Order Logical Environment

Robert E. Kent

Ontologos

Abstract. This paper describes the first-order logical environment FOLE.
Institutions in general (Goguen and Burstall [4]), and logical environ-
ments in particular, give equivalent heterogeneous and homogeneous
representations for logical systems. As such, they offer a rigorous and
principled approach to distributed interoperable information systems via
system consequence (Kent [6]). Since FOLE is a particular logical envi-
ronment, this provides a rigorous and principled approach to distributed
interoperable first-order information systems. The FOLE represents the
formalism and semantics of first-order logic in a classification form. By
using an interpretation form, a companion approach (Kent [7]) defines
the formalism and semantics of first-order logical/relational database
systems. In a strict sense, the two forms have transformational passages
(generalized inverses) between one another. The classification form of
first-order logic in the FOLE corresponds to ideas discussed in the Infor-
mation Flow Framework (IFF [12]). The FOLE representation follows a
conceptual structures approach, that is completely compatible with for-
mal concept analysis (Ganter and Wille [2]) and information flow (Bar-
wise and Seligman [1]).

Keywords: schema, specification, structure, logical environment.

1 Introduction

The paper “System Consequence” (Kent [6]) gave a general and abstract so-
lution to the interoperation of information systems via the channel theory of
information flow (Barwise and Seligman [1]). These can be expressed either for-
mally, semantically or in a combined form. This general solution closely follows
the theories of institutions (Goguen and Burstall [4]),1 information flow and for-
mal concept analysis (Ganter and Wille [2]). By following the approach of the
“System Consequence” paper, this paper offers a solution to the interoperation
of distributed systems expressed in terms of the formalism and semantics of first-
order logic. It does this be defining FOLE, the first-order logical environment.2

Since this paper develops a classification form of first order logic as a logical en-
vironment, the interaction of information systems expressed in first order logic

1 The technical aspect of this paper is described in the spirit of Goguen’s categorical
manifesto [3] by using the terminology of mathematical context, passage and bridge
in place of category, functor and natural transformation.

2 A logical environment is a special and more structurally pleasing case of an institu-
tion, where the semantics is completely compatible with satisfaction.

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 210–230, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The First-Order Logical Environment 211

have a firm foundation. Section 2 surveys the architecture of the first-order log-
ical environment FOLE. Section 3 discusses the linguistic/formal and semantic
components of FOLE; detailed discussions of the functional base and relational
superstructure are given in Appendix A.1 and Appendix A.2, respectively. Sec-
tion 4 explains how FOLE is a logical environment; a proof of this fact is given in
Appendix A.4. Section 5 discusses FOLE information systems. Finally, section 6
summarizes and states future plans for work on these topics.

2 Architecture

Figure 1 is a 3-dimensional visualization of the fibered architecture of the
first-order logical environment FOLE. Each node of this figure is a mathematical
context, whereas each edge is a passage between two contexts. There is a projec-
tion from the 2-D prism below Struc representing the relational superstructure
(subsec. A.2) to the 2-D prism below Alg representing the functional base (sub-
sec. A.1). The front diamond below Lang represents the linguistics/formalism,
whereas the back diamond below Struc represents the semantics. The projective
passages from semantics to linguistics/formalism represent the fibration left-to-
right and the indexing right-to-left. The vee-shape at the top of each diamond
states that the top mathematical context is a product of the side contexts modulo
the bottom context. The mathematical contexts on the left side of each diamond
form the relational aspect, whereas the mathematical contexts on the right side
form the functional aspect that lifts the relational to the (first-order) logical
aspect. The 2-D prism below Log represents the institutional architecture.

Log

struc �
���

Struc

Rel Alg

Cls

�

� ��
fmla

rel alg
�
���

�
���

�
���

�
���

Spec

lang �
���

Lang

Sch Oper

Set

�

� ��
fmla

�

� ��
term

sch oper�
���

�
���

�
���

�
���

���������

���������

���������

��
������

���������

spec

lang

sch oper

︸ ︷︷ ︸
semantics

︸ ︷︷ ︸
linguistics/formalism

relational
superstructure

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

functional
base

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Fig. 1. FOLE Fibered Architecture

212 R.E. Kent

3 Components

The architectural components (Fig.1) divide up according to kind and aspect.
The outer level describes the kind of component. The indexing kind is a lan-
guage (type set, relational schema, operator domain, etc.) (front diamond Fig.1),
whereas the indexed kind is either a formalism or a semantics (classification, re-
lational structure, algebra, etc.) (back diamond Fig.1). The inner level describes
the aspect of component. There are basic, relational, functional and logical as-
pects (bottom, left, right or top node in either Fig.1 diamond).

�

physical
abstract

actuality
form

prehension
proposition

nexus
intention

independent relative mediating

	
	
	
		

���������

���������

	
	
	
		

·······
·······

·······
·······

··

·····
·····
·····
·····
·····
·····

····
····
····
···

······
······

······
······

······

·······
·······

·······
·······

·· M

instance
type

entity

instance

Y

entity

type

X List(Y)
tuple

←−
τ

K
key

signature

List(X)
σ←−

relation
type

R

E List(E)
〈σ,τ〉
⇔ R

	
	
	
		

���������

���������

	
	
	
		

·······
·······

·······
·······

··

·····
·····
·····
·····
·····
·····

····
····
····
···

······
······

······
······

······

·······
·······

·······
·······

··

top-level categories FOLE components

Fig. 2. Analogy

Fig.2 illustrates an analogy between the top-level ontological categories dis-
cussed in (Sowa [9]) and the components of the first-order logical environment
FOLE (the relational aspect or 2-D prism belowRel). The pair ‘physical-abstract’,
which corresponds to the Heraclitus distinction physis-logos, is represented in
the FOLE by a classification between instances and types of various kinds. The
triples (triads) ‘actuality-prehension-nexus’ and ‘form-proposition-intention’ cor-
respond to Whitehead’s categories of existence. The latter triple, which is analo-
gous to the ‘entity type-signature-relation type’ triple, is represented in the FOLE
by a relational language (schema) S = 〈R, σ,X〉 (Appendix A.2.1). The former
triple, which is analogous to the ‘entity instance-tuple-relation instance’ triple,
is represented in the FOLE by the tuple function K

τ−→ List(Y) (part of a FOLE

structure). The firstness category of ‘independent(actuality,form)’ is represented
in the FOLE by an entity classification E = 〈X,Y, |=E〉 (Appendix A.2.2). The
thirdness category of ‘mediating(nexus,intention)’ is represented in the FOLE

by a relation classification R = 〈R,K, |=R〉 between relational instances (keys)
and relational types (or a classification between relational instances and logical
formula, more generally) (Appendix A.2.2). The secondness category of ‘rel-
ative(prehension,proposition)’ is represented in the FOLE by the list construc-
tion of an entity classification List(E) = 〈List(X),List(Y), |=List(E)〉 between
tuples and signatures (Appendix A.2.2). Finally, the entire graph of the top-
level ontological categories is represented in the FOLE by a (model-theoretic)

The First-Order Logical Environment 213

structure (classification form) M = 〈R, 〈σ, τ 〉, E〉, where the relation R and en-
tity E classifications are connected by a list designation 〈σ, τ 〉 : R ⇒ List(E)
(Appendix A.2.2). This is appropriate, since a (model-theoretic) structure rep-
resents the knowledge in the local world of a community of discourse.

4 Logical Environment

The FOLE institution (logical system) (Kent [6]) has at its core the mathe-
matical context of first-order logic (FOL) languages Lang. For any language
L = 〈S,O〉, there is a set of constraints fmla(L) representing the formalism at
location L, and there is a mathematical context of structures struc(L) repre-
senting the semantics at location L. For any first-order logic (FOL) language

morphism L2 = 〈S2,O2〉
〈r,f,ω〉−−−−→ 〈S1,O1〉 = L1, there is a constraint function

fmla(L2)
fmla(r,f,ω)−−−−−−−→ fmla(L1) (Appendix A.2.1) representing flow of formalism

in the forward direction, and there is a structure passage struc(L2)
struc(r,f,ω)←−−−−−−−

struc(L1) (Appendix A.2.2) representing flow of semantics in the reverse direc-

tion. This structure passage has a relational componentRel(S2)
rel〈r,f〉←−−−− Rel(S2)

and a functional (algebraic) component Alg(O2)
alg〈f,ω〉←−−−−− Alg(O1).

FOLE is an institution, since the satisfaction relation is preserved during in-
formation flow along any first-order logic (FOL) language morphism L2 =

〈S2,O2〉
〈r,f,ω〉−−−−→ 〈S1,O1〉 = L1: struc(r, f, ω)(M1) |=L2 (〈I ′2, s′2, ϕ′

2〉
h2−→

〈I2, s2, ϕ2〉) iff M1 |=L1 fmla(〈I ′2, s′2, ϕ′
2〉

h2−→ 〈I2, s2, ϕ2〉). In short, “satisfac-
tion is invariant under change of notation”. The institution FOLE is a logical en-

vironment, since for any language L = 〈S,O〉 = 〈R, σ,X,Ω〉, if M2
〈k,g,h〉−−−−→M1

is a lang-vertical structure morphism over L, then we have the intent order
M2 ≥L M1; that is, M2 |=L (ϕ ψ) implies M1 |=L (ϕ ψ) for any S-
sequent (ϕ ψ). In short, “satisfaction respects structure morphisms”. (See Ap-
pendix A.4 for a proof of this in the relational aspect.)

5 Information Systems

Following the theory of general systems, an information system consists of a
collection of interconnected parts called information resources and a collection of
part-part relationships between pairs of information resources called constraints.
Semantic information systems have logics3 as their information resources. Just
as every logic has an underlying structure, so also every information system has
an underlying distributed system. As such, distributed systems have structures
for their component parts.

3 A first-order logic L = 〈M,T 〉 in FOLE consists of a first-order structure M and
a first-order specification T that share a common first-order language lang(M) =
lang(T). A logic enriches a first-order structure with a specification. The logic is
sound when the structure M satisfies every constraint in the specification T .

214 R.E. Kent

A FOLE distributed system is a passageM : I→ Struc pictured as a diagram
of shape I within the ambient mathematical context of first-order structures.
As such, it consists of an indexed family {Mi | i ∈ |I|} of structures together

with an indexed family {Mi
me−−→Mj | (e : i→ j) ∈ I} of structure morphisms.

A FOLE (semantic) information system is a diagram L : I → Log within the
mathematical context of first-order logics. This consists of an indexed family of

logics {Li : i ∈ |I|} and an indexed family of logic morphisms {Li
le−→ Lj | (e :

i → j) ∈ I}. An information system L has an underlying distributed system
M = L ◦ struc of the same shape with Mi = struc(Li) for all i ∈ |I|. An
information channel 〈γ :M⇒ Δ(C), C〉 consists of an indexed family {Mi

γi−→
C | i ∈ |I|} of structure morphisms with a common target structure C called the
core of the channel. Information flows along channels. We are mainly interested in
channels that cover a distributed system M : I→ Struc, where the part-whole
relationships respect the system constraints (are consistent with the part-part
relationships). In this case, there exist optimal channels. An optimal core is
called the sum of the distributed system, and the optimal channel components
(structure morphisms) are flow links.

System interoperability is defined by moving formalism over semantics. The
fusion (unification)

∐
L of the information system L represents the whole sys-

tem in a centralized fashion. The fusion logic is defined by direct system flow:
(i) direct logic flow of the component parts of the information system along the
optimal channel over the underlying distributed system to a centralized loca-
tion (the lattice of logics at the optimal channel core), and (ii) meet product
combining the contributions of the parts into a whole. The consequence L� of
the information system L represents the whole system in a distributed fashion.
This is an information system defined by inverse system flow: (i) consequence
of the fusion logic, and (ii) inverse logic flow of this consequence back along the
same optimal channel, transfering the constraints of the whole system (the fu-
sion logic) to the distributed locations (structures) of the component parts. See
Kent [6] for further details.4

6 Summary and Future Work

In this paper we have described the first-order logical environment FOLE in classi-
fication form. This gives a holistic treatment of first-order logic, by the use of sev-
eral novel elements: the use of signatures (type lists) for relational arities, in place
of ordinal numbers; the use of abstract tuples (relational instances, keys), thus
making FOLE compatible with relational databases; the use of classifications for
both entities and relations; and the use of relational constraints for the sentences

4 In light of the transformation described in Appendix A.5.2, an information system
of sound logics can be regarded as a system of logical/relational databases. The
system consequence of such systems represents database interoperabilty. Kent [6]
has more details about the information flow of sound logics in an arbitrary logical
environment.

The First-Order Logical Environment 215

of the FOLE institution. FOLE also has an interpretation form (Kent [7]) that rep-
resents the formalism and semantics of logical/relational databases, including
relational algebra. There are transformational passages between the classifica-
tion form and a strict version of the interpretation form. Appendix A.5.2 briefly
discusses the transformation from sound logics to logical/relational databases.

FOLE has advantages over other approaches to first-order logic: in FOLE the
formalism is completely integrated into the semantics; the classification form of
FOLE has a natural extension to relational/logical databases, as represented by
the interpretation form of FOLE; and FOLE is a logical environment, thus allowing
practitioners a rigorously defined approach towards the interoperation of online
semantic systems of information resources that include relational databases.

Future work includes: finishing work on the interpretation form of FOLE; fur-
ther work on defining the transformational passages between the classification
and interpretation forms; developing a linearization process from FOLE to sketch-
like forms of logic such as Ologs (Spivak and Kent [11]); and linking FOLE with
the Common Logic standard.

References

1. Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems.
Cambridge University Press, Cambridge (1997)

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1999)

3. Goguen, J.: A categorical manifesto. Mathematical Structures in Computer Sci-
ence 1, 49–67 (1991)

4. Goguen, J., Burstall, R.: Institutions: Abstract Model Theory for Specification and
Programming. J. Assoc. Comp. Mach. 39, 95–146 (1992)

5. Johnson, M., Rosebrugh, R., Wood, R.: Entity Relationship Attribute Designs and
Sketches. Theory and Application of Categories 10(3), 94–112 (2002)

6. Kent, R.E.: System Consequence. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.)
ICCS 2009. LNCS, vol. 5662, pp. 201–218. Springer, Heidelberg (2009)

7. Kent, R.E.: Database Semantics (2011), http://arxiv.org/abs/1209.3054
8. Kent, R.E., Spivak, D.I.: Email discussion (2011)
9. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Brookes/Coles (2000)
10. Sowa, J.F.: ISO Standard for Conceptual Graphs (April 2, 2001),

http://users.bestweb.net/~sowa/cg/cgstand.html

11. Spivak, D.I., Kent, R.E.: Ologs: a categorical framework for knowledge rep-
resentation. PLoS One 7(1), e24274 (2012), http://arxiv.org/abs/1102.1889,
doi:10.1371/journal.pone.0024274

12. The Information Flow Framework (IFF), http://suo.ieee.org/IFF/

http://arxiv.org/abs/1209.3054
http://users.bestweb.net/~sowa/cg/cgstand.html
http://arxiv.org/abs/1102.1889
http://suo.ieee.org/IFF/

216 R.E. Kent

A Appendix

A.1 Functional Base

A.1.1 Linguistics/Formalism

Base Linguistics: Set.

Alg

Cls

cls�
�� Oper

Set

�

� ��
set

term
�

��

�������

�������

oper

set
functional

base

⎫⎪⎪⎪⎬⎪⎪⎪⎭
A set (of entity types) X defines a mathematical con-

text of type lists (signatures) List(X) = (Set↓X). The FOLE uses type lists for
relational arities, instead of ordinal numbers.

The first subcomponent of any linguistic component is a set of entity types
(sorts) X . Examples of entity types are ‘human’ representing the set of all hu-
man beings, ‘blue’ representing the set of all objects of color blue, etc. A type
list (signature) 〈I, s〉 consists of an arity set I and a type map I

s−→ X mapping
elements of the arity to entity types. This can be denoted by the list nota-
tion (. . . si . . .) or the type declaration notation (. . . i :si . . .) for i∈ I and si ∈X .
For example, the type list‘(make:String,model:String,year:Number,color:Color)’
is a type list for cars with valence 4,arity set {make,model, year, color}, and type

map {make → String, · · · }. A type list morphism 〈I2, s2〉 h−→ 〈I1, s1〉 is an arity

function I2
h−→ I1 that satisfies the commutative diagram h ·s1 = s2. We say that

s2 is at least as general as s1.
Given the natural numbers ℵ = {0, 1, · · · }, let ℵ denote the mathematical

context of finite ordinals (number sets) n = {0, 1, · · · , n−1} and functions be-
tween them. This is the skeleton of the mathematical context Fin of finite sets
and functions. Both represent the single-sorted case where X = 1. We have the
following inclusion of base language mathematical contexts.5

ℵ
skeleton

⊆ Fin

single-sorted

⊆
∗

List(X)

many-sorted

Traditional first-order systems use the natural numbers ℵ for indexing relations.
More flexible first-order systems, such as FOLE or relational database systems,
use finite sets when single-sorted or type lists when many-sorted.

Algebraic Linguistics: Oper
set−−→ Set. A functional language (operator domain)

is a pair 〈X,Ω〉, where X is a set of entity types (sorts) and Ω is an X-sorted

operator domain; that is, Ω = {Ωx,〈I,s〉 | x ∈ X, 〈I, s〉 ∈
∗

List(X)} is a collection
of sets of function (operator) symbols, where e ∈ Ωx,〈I,s〉 is a function symbol

of entity type (sort) x and finite arity 〈I, s〉,6 symbolized by x
e−⇁ 〈I, s〉. An

element c ∈ Ωx,〈∅,0X〉 is called a constant symbol of sort x. Any operator domain
〈X,Ω〉 defines a mathematical context of terms Term〈X,Ω〉, whose objects are

X-signatures 〈I, s〉 and whose morphisms are term vectors 〈I ′, s′〉 t−⇁ 〈I, s〉, where

5 We use the mathematical context
∗

List(X) = (Fin↓X) for type lists of finite arity.
6 This is a slight misnomer, since 〈I, s〉 is actually the signature of the function symbol.
whereas the arity of e is the indexing set I and the valence of e is the cardinality |I |.

The First-Order Logical Environment 217

t = {s′i′
ti′−⇁ 〈I, s〉 | i′ ∈ I ′} is an indexed collection (vector) of 〈I, s〉-ary terms.

Terms and term vectors are defined by mutual induction.

A morphism of functional languages is a pair 〈X2, Ω2〉
〈f,ω〉−−−→ 〈X1, Ω1〉, where

X2
f−→ X1 is a function of entity types (sorts) and ω : Ω2 → Ω1 is a collection

{(Ω2)x2,〈I2,s2〉
ωx2,〈I2,s2〉−−−−−−−→ (Ω1)f(x2),

∑
f (I2,s2)

| x2 ∈ X2, 〈I2, s2〉 ∈
∗

List(X2)} of

maps between function symbol sets: ω maps a function symbol x2
e−⇁ 〈I2, s2〉

in Ω2 to a function symbol f(x2)
ω(e)−−−⇁ ∑

f (I2, s2) = 〈I2, s2 · f〉 in Ω1. Given

any morphism of functional languages 〈X2, Ω2〉
〈f,ω〉−−−→ 〈X1, Ω1〉, there is a term

passage Term〈X2,Ω2〉
term〈f,ω〉−−−−−−→ Term〈X1,Ω1〉 defined by induction. Let Oper

denote the mathematical context of functional languages (operator domains).

Algebraic Formalism. Let O = 〈X,Ω〉 be an operator domain. An O-equation is

a parallel pair of term vectors 〈I ′, s′〉 t,t′−−⇁ 〈I, s〉. We represent an equation using
the traditional notation (t= t′). An equational presentation 〈X,Ω,E〉 consists
of an operator domain O = 〈X,Ω〉 and a set of O-equations E. A congru-
ence is any equational presentation closed under left and right term composi-
tion. Any equational presentation 〈X,Ω,E〉 generates a congruence 〈X,Ω,E•〉,
which defines a quotient mathematical context of terms Term〈X,Ω,E〉 with a

morphism 〈I ′, s′〉 [t]−⇁ 〈I, s〉 being an equivalence class of terms. There is a canon-

ical passage Term〈X,Ω〉
[]−→ Term〈X,Ω,E〉. A morphism of equational presenta-

tions 〈X2, Ω2, E2〉
〈f,ω〉−−−→ 〈X1, Ω1, E1〉 is a morphism of functional languages

〈X2, Ω2〉
〈f,ω〉−−−→ 〈X1, Ω1〉 that preserves equations: an O2-equation 〈I ′2, s′2〉

t2,t
′
2−−−⇁

〈I2, s2〉 in E2 is mapped to an O1-equation
∑

f (I
′
2, s

′
2)

ω∗(t),ω∗(t′)−−−−−−−−⇁ ∑
f (I2, s2) in

the congruence E•
1. Hence, there is a term passage Term〈X2,Ω2,E2〉

term〈f,ω〉−−−−−−→
Term〈X1,Ω1,E1〉 that commutes with canons.

A.1.2 Semantics

Base Semantics: Cls
typ−−→ Set. For any entity classification E = 〈X,Y, |=E〉,

there is a tuple passage List(X)op
tupE−−−→ Set defined as the extent of the list

classification List(E). It maps a type list (signature) 〈I, s〉 ∈ List(X) to its
extent tupE(I, s) = extList(E)(I, s) ⊆ List(Y). An entity infomorphism 〈f, g〉 :
E2 � E1 defines a bridge tupE2

τ〈f,g〉⇐= (
∑

f)
op ◦ tupE1

between tuple passages.
For any source signature 〈I2, s2〉 ∈ (Set↓X2), the tuple function τ〈f,g〉(I2, s2) =
(-) · g : tupE1

(
∑

f (I2, s2))→ tupE2
(I2, s2) is define by composition.

Algebraic Semantics: Cls
cls←−− Alg

oper−−−→ Oper. A many-sorted algebra A =
〈E ,O, 〈A, δ〉〉 consists of an entity classification E = 〈X,Y, |=E〉, an operator do-
main O = 〈X,Ω〉, and an O-algebra 〈A, δ〉 compatible with E , where

218 R.E. Kent

Termop
〈X2,∅〉 = List(X2)

op List(X1)
op = Termop

〈X1,∅〉

Termop
〈X2,Ω2〉 Termop

〈X2,Ω2〉

termop
〈f,0〉

(
∑

f)
op

termop
〈f,ω〉

termop
〈idX2

,0〉 = incop incop = termop
〈idX1

,0〉

� �

Set

A∗
2 A∗

1

α⇐=�
�
���

�
�

���� �

tupE2
tupE1

τ〈f,g〉⇐=

Fig. 3. Functional Base Interpretation

A = {Ax | x ∈ X} is an X-sorted set and δ assigns an 〈I, s〉-ary x-sorted

function (operation) Ax
δe←− A〈I,s〉 to each function symbol x

e−⇁ 〈I, s〉 with
A〈I,s〉 =

∏
i∈I Asi the product set. A many-sorted algebra A = 〈E ,O, 〈A, δ〉〉

defines (by induction) an algebraic interpretation passage Termop
〈X,Ω〉

A∗
−−→ Set,

which extends the tuple passage tupE = incop ◦ A∗ by compatibility. An algebra
A satisfies an equation (t= t′), symbolized by A |= (t = t′), when the interpre-
tation maps the terms to the same function A∗(t) = A∗(t′). A many-sorted al-

gebraic homomorphism A2 = 〈E2,O2, 〈A2, δ2〉〉
〈f,g,ω,h〉−−−−−−→ 〈E1,O1, 〈A1, δ1〉〉 = A1

consists of an entity infomorphism 〈f, g〉 : E2 � E1, a morphism of many-sorted

operator domains 〈f, ω〉 : O2 → O1, and an O2-algebra morphism 〈A2, δ2〉 h←−
alg〈f,ω〉(A1, δ1) compatible with 〈f, g〉. A many-sorted algebraic homomorphism

A2
〈f,g,ω,h〉−−−−−−→ A1 defines an algebraic bridge A∗

2
α⇐= term〈f,ω〉op ◦ A∗

1 between
algebraic interpretations, which extends the tuple bridge τ〈f,g〉 = incop ◦ α by
compatibility. Let Alg denote the mathematical context of many-sorted alge-
bras. (The base semantics embeds into the functional semantics Fig. 3.)

A.2 Relational Superstructure

A.2.1 Linguistics/Formalism

Relational Linguistics: Sch.

Struc

Rel

rel�
��

�

� ��
fmla

Lang

Sch

sch�
��

�

� ��
fmla

�������

�������

lang

sch

relational
superstructure

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Schemas. A relational language (schema) S = 〈R, σ,X〉 has two components: a
base and a superstructure built upon the base. The base consists of a set of entity
types (sorts) X , which defines the type list mathematical context List(X). The
superstructure consists of a set of relation types (symbols) R and a (discrete)

type list passage R
σ−→ List(X) mapping a relation symbol r ∈ R to its type list

σ(r) = 〈I, s〉. A relational language (schema) morphism S2 = 〈R2, σ2, X2〉
〈r,f〉
=⇒

〈R1, σ1, X1〉 = S1 also has two components: a base and a superstructure built
upon the base. The base consists of an entity type (sort) function f : X2 → X1,

The First-Order Logical Environment 219

which defines the type list passage List(X2)
∑

f−−→ List(X1) mapping a type
list (. . . si2 . . .) to the type list (. . . f(si2) . . .). The superstructure consists of a
relation type function r : R2 → R1 which preserves type lists, satisfying the
condition r · σ1 = σ2 · ∑f . Let Sch symbolize the mathematical context of

relational languages (schemas) with type set projection passage Sch
set−−→ Set.

Formulas. For any type list 〈I, s〉, let R(I, s) ⊆ R denote the set of all relation
types with this type list. These are called 〈I, s〉-ary relation symbols. Formulas

form a schema fmla(S) = 〈R̂, σ̂, X〉 that extends S: with inductive definitions,

the set of relation types is extended to a set of logical formulas R̂ and the

relational type list function is extended to a type list function R̂
σ̂−→ List(X).

For any type list 〈I, s〉, let R̂(I, s) ⊆ R̂ denote the set of all formulas with this
type list. These are called 〈I, s〉-ary formulas. Formulas are constructed by using
logical connectives within a fiber and logical flow between fibers.

fiber: Let 〈I, s〉 be any type list. Any 〈I, s〉-ary relation symbol is an (atomic) 〈I, s〉-ary
formula; that is, R(I, s) ⊆ R̂(I, s). For any pair of 〈I, s〉-ary formulas ϕ and ψ,
there are the following 〈I, s〉-ary formulas: meet (ϕ∧ψ), join (ϕ∨ψ), implication
(ϕ�ψ) and difference (ϕ \ψ). For any 〈I, s〉-ary formula ϕ, there is an 〈I, s〉-ary
negation formula (¬ϕ).

flow: Let 〈I ′, s′〉 h−→ 〈I, s〉 be any type list morphism. For any 〈I, s〉-ary formula ϕ, there

are 〈I ′, s′〉-ary existentially/universally quantified formulas ∑
t(ϕ) and

∏
t(ϕ). For

any 〈I ′, s′〉-ary formula ϕ′, there is a 〈I, s〉-ary substitution formula t∗(ϕ′) =

ϕ′(t).

Formula Fiber Passage. A schema morphism S2
〈r,f〉
=⇒ S1 can be extended to a

formula schema morphism fmla(r, f) = 〈r̂, f〉 : fmla(S2) = 〈R̂2, σ̂2, X2〉 =⇒
〈R̂1, σ̂1, X1〉 = fmla(S1). The formula function r̂ : R̂2 → R̂1, which satisfies the
condition incS2 · r̂ = r · incS1 , is recursively defined in Table 2.

Proposition 1. There is an idempotent formula passage fmla : Sch → Sch
that forms a monad 〈Sch, η, fmla〉 with embedding.

Relational Formalism: Fmla.

Constraints. Let S = 〈R, σ,X〉 be a relational schema. A (binary) S-sequent is
a pair of formulas ϕ, ψ ∈ R̂ with the same type list σ̂(ϕ) = 〈I, s〉 = σ̂(ψ). 7 We
represent a sequent using the turnstyle notation ϕ ψ, since we want a sequent
to assert logical entailment. A sequent expresses interpretation widening, with
the interpretation of ϕ required to be within the interpretation of ψ. We require
entailment to be a preorder, satisfying reflexivity and transitivity (Table 3).

Hence, for each type list 〈I, s〉 there is a fiber preorder FmlaS(I, s) = 〈R̂,〉
consisting of all S-formulas with this type list. In first-order logic, we further

7 We regard the formulas R̂ to be a set of types. Since conjunction and disjunction
are used in formulas, we can restrict attention to binary sequents.

220 R.E. Kent

Table 1. Lifting Flow

formula flow
logical aspect

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

term vector 〈I′, s′〉 t−⇁ 〈I, s〉 in Term〈X,Ω〉

operation A∗(I′, s′)
A∗(t)←−−−− A∗(I, s)

inverse image RelA(I′, s′) t∗−−−→ RelA(I, s)

quantification RelA(I′, s′)
∃t←−−−
∀t

RelA(I, s)

⇑ functional
aspect

formula flow
relational aspect

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

type list morphism 〈I′, s′〉 h−→ 〈I, s〉 in List(X) = Term〈X,∅〉

tuple map tupE(I
′, s′)

tupE (h)←−−−−− tupE(I, s)

inverse image RelE(I′, s′) h∗
−−−→ RelE(I, s)

quantification RelE(I′, s′)
∃h←−−−
∀h

RelE(I, s)

When the relational aspect is lifted along the functional aspect to the first-order
aspect (Fig. 1 of Section 2), formula flow is lifted from being along type list mor-

phisms 〈I′, s′〉 h−→ 〈I, s〉 to being along term vectors 〈I′, s′〉 t−⇁ 〈I, s〉. This holds
for formula definition (above), formula function definition (Table 2), formula ax-
iomatization (Table 3), formula classification definition (Table 4), satisfaction
(Table 5), transformation to databases (Appendix A.5), etc.

Table 2. Formula Function

fiber: type list 〈I2, s2〉
operator

relation r̂(r2) = r(r2)

meet r̂(ϕ2 ∧〈I2,s2〉 ψ2) = (r̂(ϕ2)∧∑
f (I2,s2) r̂(ψ2))

join r̂(ϕ2 ∨〈I2,s2〉 ψ2) = (r̂(ϕ2)∨∑
f (I2,s2) r̂(ψ2))

negation r̂(¬〈I2,s2〉 ϕ) = ¬∑
f (I2,s2) r̂(ϕ)

implication r̂(ϕ�〈I2,s2〉 ψ) = r̂(ϕ)�
∑

f (I2,s2) r̂(ψ)

difference r̂(ϕ \〈I2,s2〉 ψ) = r̂(ϕ) \∑
f (I2,s2) r̂(ψ)

flow: type list morphism 〈I′
2, s

′
2〉 h−→ 〈I2, s2〉

operator

existential r̂(
∑

h(ϕ2)) =
∑

h(r̂(ϕ2))

universal r̂(
∏

h(ϕ2)) =
∏

h(r̂(ϕ2))

substitution r̂(h∗(ϕ′
2)) = h∗(r̂(ϕ′

2))

require satisfaction of sufficient conditions (Table 3) to described the various
logical operations (connectives, quantifiers, etc.) used to build formulas. An in-
dexed S-formula 〈I, s, ϕ〉 consists of a type list 〈I, s〉 and a formula ϕ with

signature 〈I, s〉. An S-constraint 〈I ′, s′, ϕ′〉 h−→ 〈I, s, ϕ〉 consists of a type list

morphism 〈I ′, s′〉 h−→ 〈I, s〉 and a binary sequent (
∑

h(ϕ) ϕ′), or equivalently a
binary sequent (ϕ h∗(ϕ′)). The mathematical context Fmla(S) has indexed S-
formula as objects and S-constraints as morphisms. 8 Let S2

〈r,f〉
=⇒ S1 be a schema

8 In some sense, this formula/constraint approach to formalism turns the tuple calculus
upside down, with atoms in the tuple calculus becoming constraints here.

The First-Order Logical Environment 221

morphism. We assume that the function map R̂2
r̂−→ R̂1 is monotonic (Table 3).

Hence, there is a fibered formula passage Fmla(S2)
fmla〈r,f〉−−−−−−→ Fmla(S1) that

commutes with the type list projections (Figure 4).

List(X2) List(X1)

Pre

∑
f

fmlaS2
fmlaS2

r̂⇒

�
�
���

�
�

���

Fmla(S2) Fmla(S1)

List(X2) List(X1)

fmla〈r,f〉

∑
f

listS2 listS1

� �

indexed fibered

Fig. 4. Indexed-Fibered

Table 3. Axioms

schema: S
fiber: type list 〈I, s〉

reflexivity : ϕ ϕ

transitivity : ϕ ϕ′ and ϕ′ ϕ′′ implies ϕ ϕ′′

meet : ψ (ϕ ∧ ϕ′) iff ψ ϕ and ψ ϕ′

(ϕ ∧ ϕ′) ϕ, (ϕ ∧ ϕ′) ϕ′

join : (ϕ ∨ ϕ′) ψ iff ϕ ψ and ϕ′ ψ

ϕ′ (ϕ ∨ ϕ), ϕ′ (ϕ ∨ ϕ′)

implication : (ϕ ∧ ϕ′) ψ iff ϕ (ϕ′
�ψ)

negation : ¬ (¬ (ϕ)) ϕ

flow: type list morphism 〈I′, s′〉 h−→ 〈I, s〉
∑

h-monotonicity : ϕ′ ′ ψ′ implies
∑

h(ϕ
′) ∑

h(ψ
′)

h∗-monotonicity : ϕ ψ implies h∗(ϕ) ′ h∗(ψ)
∏

h-monotonicity : ϕ′ ′ ψ′ implies
∏

h(ϕ
′) ∏

h(ψ
′)

adjointness :
∑

h(ϕ
′) ψ iff ϕ′ ′ h∗(ψ)

ϕ′ ′ h∗(∑h(ϕ
′)), ∑

h(h
∗(ϕ)) ϕ

schema morphism: S2
〈r,f〉
=⇒ S1

r̂-monotonicity : (ϕ2 2 ψ2) implies (r̂(ϕ2) 1 r̂(ψ2))

Specifications. A specification T = 〈S, T 〉 consists of a schema S = 〈R, σ,X〉
and a subset T ⊆ Fmla(S) of S-constraints. As a subgraph, T extends to its
consequence T • ⊆ Fmla(S), a mathematical subcontext, by using paths of con-

straints. A specification morphism T2 = 〈S2, T2〉
〈r,f〉−−−→ 〈S1, T1〉 = T1 is a schema

morphism S2
〈r,f〉
=⇒ S1 that preserves constraints: if sequent ϕ′

2 h∗(ϕ2) is as-
serted in T2, then sequent r̂(ϕ′

2) h∗(r̂(ϕ2)) is asserted in T1.

222 R.E. Kent

First-order Linguistics: Lang
Sch×SetOper

sch−−→ Sch. A first-order logic (FOL) language

L = 〈S,O〉 consists of a relational schema S = 〈R, σ,X〉 and an operator domain
O = 〈X,Ω〉 that share a common type set X . A first-order logic (FOL) language

morphism L2 = 〈S2,O2〉
〈r,f,ω〉−−−−→ 〈S1,O1〉 = L1 consists of a relational schema

morphism S2
〈r,f〉−−−→ S1 and a functional language morphism O2

〈f,ω〉−−−→ O1 that

share a common type function X2
f−→ X1.

First-order Formalism. A first-order specification T = 〈S, T,O, E〉 is an
FOL language L = 〈S,O〉, where 〈S, T 〉 is a relational specification and
〈O, E〉 is an equational presentation. A first-order specification morphism T2 =

〈S2, T2,O2, E2〉
〈r,f〉−−−→ 〈S1, T1,O1, E1〉 = T1 is an FOL language morphism

L2 = 〈S2,O2〉
〈r,f,ω〉−−−−→ 〈S1,O1〉 = L1, where 〈S2, T2〉

〈r,f〉−−−→ 〈S1, T1〉 is a relational

specification morphism and 〈O2, E2〉
〈f,ω〉−−−→ 〈O1, E1〉 is a morphism of equational

presentations. A first-order specification morphism preserves constraints: if se-
quent ϕ′

2 [t]
∗
(ϕ2) is asserted in T2, then sequent r̂(ϕ′

2) [t]
∗
(r̂(ϕ2)) is asserted

in T1.

A.2.2 Semantics

Relational Semantics: Rel
sch−−→ Sch.

Structures. A (model-theoretic) relational structure (classification form)
(IFF [12]) M = 〈R, 〈σ, τ 〉, E〉 is a hypergraph of classifications — a two di-
mensional construction consisting of a relation classification R = 〈R,K, |=R〉,
an entity classification E = 〈X,Y, |=E〉 and a list designation 〈σ, τ 〉 : R ⇒
List(E). 9 Hence, a structure satisfies the following condition: k |=R r im-
plies τ(k) |=List(E) σ(r). A structure M has an associated schema sch(M) =
〈R, σ,X〉.

Formulas. Any structure M = 〈R, 〈σ, τ 〉, E〉 has an associated formula struc-

ture fmla(M) = 〈R̂, 〈σ̂, τ〉, E〉 with schema sch(fmla(M)) = 〈R̂, σ̂, X〉. The
formula classification R̂ = 〈R̂,K, |=R̂〉, which extends the relation classification
of M, is directly defined by induction in Table 4.

Satisfaction. Satisfaction is defined in terms of the extent order of the formula
classification. For any S-structure M ∈ Rel(S), two formula ϕ, ψ ∈ R̂ with
the same type list σ(ϕ) = σ(ψ) satisfy the specialization-generalization order
ϕ ≤R̂ ψ when their extents satisfy the containment order extR̂(ϕ) ⊆ extR̂(ψ).
An S-structure M ∈ Rel(S) satisfies an S-sequent (ϕ ψ) when ϕ ≤R̂ ψ.

9 List(E) = 〈List(X),List(Y), |=List(E)〉 is the list construction of the entity clas-
sification. A tuple 〈J, t〉 ∈ List(Y) is classified by a signature 〈I, s〉 ∈ List(X),
symbolized by 〈J, t〉 |=List(E) 〈I, s〉, when J = I and ti |=E si for all i ∈ I .

The First-Order Logical Environment 223

Table 4. Formula Classification

fiber: type list 〈I, s〉 with interpretation tupE(I, s) =
∏

i∈I extE (si)
operator definiendum definiens

relation k |=R̂ r when k |=R r

meet k |=R̂ (ϕ∧ψ) when k |=R̂ ϕ and k |=R̂ ψ

join k |=R̂ (ϕ∨ψ) when k |=R̂ ϕ or k |=R̂ ψ

top k |=R̂

bottom k�|=R̂ ⊥

negation k |=R̂ (¬ϕ) when k�|=R̂ ϕ

implication k |=R̂ (ϕ�ψ) when if k |=R̂ ϕ then k |=R̂ ψ

difference k |=R̂ (ϕ \ψ) when k |=R̂ ϕ but not k |=R̂ ψ

flow: type list morphism

σ̂(ϕ′)
︷ ︸︸ ︷
〈I′, s′〉 h−→

σ̂(ϕ)
︷ ︸︸ ︷
〈I, s〉 with interpretation tupE(I

′, s′)
tupE (h)←−−−−− tupE (I, s)

operator definiendum definiens

existential k |=R̂
∑

h(ϕ) when τ(k)∈∃h(RM̂(ϕ))

universal k |=R̂
∏

h(ϕ) when τ(k)∈∀h(RM̂(ϕ))

substitution k |=R̂ h∗(ϕ′) when τ(k)∈h−1(RM̂(ϕ′))
where RM̂(ϕ) = ℘τ(extR̂(ϕ))

An S-structure M ∈ Rel(S) satisfies an S-constraint ϕ′ h−→ ϕ, symbolized by

M |=S (ϕ′ h−→ ϕ), when M satisfies the sequent (
∑

h(ϕ) ϕ′); that is, when
∑

h(ϕ) ≤R̂ ϕ′; equivalently, when ϕ ≤R̂ h∗(ϕ′). This can be expressed in terms
of implication as (

∑
h(ϕ)�ϕ′) ≡ �; equivalently, (ϕ�h∗(ϕ′)) ≡ �. When con-

verting structures to databases, the satisfaction relationship M |=S (ϕ
h−→ ϕ′)

determines the morphism of E-relations RM̂(ϕ)
h←− RM̂(ϕ′) in Rel(E) and a

morphism of E-tables TM̂(ϕ)
〈h,k〉←−−− TM̂(ϕ′) in Tbl(E). (The operators RM̂

and TM̂ are defined in Appendix A.5.1. Satisfaction is summarized in Table 5.)

Structure Morphisms. A (model-theoretic) structure morphism (IFF [12])

〈r, k, f, g〉 : M2 = 〈R2, 〈σ2, τ2〉, E2〉 � 〈R1, 〈σ1, τ1〉, E1〉 = M1

is a two dimensional construction consisting of a relation infomorphism 〈r, k〉 :
R2 = 〈R2,K2, |=R2〉 � 〈R1,K1, |=R1〉 = R1, an entity infomorphism 〈f, g〉 :
E2 = 〈X2, Y2, |=E2〉� 〈X1, Y1, |=E1〉 = E1, and a list classification square

〈〈r, k〉,List〈f,g〉〉 : 〈R2

〈σ2,τ2〉
⇒ List(E2)〉 � 〈R1

〈σ1,τ1〉
⇒ List(E1)〉,

where the list infomorphism of the entity infomorphism is the vertical target of
the list square. Hence, a structure morphism satisfies the following conditions.

infomorphisms
k1 |=R1 r(r2) iff k(k1) |=R2 r2
y1 |=E1 f(x2) iff g(y1) |=E2 x2

t1 · g = ∑
g(J, t1) |=List(E2) 〈I, s2〉 = s2 iff t1 = 〈J, t1〉 |=List(E1)

∑
f (I, s2) = s2 · f

list preservation
r · σ1 = σ2 · ∑

f

k · τ2 = τ1 · ∑
g

224 R.E. Kent

Table 5. Satisfaction

M |=S (ϕ′ h−→ ϕ)
when ∑

h(ϕ) ≤R̂ ϕ′

iff ∀k∈K

(
k |=R̂ (∑h(ϕ)�ϕ′)

)

iff ∀k∈K

(
k |=R̂

∑
h(ϕ) implies k |=R̂ ϕ′)

implies ∃h(RM̂(ϕ))≤RM̂(ϕ′)a

implies ∃k

(
∑

h(TM̂(ϕ))
k−→TM̂(ϕ′)

)

a For relational structure M = 〈R, 〈σ, τ 〉, E〉, the fibered mathematical context

Rel(E)op list−−→ List(X) of E-relations is determined by the indexed preorder

List(X)op
rel−→ Pre, which maps a type list 〈I, s〉 to the fiber relational order

RelE(I, s) = 〈℘tupE(I, s),⊆〉 and maps a type list morphism 〈I ′, s′〉 h−⇁ 〈I, s〉
to the fiber monotonic function ∃h = ∃tupE(h) : RelE(I ′, s′) ← RelE(I, s).

Similarly, for the fibered context Tbl(E)op pr−→ Term(X) of E-tables.

Structure morphisms compose component-wise. Let Rel denote the mathe-
matical context of relational structures and structure morphisms. A struc-
ture morphism 〈r, k, f, g〉 : M2 � M1 has an associated schema morphism
sch(r, k, f, g) = 〈r, f〉 : sch(M2) = 〈R2, σ2, X2〉 =⇒ 〈R1, σ1, X1〉 = sch(M1).
Hence, there is a schema passage sch : Rel→ Sch.

Formula. Any structure morphism 〈r, k, f, g〉 : 〈R2, 〈σ2, τ2〉, E2〉 �
〈R1, 〈σ1, τ1〉, E1〉 has an associated formula structure morphism

fmla(r, k, f, g) = 〈r̂, k, f, g〉 : fmla(M2) = 〈R̂2, 〈σ2, τ2〉, E2〉 � 〈R̂1, 〈σ1, τ1〉, E1〉 = fmla(M1)

with schema morphism sch(fmla(r, k, f, g)) = 〈r̂, f〉 : 〈R̂2, σ̂2, X2〉 ⇒
〈R̂1, σ̂1, X1〉.

Hence, there is a formula passage fmla : Rel → Rel. 10 Between any struc-
ture and its formula extension is an embedding structure morphism ηM =
〈incM, 1K , 1E〉 : M =⇒ fmla(M). The formula operator commutes with em-
bedding: ηM2 ◦ fmla(r, k, f, g) = 〈r, k, f, g〉 ◦ ηM1 . There is an embedding bridge
η : idRel ⇒ fmla .

Proposition 2. There is an idempotent formula passage fmla : Rel → Rel
that forms a monad 〈Rel, η, fmla〉 with embedding.

Structure Fiber Passage. Let S2 = 〈R2, σ2, X2〉
〈r,f〉
===⇒ 〈R1, σ1, X1〉 = S1 be

a schema morphism. There is a structure passage Rel(S2)
rel〈r,f〉←−−−− Rel(S2)

defined as follows. Let M1 = 〈R1, 〈σ1, τ1〉, E1〉 ∈ Rel(S1) be an S1-structure
10 The schema and formula passages commute: fmla ◦ sch = sch ◦ fmla (Fig. 1).

The First-Order Logical Environment 225

with a relation classification R1 = 〈R1,K1, |=R1〉, an entity classification E1 =
〈X1, Y1, |=E1〉 and a list designation 〈σ1, τ1〉 : R1 ⇒ List(E1). Define the in-
verse image S2-structure rel 〈r,f〉(M1) = 〈r−1(R1), 〈σ2, τ1〉, f−1(E1)〉 ∈ Rel(S2)
with r−1(R1) = 〈R2,K1, |=r〉, f−1(E1) = 〈X2, Y1, |=f〉 and a list designation
〈σ2, τ1〉 : r−1(R1) ⇒ f−1(E1). From the definitions of inverse image classifi-
cations, we have the two logical equivalences (1) k1 |=r r2 iff k1 |=E1 r(r2)
and (2) 〈J1, t1〉 |=∑

f
〈I2, s2〉 iff 〈J1, t1〉 |=List(E1)

∑
f (I2, s2). Hence, k1 |=r

r2 implies τ1(k1) |=∑
f
σ2(r2). There is a bridging structure morphism

rel 〈r,f〉(M1) = 〈r−1(R1), 〈σ2, τ1〉, f−1(E1)〉
〈r,1K ,f,1Y 〉

� 〈R1, 〈σ1, τ1〉, E1〉 = M1

with relation and entity infomorphisms r−1(R1)
〈r,1K〉
� R1 and f−1(E1)

〈f,1Y 〉
� E1.

First-order Semantics: Rel
rel←−− Struc

Rel×ClsAlg

lang−−−→ Lang. The mathematical context

of first-order structures Struc is the product of the context Rel of relational
structures and the context Alg of algebras modulo the context Cls of classifica-
tions. A first-order logic (FOL) structure is a “pair”M = 〈R, 〈σ, τ 〉, E , 〈Ω,A, δ〉〉
consisting of a relational structure 〈R, 〈σ, τ 〉, E〉 and an algebra 〈E , 〈Ω,A, δ〉〉
that share a common entity classification E . The algebra is the semantic base
and the relational structure is the superstructure. Given a FOL language
L = 〈S,O〉 and an L-structure M with relational S-structure rel(M) and

O-algebra alg(M), M satisfies an L-equation 〈I ′, s′〉 (t=t′)−−−−⇁ 〈I, s〉, symbolized
by M |=L (t = t′), when alg(M) |=L (t = t′); and M satisfies an L-constraint
ϕ′ [t]−→ ϕ, symbolized by M |=L (ϕ′ [t]−→ ϕ), when rel(M) |=S (ϕ′ t−→ ϕ) for any

representative term vector σ̂(ϕ′) = 〈I ′, s′〉 t−⇁ 〈I, s〉 = σ̂(ϕ). A first-order logic

(FOL) structure morphism 〈R2, 〈σ2, τ2〉, E2, 〈Ω2, A2, δ2〉〉
〈〈r,k〉,〈f,g〉,〈ω,h〉〉−−−−−−−−−−−→

〈R1, 〈σ1, τ1〉, E1, 〈Ω1, A1, δ1〉〉 consists a relational structure morphism

〈R2, 〈σ2, τ2〉, E2〉
〈〈r,k〉,〈f,g〉〉−−−−−−−−→ 〈R1, 〈σ1, τ1〉, E1〉 and an many-sorted alge-

braic homomorphism 〈E2,O2, 〈A2, δ2〉〉
〈f,g,ω,h〉−−−−−−→ 〈E1,O1, 〈A1, δ1〉〉 that share a

common entity infomorphism 〈f, g〉 : E2 � E1.

A.3 Examples

Conceptual Graphs: Consider the English sentence “John is going to Boston
by bus” [9]. We describe its representation in a FOLE logic language L =
〈R, σ,X,Ω〉. By representing the verb as a ternary relation, a graphical rep-
resentation is

[Person : John]
agnt←−−− (Go)

dest−−−→ [City : Boston]

↓ inst

[Bus]

226 R.E. Kent

Formally, we have the following elements: three entity types Person, City,
Bus∈X ; a relation type Go∈R with signature σ(Go) = 〈I, s〉 having

valence 3, arity I = {agnt, dest, inst} and signature function I
s−→

X mapping agnt �→ Person, dest �→ City, inst �→ Bus; a con-
stant symbol John∈ΩPerson,〈∅,0X〉 of sort Person and a constant symbol
Boston∈ΩCity,〈∅,0X〉 of sort City.11 In a conceptual graph representation,
the logic language L = 〈R, σ,X,Ω〉 corresponds to a CG module 〈X,R,C〉
with type hierarchyX , relation hierarchyR and catalog of individuals C ⊆Ω.
A CG representation is

[Go]-
(agnt)->[Person: John]
(dest)->[City: Boston]
(inst)->[Bus].

Formally (compare this linear form to 11), we have the following ele-
ments: four entity types Go, Person, City, Bus∈X ; three relation types
agnt, dest, inst∈R with signatures σ(agnt) = 〈2, sagnt〉, σ(dest) =
〈2, sdest〉, σ(inst) = 〈2, sinst〉 having valence 2, arity 2 = {0, 1} and sig-
natures sagnt, sdest, sinst : 2→ X , where sagnt(0) = sdest(0) = sinst(0) = Go,
sagnt(1) = Person, sdest(1) = City, and sinst(1) = Bus; and two constants
as above.

Quantification: The universal quantification ‘∀x∈XP (x:X, y:Y, z:Z)’ is tradi-
tionally viewed as formula flow along the type list inclusion {y, z} ⊆ {x, y, z}.
FOLE handles existential/universal quantification and substitution in terms
of formula flow (Table 1) along type list morphisms in the relational as-
pect or along term vectors in the logical aspect. Given a morphism of type

lists 〈I ′, s′〉 h−→ 〈I, s〉, for any table 〈K, t〉 ∈ TblE(I, s), you can get two
tables

∑
h(K, t),

∏
h(K, t) ∈ TblE(I ′, s′) as follows. Given any possible row

(or better, tuple) t′ ∈ tupE(I ′, s′), you can ask either an existential or a
universal question about it: for example, “Does there exist a key k ∈ K in
T with image t′?” (tuph(tk) = t′) or “Is it the case that all possible tuples
t ∈ tupE(I, s) with image t′ are present in T ?” ([8])

Relation/Database Joins: The joins of E-relations (or E-tables) are repre-
sented in FOLE in terms of fibered products — products modulo some refer-

ence. If an S-span of constraints 〈I1, s1, ϕ1〉
h1←− 〈I, s, ϕ〉 h2−→ 〈I2, s2, ϕ〉 holds

in a relational structureM = 〈R, 〈σ, τ 〉, E〉, it is interpreted as an opspan of

11 According to (Sowa [9]), every participant of a process is an entity that
plays some role in that process. There is a “linearization” procedure that con-
verts a binary/relational logical representation (FOLE, conceptual graphs) to a
unary/functional logical representation (Sketches [5], Ologs [11]). In this example,
linearization would define functional roles, changing the ternary relation type (pro-
cess) to an entity type Go∈X and converting its arity elements (participent roles)
to function types agnt∈ΩPerson,〈1,Go〉, dest∈ΩCity,〈1,Go〉 and inst∈ΩBus,〈1,Go〉.

The First-Order Logical Environment 227

E-relations (or E-tables). Then the join of E-relations (or E-tables) is repre-
sent by the formula ι1

∗(ϕ1)∧〈Î ,ŝ〉 ι2
∗(ϕ2), where 〈I1, s1〉

ι1−→ 〈Î , ŝ〉 ι2←− 〈I2, s2〉
is the fibered sum of type lists. In general, the join of an arbitrary diagram of
E-relations (or E-tables) is obtained by substitution followed by conjunction.

A.4 Logical Environment

Let S2 = 〈R2, σ2, X2〉
〈r,f〉
===⇒ 〈R1, σ1, X1〉 = S1 be a schema morphism, with

structure fiber passage Struc(S2)
struc〈r,f〉←−−−−−− Struc(S2) and bridging structure

morphism

struc〈r,f〉(M1) = 〈r−1(R1), 〈σ2, τ1〉, f−1(E1)〉
〈r,1K ,f,1Y 〉

� 〈R1, 〈σ1, τ1〉, E1〉 = M1

with relation and entity infomorphisms r−1(R1)
〈r,1K〉
� R1 and f−1(E1)

〈f,1Y 〉
� E1.

Proposition 3. The (formula) interpretation of the inverse image structure is
the inverse image of the (formula) interpretation.

Fact 1. The formula classification of the inverse image relation classfication is
the inverse image classfication of the formula relation classification:

̂r−1(R1) = ̂〈R2,K1, |=r〉 = 〈R̂2,K1, |=r̂〉 = r̂−1(R̂1).

Proof. The proof is by induction on formulas ϕ2 ∈ R̂2.

Fact 2. The formula structure morphism of the bridging structure morphism is:

〈r̂, 1K , f, 1Y 〉 : 〈 ̂r−1(R1), 〈σ2, τ1〉, f−1(E1)〉 � 〈R̂1, 〈σ1, τ1〉, E1〉.

Its (inst-vertical) relation infomorphism

〈r̂, 1K〉 : ̂r−1(R1) = ̂〈R2,K1, |=r〉 = 〈R̂2,K1, |=r̂〉� 〈R̂1,K1, |=R̂1
〉 = R̂1

is the bridging infomorphism of the formula relation classification, with the in-
fomorphism condition k1 |= ̂r−1(R1)

ϕ2 iff k1 |=R̂1
r̂(ϕ2). The extent monotonic

function r̂ : ext(̂r−1(R1)) → ext(R̂1) is an isometry: ϕ ≤
̂r−1(R1)

ψ iff r̂(ϕ)

≤R̂1
r̂(ψ).

Proposition 4. Satisfaction is invariant under change of notation; that is, for

any schema morphism S2 = 〈R2, σ2, X2〉
〈r,f〉
===⇒ 〈R1, σ1, X1〉 = S1 the following

satisfaction condition holds:

struc〈r,f〉(M1) |=S2 (ϕ2
h−→ ϕ′

2) iff M1 |=S1 (r̂(ϕ2)
h−→ r̂(ϕ′

2)) = fmla〈r,f〉(ϕ2 � ϕ′
2).

Proof. But this holds, since ̂r−1(R1) = r̂−1(R̂1). In more detail,

struc〈r,f〉(M1) |=S2 (ϕ2
h−→ ϕ′

2) iff
∑

h(ϕ
′
2) ≤ ̂r−1(R1)

ϕ2

iff r̂(
∑

h(ϕ
′
2)) ≤R̂1

r̂(ϕ2) iff
∑

h(r̂(ϕ
′
2)) ≤R̂1

r̂(ϕ2)

iff M1 |=S1 (r̂(ϕ2)
h−→ r̂(ϕ′

2)) = fmla〈r,f〉(ϕ2 ϕ′
2).

228 R.E. Kent

Proposition 5. The institution 〈Sch, fmla , struc〉 is a logical environment,
since it satisfies the bimodular principle “satisfaction respects structure mor-
phisms”: given any schema S = 〈R, σ,X〉, if 〈1R, k, 1X , g〉 :M2 �M1 is a sch-
vertical structure morphism over S, then we have the intent order M2 ≥S M1;
that is, M2 |=S (ϕ ψ) implies M1 |=S (ϕ ψ) for any S-sequent (ϕ ψ). 12

Proof. The typ-vertical formula morphism 〈1R̂, k, 1X , g〉 : M̂2 � M̂1 over Ŝ
has the typ-vertical relation infomorphism 〈1R̂, k〉 : R̂2 � R̂1 over R̂.
M2 |=S (ϕ ψ) iff ϕ ≤R̂2

ψ implies ϕ ≤R̂1
ψ iff M1 |=S (ϕ ψ)

for any S-sequent (ϕ ψ).

A.5 Transformation to Databases

A.5.1 Relational Interpretation. Let M = 〈R, 〈σ, τ 〉, E〉 be a (model-
theoretic) relational structure. The relation classification R is equivalent to the
extent function extR : R → ℘K, which maps a relational symbol r ∈ R to its
R-extent extR(r) ⊆ K. The list classification List(E) is equivalent to the ex-
tent function extList(E) : List(X)→ ℘List(Y), a restriction of the tuple passage
tupE : List(X)op → Set, which maps a type list 〈I, s〉 ∈ List(X) to its List(E)-
extent tupE(I, s) ⊆ List(Y). The list designation satisfies the condition k |=R r
implies τ(k) |=List(E) σ(r) for all k ∈ K and r ∈ R; so that k ∈ extR(r) implies
τ(k) ∈ extList(E)(σ(r)) = tupE(σ(r)). Hence, ℘τ(extR(r)) ⊆ tupE(σ(r)) for all
r ∈ R. Thus, we have the function order extR · ℘τ ⊆ σ · extList(E).

The relational interpretation function RM : R → |Rel(E)| maps a rela-
tional symbol r ∈ R with type list σ(r) = 〈I, s〉 to the set of tuples RM(r) =
℘τ(extR(r)) ∈ ℘tupE(I, s) = RelE(I, s). The tabular interpretation function
TM : R → |Tbl(E)| = |(Set↓tupE)| maps a relational symbol r ∈ R with
type list σ(r) = 〈I, s〉 to the pair TM(r) = 〈K(r), tr〉 consisting of the key set

K(r) = extR(r) ⊆ K and the tuple function K(r)
tr−→ tupE(I, s), a restriction

of the tuple function τ : K → List(Y), which maps a key k ∈ Kr to the tuple
tr(k) = τ(k) ∈ tupE(I, s). Applying the image passage imE(I, s) : TblE(I, s)→
RelE(I, s), the image of the table interpretation is the relation interpretation
imE(I, s)(TM(r)) = RM(r) for any relation symbol r ∈ R. Using the com-
bined image passage imE : Tbl(E) → Rel(E), we get the composition RM =

R
TM−−→ |Tbl(E)| |imE |−−−→ |Rel(E)|. Note that tr : Kr → RM(r)→ tupE(I, s), is a

surjection-injection factorization of the tuple function. 13

12 For any classification A = 〈X,Y, |=A〉, the intent order int(A) = 〈Y,≤A〉 is defined
as follows: for two instances y, y′ ∈Y , y ≤A y′ when intA(y) ⊇ intA(y′); that is,
when y′ |=A x implies y |=A x for each x∈X.

13 Two tables are informationally equivalent when they contain the same information;
that is, when their image relations are equivalent in RelE(I, s) = ℘tupE(I, s). In
particular, the table TM(r) and relation RM(r) of a relational symbol are informa-
tionally equivalent.

The First-Order Logical Environment 229

A.5.2 Relational Logics. A relational logic L = 〈S,M, T 〉 consists of a re-
lational structure M = 〈R, 〈σ, τ 〉, E〉 and a relational specification T = 〈S, T 〉
that share a common relational schema sch(M) = S. The logic is sound when
the structure M satisfies every constraint in the specification T . A sound rela-
tional logic enriches a relational structure with a specification. For any sound

logic L = 〈S,M, T 〉, there is an interpretation passage R̂op TL−−→ Tbl(E) =

(Set↓tupE), where R̂ ⊆ Fmla(S) is the consequence of T . Sound logics are
important in the transformation of structures to databases (below). A relational

logic morphism L2 = 〈S2,M2, T2〉
〈〈r,k〉,〈f,g〉〉−−−−−−−−→ 〈S2,M2, T2〉 = L2 consists of a

relational structure morphism M2
〈〈r,k〉,〈f,g〉〉−−−−−−−−→ M1 and a relational specifica-

tion morphism T2 = 〈S2, T2〉
〈r,f〉−−−→ 〈S1, T1〉 = T1 that share a common relational

schema morphism sch(〈r, k〉, 〈f, g〉) = S2
〈r,f〉
=⇒ S1.

Any sound relational logic L = 〈S,M, T 〉 with structure M = 〈R, 〈σ, τ 〉, E〉
and specification T = 〈S, T 〉 has an associated logical/relational database db(L)
= 〈S, E ,K , τ 〉 with category of formulas R̂ ⊆ Fmla(S) (the consequence of

T), signature passage S : R̂ → List(X), entity classification E , key passage

K : R̂op → Set, tuple bridge τ : K ⇒ Sop ◦ tupE , and table interpre-

tation passage R̂op T−→ Tbl(E) = (Set↓tupE), where τ = T τE . Any sound

L2 = 〈S2,M2, T2〉
〈〈r,k〉,〈f,g〉〉−−−−−−−−→ 〈S2,M2, T2〉 = L2

⇓ db

R̂op
2 R̂op

1

Fop

�

�
���

�
���

T2

Sop
2

K2
signop

E2

keyE2

�

�
���

�
���

� � �

=
κ⇐=

T1

Sop
1

K1
signop

E1

keyE1

τE⇒
τE1⇐

Tbl(E2) Tbl(E1)

List(X2)
op List(X1)

op

Set

(
∑

f)
op

tupE2
tupE1

τ〈f,g〉
⇐

�
�
��

�
�

��

db(L2) = 〈S2, E2,K2, τ2〉
〈F ,f,g,κ〉−−−−−−→ 〈S1, E1,K1, τ1〉 = db(L1)

κ • τ2 = F opτ1 • Sop
2 τ〈f,g〉

Fig. 5. From Sound Logics to Logical/Relational Databases

relational logic morphism L2 = 〈S2,M2, T2〉
〈〈r,k〉,〈f,g〉〉−−−−−−−−→ 〈S2,M2, T2〉 = L2

with structure morphism M2
〈〈r,k〉,〈f,g〉〉−−−−−−−−→ M1 and specification morphism

T2 = 〈S2, T2〉
〈r,f〉−−−→ 〈S1, T1〉 = T1 has an associated (strict) logical/relational

230 R.E. Kent

database morphism db(〈r, k〉, 〈f, g〉) = 〈F , f, g, κ〉 : db(L2) = 〈S2, E2,K2, τ2〉 →
〈S1, E1,K1, τ1〉 = db(L1) with (strict) database schema morphism 〈F , f〉 :
S2 → S1, entity infomorphism 〈f, g〉 : E2 � E1, and key natural transforma-
tion κ : F op ◦K1 ⇒ K2, which satisfy the condition κ • τ2 = F opτ1 • Sop

2 τ〈f,g〉.

The passage R̂2
F−→ R̂1 from formula subcontext R̂2 ⊆ Fmla(S2) to formula

subcontext R̂1 ⊆ Fmla(S1) is a restriction of the fibered formula passage

Fmla(S2)
fmla〈r,f〉−−−−−−→ Fmla(S1). (Kent [7] has more details on relational database

semantics.)

Designing Learning to Research the Formal

Concept Analysis of Transactional Data

Martin Watmough, Simon Polovina, and Simon Andrews

Conceptual Structures Research Group
Communication and Computing Research Centre

Faculty of Arts, Computing, Engineering and Sciences
Sheffield Hallam University, Sheffield, UK

{M.Watmough,S.Polovina,S.Andrews}@shu.ac.uk

Abstract. Transactional systems are core to much business activity;
however leveraging any advantage from the data in these enterprise sys-
tems remains a challenging task for businesses. To research and discover
the hidden semantics in transactional data, Sheffield Hallam University
has incorporated Formal Concept Analysis (FCA) into two of its degree
courses. We present a learning, teaching and assessment (LTA) method
that integrates with this research. To make it reflect industrial practice
and to further the state of the art of the research, this method includes
the use of ERPsim. This large scale, real-world business simulation soft-
ware is based on the Enterprise Resource Planning (ERP) enterprise
system by SAP A.G., a global business software vendor. Together with a
mix of individual and group work approaches, FCA tools (namely FCA
BedRock, In-Close and Concept Explorer) and comparisons with alter-
native approaches, it is emerging that FCA can fulfil an important role in
transactional systems and enhance its role in Business Intelligence (BI).

Keywords: FCA (Formal Concept Analysis), LTA (Learning, Teach-
ing and Assessment), ERPsim (ERP Simulation Software), BI (Business
Intelligence), Transactional Data.

1 Introduction

Transactional systems provide a core function and support considerable business
activity within organisations around the world; however, they are intrinsically
complex and significant effort is required to understand and manage them ef-
fectively. Based on the current outlook, system landscapes are evolving and
becoming more flexible and agile. Therefore, analysis techniques must follow
suit.

Our research interests arise from how to discover the hidden semantics within
transactional systems i.e. how useful information or knowledge can be identi-
fied from mainstream database systems, by applying and combining analysis
techniques. To assist, at Sheffield Hallam University we have incorporated this
research into two Computing degree course modules. As such we aim for the re-
search to be informed by the student’s experiences, whilst enriching the student’s

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 231–238, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

232 M. Watmough, S. Polovina, and S. Andrews

knowledge in this topical area. Accordingly this paper focuses on the incremental
design of the learning environment in the pursuit of discovering hidden semantics
and the results achieved.

By applying and developing the approach to teaching transactional systems
and analysis, two benefits are envisaged. Firstly, an insight into how learning
these methods benefits the modules and students. Secondly, to engender a cre-
ative arena that encourages open answers from the students. Formal Concept
Analysis (FCA) is a technique for analysing data in order to discover information
and knowledge. FCA is particularly attractive in that offers an automated means
of eliciting these concepts from the data [1] [2]. Therefore, FCA was selected as
our underlining technique for designing learning in order to research the hitherto
hidden semantics in transactional data.

2 Background

Enterprise Resource Planning (ERP) systems are typically transactional systems
that support the core functions within an organisation. SAP A.G. are one of
the leading providers [3]. We therefore base the analysis on ERPsim [4], an
SAP A.G. ERP based simulation game that features competitive behaviour and
increasing levels of complexity in a highly immersive and demanding atmosphere
that reflects industrial practice.

ERPsim has a strong pedagogic foundation that has been adopted and applied
during the development of the degree modules. ERPsim is designed for active
learning in that it achieves long-term retention. ERPsim takes advantage of
Situation Cognitive Theory and Problem-based Learning [5].

Situation theory states that activities, tasks, and understanding do not exist
in isolation, but rather are part of broader relation systems and that situated
cognition is associated with a higher level of engagement and motivation in
learners, thus generally leads to a better understanding and transfer of knowledge
[6]. Problem-based learning is a widely applied technique that has its origins
dating back to 1966 in medical education [7]. It is a teaching strategy to promote
self-directed learning and critical thinking through problem solving in which
active participation and challenging problems in a relevant context are key [8].

Furthermore, the learning environment created by ERPsim has been carried
into the analysis of its output by comparative techniques. These techniques,
described later, are used in order to evaluate the comparative value of FCA for
transactional data.

To assess the effectiveness of our learning, teaching and assessment (LTA) we
examined the marks achieved and learning objectives; the findings and feedback
from the students have also been considered. It should be clarified that the
students on these modules’ did not have a significant mathematical background;
rather the modules focussed on the business application of FCA. For this reason
and to preserve consistency we ensured that the FCA tools were explained and
applied according to their understanding. The fact that the raw data structure
was constant aided the process.

Designing Learning to Research the FCA of Transactional Data 233

3 Method

Our method was based on previous work that applied Biggs’ Constructive Align-
ment and Yin’s Case Study Method [9], [10], [11]. We modified this method so
that it could better support the learning outcomes and theory relevant to the
analysis of business transactional data using FCA tools.

Yin’s method was applied to capture and learn from a number of case studies,
where each case study represents the relevant modules’ assignments. There were
four case studies, one from each module for the academic years 2011-11 and
2011-12. An overview is contained in Table 1. Two aspects have been used for
evaluation, firstly, the assignment marks per section have been compared with
the teaching and learning techniques applied. Secondly, the student’s evaluations
and conclusions have been used for qualitative analysis. Biggs’ Constructive
Alignment has two basic concepts; learners construct meaning from what they do
to learn and that the teacher makes an alignment between learning activities and
learning outcomes [10]. The combination of Biggs’ constructive alignment and
Yin’s Case Study Method provides an overall method for aligning the learning
activities and learning outcomes for the benefit of future students [9]. It was also
envisaged that an insight into the introduction of FCA into an organisation’s
Business Intelligence capability would be gained.

The FCA tools used for our study were FcaBedrock [12], In-Close [13] and
Concept Explorer [14]. An overview of the steps is described shortly and a com-
prehensive description is provided elsewhere [15].

We now describe how we applied our method. To begin with, ERPsim stores
the raw data from the game in a relational database. This raw data was ex-
tracted directly into a Microsoft (MS) Access database that mirrors the tables
and relationships of the ERPsim system. MS Access queries were then used to
extract data into a comma seperated values (CSV) text format that contained
the key attributes and meta data. From this file, FcaBedrock was used to cre-
ated a Formal Context. In-Close was then used to provide minimum support by
reduce the number of formal concepts, before graphically presenting its results
using Concept Explorer as a concept lattice. Without the application of In-Close
the output from FcaBedrock can be too complex for meaningful visualisations;
in effect the less dominant relationships are removed.

The techniques summaried in Table 1 were employed in order to develop the
teaching and assessment methods. These have included learning in conjunction
with ERPsim, a mix of individual and group work approaches and comparisons
with alternative approaches.

The graph in Figure 1 indicates how the assignment marks deviated from the
average mark for each module. Taking case study 4 as an example, the students
achieved higher than the average percentage for the introduction and lower for
the FCA sections. The perfect line would run through zero with each student
achieving the same percentage for each section of the assignment; as this is
based on the average the performance does not differentiate between high and
low achieving students.

234 M. Watmough, S. Polovina, and S. Andrews

Table 1. Chronology of Teaching Methods and Results

Case Study 1 2 3 4
Module SA 2010-11 ES 2010-11 SA 2011-12 ES 2011-12

Average Mark 56.6 58.4 66.8 58.6
Standard Deviation 15.3 21 3.8 11.5

Data Preparation Demonstrated X X X
End to End Data Prepared X X

Graphical presentation X
Document X X X

Excel and FCA X X X
BI, Excel and FCA X

Group discussion X X
Group work X
Jigsaw based approach X X
Horizontal and Vertical Group work X

Re-use (multi company) X X
BPM Integration X X

4 Case Study Review

Beginning with Case Study 1, generic processing steps were intended to be reused
over different subsets of the data incorporated. This however appeared to have
only generated repetition and not an improvement in marks or learning. For
comparison, the students were required to target the same data with FCA and
Excel. The results achieved did not differ to a noticeable extent. Comments by
the students suggested that significantly more time was required in order to apply
and understand FCA, although its graphical nature did lend itself effectively to
creating content for inclusion in the assignment.

Reducing or simplifying the quantity of data preparation was suggested by the
students, but it was not clear if the challenge of performing this task was bene-
ficial to the learning process. Instead of eliminating the data preparation task it
was decided to reduce the individual workload through group work. Therefore,
the group would still retain any learning from the experience while sub-dividing
the manual effort required.

Case Study 2 generated clear comments and queries during the module in-
dicating that a method for reducing the amount of time for preparing data
is required, even with a group-based approach as collaboratively preparing data
proved difficult to achieve. The majority of students managed the task but prob-
ably at the expense of actually performing and evaluating the analysis. An ap-
proach to improving group work and networking was also identified as the use
of communication tools, predominantly the discussion boards and blogs were
limited.

Learning the principles of generic design and reuse was successful but repeat-
ing the analysis for multiple scenarios did not add significant value. There were
enough opportunities to repeat and tailor the analysis in a single section of the

Designing Learning to Research the FCA of Transactional Data 235

Fig. 1. Deviation per Section from Student Average Mark

assignment to support the learning outcomes. Reintroducing group based as-
signments would be an interesting choice to return to as the FCA tools develop
and focus can be shifted to collaborative or even social topics; however, in the
current context it did not have a positive effect upon the results.

Case Study 3 applied a technique for cooperative learning called Jigsaw [16]
that encourages participation and emphasises the value of every student’s con-
tribution towards the outcome. Jigsaw was intended to develop group problem-
solving while maintain the individual’s contribution to the task. An emergent
outcome was identified in that this group cooperation has parallels with working
in current or future workplaces that feature more diverse skills requirements,
physical distributed teams and all manners of collaboration and communication
mechanisms.

A complete set of data was prepared for each group through all stages, includ-
ing instructions about how to modify, refine and enhance the analysis. Preparing
the initial data for each individual team resulted in less creativity and fewer vari-
ations across the assignments. However, the average mark for FCA did improve.

Rule definition was introduced as a mechanism for expressing the findings as
a formula or in a logic form. Deriving rules from the analysis was challenging for
the students, however it appeared to complete the cycle back to source trans-
actional data. The students demonstrated an understanding of the relationships
discovered and how they could be applied to ERPsim processes.

Case Study 4 delivered the most comprehensive learning judging by feed-
back from the students. The Jigsaw [16] structure employed resulted in the
most frequent use of the discussion boards and collaboration. The groups were
organised in two directions, vertically to promote interaction and team work
within the group and horizontally to create cross group knowledge sharing,
almost like expert communities between groups. A number of students found

236 M. Watmough, S. Polovina, and S. Andrews

advantages and disadvantages from the analysis tools and envisaged a blend of
approaches in order provide their ERPsim organisation with the best tools for
future improvements.

An alternative to Excel was made available in the form of SAP A.G.’s product
‘BI On Demand’ [17]. This tool was chosen as it is representative of the leading
vendors’ retail products for BI. Although the interface featured a wide range
of display options in an integrated package it did not dominate or significantly
improve the marks achieved.

5 Discussion

The intended learning outcomes have been achieved reasonably successfully. Stu-
dents grasped the fundamental theories and applied them in a simulated context
that is a representative example of real-work operations, particularly when the
actual time scales are considered. A distinct understanding was developed be-
tween the simplicity of models and the challenge of identifying useful data and
outcomes from a large data set.

The context and energy developed during ERPsim is inherently valuable in
achieving the learning outcomes; it promotes the group dynamics, rapid learning
and knowledge retention. The complete cycle, including a range of contemporary
through to research level analysis methods was key to achieving the learning
outcomes. Data preparation was a highly cited problem; however, it is anticipated
that this will simplified into a data selection task with future generations of the
software. The difference between industry produced solutions such as ‘BI On
demand’ and the FCA tools was quickly highlighted by the students.

A number of unintended but valued learning outcomes were also highlighted in
line with Biggs Constructive Alignment. There emerged an inherent value in the
analysts (students) being involved in the data preparation, despite their raising
this as an issue. Rather than just implying that it was unduly time consuming
they appreciated the value in understanding the context, source and calculations
that help discern towards extracting the transactional data. In passing there was
little to differentiate the results from the analysis for the case study 1 where
students complete the whole preparation task with case study 4 where students
modified a generic preparation routine, thus enabling the students to focus on
FCA. A further unintended but valued learning outcome was how effective the
tools would be when used in conjunction with each other instead of the separation
of the tools as originally directed by the assignments.

Certain students found it difficult to grasp an ‘incomplete’ picture. The idea
of determining rules helped somewhat but the data only provided a fraction
of the complete set of rules. Partial cognitive models will probably be more
common than a comprehensive understanding as the rate of change and volume
of information increases making this potentially a topic for further research.

The capability of FCA for discovering the concepts and relationships in trans-
actional data was repeatedly identified as a key reason for applying it. Confidence
was also cited by the students, particularly in the context of understanding what

Designing Learning to Research the FCA of Transactional Data 237

the analysis actually indicated. It frequently required that a number of repeti-
tions were needed to clarify and subsequently accept the result. There were
also some interesting remarks that expressed unexpected negatives about more
familiar tools (Excel) when considering large data sets or potential ‘big data’
problems. This demonstrated that the key messages of the modules had been
learnt and applied usefully in comparison with FCA.

6 Conclusion

The method and tools applied in Case Study 3 represents the most successful
teaching methods to date for FCA in Sheffield Hallam’s modules in terms of
marks. There was an evident improvement in the marks of the FCA sections
across both modules as Figure 1 illustrates, but there are still opportunities to
develop and improve the application of FCA based tools. The learning environ-
ment largely succeeded in providing students with those meaningful experiences
that business analysts need. In particular it equipped them with a well rounded
experience, which is a significant factor. This reinforces Gartner’s findings that
analysis will be controlled by business units and not technical experts [18].

The propositions of Presthus in describing why teaching Business Intelligence
is challenging from the perspective of students and lecturers also emerged [19].
It is interesting (and comforting) to note that the approaches taken in our study
happened to address to an extent these propositions. The propositions included
providing a mechanism for reducing the level of abstraction when teaching and
demonstrating the business value of BI. This lead to generating interest, effective
learning based on suitable data sets, and the value of case studies.

Our research indicates how FCA could be integrated into BI; a novel research
outcome arising from our LTA (Learning, Teaching, and Assessment) approach.
As such, it has been shown how FCA could fulfil an important role within BI so-
lutions for transactional data. The need for integrated tools that support knowl-
edge discovery in a collaborative model from a rich source of data is clear; the
success of these tools will be based on far more than their discrete technical
capabilities.

The challenges faced through teaching and also those experienced by the stu-
dents has clear parallels with the implementation and adoption of such tools in
the workplace. Comparing and contrasting the techniques that have proven to be
successful in the classroom to the business world would be an interesting research
topic, as would addressing the problem of managing incomplete information and
models. From our education experiences in the interim, we can envisage that
FCA has an important role to play.

References

1. Wille, R.: Conceptual Graphs and Formal Concept Analysis, Technische
Hochschule Darmstadt and Fachbereich Mathematik. Springer (1997)

2. Wolff, K.R.: A First Course in Formal Concept Analysis. In: Faulbaum, F. (ed.)
SoftStat 1993. Advances in Statistical Software, vol. 4, pp. 429–438. Gustac Fisher
Verlag, Stuttgart (1994)

238 M. Watmough, S. Polovina, and S. Andrews

3. SAP, About SAP AG (2012), http://www.sap.com/about-sap/about-sap.epx

(cited October 8, 2012)
4. Leger, P.-M., Robert, J., Babin, G., Pellerin, R., Wagner, B.: ERPsim, ERPsim

Lab, HEC Montréal, Montréal, Qc (2007)
5. Feldstein, H.: Interview with Harvey Feldstein ERPsim (2011),

http://erpsim.hec.ca/learning/#/curriculum/153 (viewed August 20, 2012)
6. Leger, P.-M., Robert, J., Babin, G., Pellerin, R., Lyle, D., et al.: ERP Simulation

Game with SAP ERP: Logistics Game (Platinum Version), ERPsim Lab, HEC
Montréal, 44 p. (2011) ISBN: 978-0-9866653-2-5

7. Hillen, H., Scherpbier, A., Wijnen, W.: History of problem-based learning in med-
ical education. Oxford University Press (2010)

8. Ginty, A.: Problem Based Learning. Higher Education Academy, Escalate (2007)
9. Andrews, S.: Aligning the Teaching of FCA with Existing Module Learning Out-

comes. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS
(LNAI), vol. 6828, pp. 394–401. Springer, Heidelberg (2011)

10. Biggs, J.: Teaching for Quality Learning at University. SRHE and Open University
Press, Buckingham (1999)

11. Yin, R.: Case Study Research: Design and Methods, 4th edn. Applied Social Re-
search Methods Series, vol. 5. SAGE, Thousand Oaks (2009)

12. Andrews, S., Orphanides, C.: FcaBedrock, a Formal Context Creator. In: Croitoru,
M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS, vol. 6208, pp. 181–184. Springer,
Heidelberg (2010)

13. Andrews, S.: In-Close2, a High Performance Formal Concept Miner. In: Andrews,
S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828,
pp. 50–62. Springer, Heidelberg (2011)

14. ConExp, Concept Explorer (2006), http://sourceforge.net/projects/conexp/
(cited April 1, 2012)

15. Andrews, S., Orphanides, C., Polovina, S.: Visualising Computational Intelligence
through Converting Data into Formal Concepts. In: Xhafa, F., Barolli, L., Nishino,
H., Aleksy, M. (eds.) Proceedings of the 5th International Conference on P2P, Par-
allel, Grid, Cloud and Internet Computing (3GPCIC), pp. 302–307. IEEE Com-
puter Society (2010) ISBN 978-0-7695-4237-9/10

16. Aronson, E.: Jigsaw Classroom: Overview of the Technique Social Psychology Net-
work, (2012), http://www.jigsaw.org/overview.html (cited August 15, 2012)

17. SAP, BI on Demand powered by Hana SAP (2012),
http://www.biondemand.com/businessintelligence (SAP viewed August 15,
2012)

18. Gartner, Gartner reveals five business intelligence predictions for 2009 and be-
yond (2009), http://www.gartner.com/it/page.jsp?id=856714 (cited August 15,
2012)

19. Presthus, W.: Never giving up: Challenges and solutions when teaching Business
Intelligence, The Norwegian School of IT (2012)

http://www.sap.com/about-sap/about-sap.epx
http://erpsim.hec.ca/learning/#/curriculum/153
http://sourceforge.net/projects/conexp/
http://www.jigsaw.org/overview.html
http://www.biondemand.com/businessintelligence
http://www.gartner.com/it/page.jsp?id=856714

Cross-Domain Inference Using Conceptual

Graphs in Context of Laws of Science

Shreya Inamdar

Birla Institute of Technology and Science,
Pilani, Rajasthan, India

shreyainamdar3141@gmail.com

Abstract. Knowledge bases, as conceptual graphs, are considered to be
brittle as they are highly domain specific. This paper attempts to get
some flexibility by predicting the possible nodes, using the other existing
graphs. Graph theory principles of maximum common sub-graph and
minimum common super-graph for labelled graphs, allow extension of a
given conceptual graph. This paper attempts to solve this problem for
laws of science. Given a few fundamental equations of two different do-
mains, but similar mathematical structure,equations can be converted
to a common set of dummy variables. These transformed equations will
be the labels for further set operations. Extending the two graphs using
the minimum common super-graph and maximum common super-graph,
we then convert these transformed equations back to their original vari-
ables. Then, apply constraints to check the feasibility and finalize this
extension. Thus we have inferred some part of the knowledge base from
other domains.

Keywords: Labeled graph, Maximum Common sub-graph, Minimum
Common super-graph, Cross-Domain Inference.

1 Introduction

In Science, we come across several instances where two phenomena are explained
on the same mathematical arguments. For example, in physics, the resistor-
capacitor-inductor system is analogous to spring-mass-dashpod system. They are
governed by the same second order differential equations. Automated capturing
of this analogy is the task at hand. Conceptual Graphs are chosen for this because
of their universal representation of information as triples and the ease with which
all graph operations can be applied to them. This opens it as a field of interest
to computer scientists as well as mathematicians.

In general, Knowledge bases are considered to be brittle due to their domain
specific nature[1]. In the given example, we refer to electrical and mechanical
systems as different domains. This paper proposes a novel algorithm for cross-
domain inference. For a graph with given concepts (nodes) and relations among
these concepts (edges), this paper proposes an algorithm to find the possible
nodes and relations which are not given. This is the inference part. The method

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 239–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

240 S. Inamdar

uses graph theory extensively. We can compare the two graphs, by bringing them
to common set of labels. This can be done by pattern matching or by using mea-
sures that give structural similarity between graphs, graph isomorphism. We
then generate a dictionary that maps the common labels to the specific labels
for each graph to get back to original variables from the inferred graph. Our
comparison is driven by the degree of similarity of the two labeled graphs with
common set of labels. This degree of similarity is estimated by their maximum
common subgraph. If there is a significant match between the graphs,The infer-
ence is done by changing each graph to the minimum common super graph of
the two graphs. But each of these graphs now has common labels. The common
labels are converted back to original variables by using the dictionary gener-
ated previously. Given some restrictions on variable values, some of the wrongly
inferred nodes and edges can then be discarded.

This paper is divided into 6 sections. The second section covers introduction
to conceptual graphs and the definitions of graph theory that are used in this
paper. Sections third through fifth cover the steps of the algorithm in order.
Sixth section covers the work done so far and its future scope.

2 Concepts and Definitions

2.1 Conceptual Graphs

For Graph theoretic treatment of Conceptual Graphs, they can be visualized
as labeled graphs with nodes as concepts and edges as relations. They are di-
rected for non-symmetric relations and undirected for symmetric relations. In
this paper, we will use directed graphs for generating the common label set and
un-directed graphs for the generating the maximum common subset and mini-
mum common super set. For the common label generation, the direction of flow
of variables in the graph is important. So we use directed graphs. But our graphs
that we wish to extend have no direction. They are just related nodes. So, we
use un-directed graphs here.

In general, conceptual graphs are in wide use because they present an easy
way to store data in a more language independent format so that it can be
processed without ambiguity. The node-type and class of a node are treated as
a don’t care here because we have a mathematical basis of comparison when we
are dealing with equations. The class of the node and it’s type become important
when we are dealing with generic graphs which does not have a clearly defined
basis for generating the common label set.

2.2 Graph Theory Concepts

There are several measures of similarity between two graphs. Graph Isomor-
phism, Graph edit distance, Maximum Sub-graph etc. We choose maximum
sub-graph measure because of the following reasons:

- This has a complementary minimum common super-graph for further opera-
tions of inference. Also, Minimum Common Super-graph requires computing the

Cross-Domain Inference Using Conceptual Graphs 241

maximum common subgraph. So, anyways we needed to compute this measure.
- Graph isomorphism doesn’t use our information of labels and depends only on
structure. On the other hand, maximum common sub-graph uses this informa-
tion. So, it is expected to give better results.
- As the complexity of our graph decreases, the complexity of the algorithm also
decreases. For instance, for computing the maximum common sub-tree, linear
running time algorithms have been proposed.

Finding the maximum common sub-graph is a NP hard problem, but there
are algorithms to solve it in linear time[2] if the graph is given to be planar. So,
we make the assumption that the graph is planar.

Let L denote the finite set of labels for nodes and edges. Each node and edge
has a node label and an edge label. So, a labeled graph A = (V,E, L,G).

V : finite set of vertexes E ⊆ V ×V : set of edges L : set of labels G : reduced
set of labels

Label sets of each edge (vertex) are stored as attributes of that edge (vertex).

Maximum Common Sub-graph. Let g1(V1, E1, L1, G1) and g2(V2, E2,
L2, G2) be graphs. A common subgraph of g1 and g2 , cs(g1, g2), is a graph
g(V,E, L,G) such that there exist subgraph isomorphisms from g to g1 and
from g to g2. We call g a maximum common subgraph of g1 and g2, mcs(g1, g2),
if there exists no other common subgraph of g1 and g2 that has more nodes
than g [3].

Minimum Common Super-graph. Let g1(V1, E1, L1, G1) and g2(V2, E2,
L2, G2) be graphs. A common subgraph of g1 and g2 , cs(g1, g2), is a graph
g(V,E, L,G) such that there exist subgraph isomorphisms from g1 to g and from
g2 to g. We call g a minimum common supergraph of g1 and g2 , MCS(g1, g2),
if there exists no other common supergraph of g1 and g2 that has fewer nodes
and, for a given set of nodes, fewer edges than g [3].

Embedding of One Graph in Other. Let g1(V1, E1, L1, G1) and g2(V2, E2,
L2, G2) be graphs with g1 ⊆ g2. The embedding of g1 in g2, emb(g1, g2), is the
set of edges that connect g1 and g2 - g1, i.e.,

emb(g1, g2) = (V1 × (V2 − V1)) ∪ ((V2 − V1)× V1) , (1)

where the edge labels are same for any edge in emb(g1, g2)[3]. Henceforth, we
refer to emb(g1, g2) as e2.

2.3 Procedure

The procedure is described as an algorithm. The following sections will take-up
each step in detail.

242 S. Inamdar

Algorithm 1. crossDomainInference(graph g1, graph g2)

(g1′, g2′) ← convertToCommonLabels(g1, g2)
g ← maximumCommonSubgraph(g1′, g2′)
G ← minimumSuperGraph(g1′, g2′)
G1′ ← extend(G, g1′)
G2′ ← extend(G, g2′)
G1 ← reLabel(G1′)
G2 ← reLabel(G2′)
G1 ← validate(G1)
G2 ← validate(G2)

3 Convert to Common Labels

In general, this is a pattern matching problem. But this can again be solved
using graphs. We have two types of nodes. One is the variables and the other are
unary operators, eg. D - the differential operator. We have Inv for multiplicative
inverse as an operator. For additive inverse, we have aInv. The edge labels are
binary operations, eg. +, *. We have not taken subtraction and division as binary
operations. Instead, we made them unary operators. This is because they are
not commutative. Also, in this step we are not concerned with the meaning
of the variables. If there are two contesting variables, they might as well be
interchanged, because we are not computing values from the equations. The
operator nodes need to match at all locations. These will serve as check points to
generate the dictionary. Also, there is no interlinking between different equations,
as we can see in the figure. We have tree/linear structures. The tree has directed
edges. Tree matching is done on two equations. If the two equations, one from g1
and other from g2 match, a dictionary is generated. This maps the variables into
reduced or common variables used for further set operations. This dictionary
generation is not discussed in detail here.

4 Generating the Maximum Common Subgraph

The maximum common sub-graph can be interpreted as the overlapping region
of the two graphs. In simpler words, the common information that is given in
both the domains. The author of [4] analyses two famous algorithms, McGre-
gor and Koch algorithm for computing the maximum common sub-graph for
labeled graphs. Going by its results, we choose Koch algorithm for Computing
the maximum common sub-graph. The algorithm by Koch transforms the maxi-
mal common subgraph problem to the maximal clique problem and searches for
the maximal clique using a branch-and-bound algorithm.

5 Generating the Minimum Common Super-Graph

[3] Proves that the minimum common super-graph(mcs) computation can be
solved by means of the maximum common sub-graph(MCS) computation as
follows

Cross-Domain Inference Using Conceptual Graphs 243

MCS(g1, g2) = mcs(g1, g2)
⋃
e1

(g1 −mcs(g1, g2))
⋃
e2

(g2 −mcs(g1, g2)) (2)

where e1 = emb(mcs(g1, g2), g1) and e2 = emb(mcs(g1, g2), g2).
The minimum common super graph can be interpreted as the inferred graph.

This is still in terms of the common variables.

Fig. 1. Flowchart for the algorithm showing inputs and outputs

6 Relabeling and Validation

The maximum common super graph can be relabeled to original variables using
the dictionary generated during reduction. The formed graph’s nodes, which
contain equations, be checked for constraint satisfaction and possible erroneous
extrapolations. Thus the final graph can be inferred using the other similar
graphs in the knowledge base.

7 Work So Far and Future Scope

This is a novel idea which is in its initial stages of development. Currently, the
work on generating the common dictionary is progress. The approach used is to

244 S. Inamdar

generate a common set of rules for standardized representation of the equation
and then use the operators as milestones to get the correct match. We assume
that the set of variables and operators is a given in both the graphs. This is
a valid assumption as all nodes and edges are stored before entering them for
representation in the software. Currently we are sorting out certain issues with
Gephi software.

This concept of cross-domain inference can be extended to the general knowl-
edge bases using classes instead of mathematical expressions for dictionary gen-
eration. The sparsely linked structures can also use trees, instead of graphs, for
simpler computations.

References

1. Berg-Cross, G., Price, M.E.: Acquiring and Managing Knowledge Using a Con-
ceptual Structures Approach: Introduction and Framework. IEEE Transactions on
Systems, Man, and Cybernetics 19(3) (1989)

2. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Rec. Lett. 19, 255–259 (1998)

3. Bunke, H., Jiang, X., Bern, Kandel, A.: On the Minimum Common Supergraph of
Two Graphs. Computing 65(1), 13–15 (2000)

4. Welling, R.: A Performance Analysis on Maximal Common Subgraph Algorithms.
In: 15th Twente Student Conference on IT, Enschede, The Netherlands. University
of Twente (2011)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 245–253, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Summarizing Conceptual Graphs
for Automatic Summarization Task

Sabino Miranda-Jiménez, Alexander Gelbukh, and Grigori Sidorov

Natural Language and Text Processing Laboratory,
Center for Computing Research, National Polytechnic Institute

Av. Juan de Dios Bátiz, s/n, esq. Mendizábal,
Col. Nueva Industrial Vallejo, 07738, Mexico City, Mexico

sabino@sagitario.cic.ipn.mx, www.gelbukh.com,
www.cic.ipn.mx/~sidorov

Abstract. We propose a conceptual graph-based framework for abstractive text
summarization. While syntactic or partial semantic representations of texts have
been used in literature, complete semantic representations have not been ex-
plored for this purpose. We use a complete semantic representation, namely,
conceptual graph structures, composed of concepts and conceptual relations. To
summarize a conceptual graph, we remove the nodes that represent less impor-
tant content, and apply certain operations on the resulting smaller conceptual
graphs. We measure the importance of nodes on weighted conceptual graphs by
the HITS algorithm, augmented with some heuristics based on VerbNet seman-
tic patterns. Our experimental results are promising.

Keywords: Automatic summarization, conceptual graphs, graph-based ranking
algorithms, HITS algorithm.

1 Introduction

With the overwhelming amount of information available today on the Internet and
elsewhere, summarization technologies are essential to improve the access to this
information. High-quality automatic text summarization is a challenging task that
involves text analysis, text understanding, the use of domain information, and natural
language generation.

Summarization approaches can be categorized as extractive and abstractive. The
limitations of extractive approach are well known: in the first place, low quality of the
generated summaries. On the other hand, abstractive summaries have not been suffi-
ciently explored because of the need in a deeper text analysis required for understand-
ing the texts, and complexity associated with it. Such a deep analysis is indispensible
to improve the quality of summaries [1].

We propose a method for single-document abstractive summarization, based on
conceptual graphs as the underlying text representation [8]. This kind of representa-
tion has not been used for automatic summarization so far. We focus on ranking
nodes and applying a kind of pruning operation, namely, selecting the most important

246 S. Miranda-Jiménez, A. Gelbukh, and G. Sidorov

nodes according to HITS algorithm [5] over weighted conceptual graphs and using
other heuristics based on semantic patterns of VerbNet [13]. The summary at seman-
tic level is the resulting structure of selected nodes. Automatic generation of concep-
tual graphs from text is beyond the scope of this paper.

This paper is organized as follows. Section 3 describes our approach. Section 4
presents the experimental results. Finally, Section 5 gives the conclusions and future
work.

2 Related Work

In recent years, there has been an increase in the interest to graph-based methods in
Natural Language Processing. Graph-based approaches such as LexRank [2] and
TextRank [3] have been used for keyword extraction for extractive summarization. In
these approaches, graphs are usually considered undirected and unweighted; their
nodes are either sentences, words, or other kind of units, and edges are defined by
overlaps of the content between units. In these approaches, well-known iterative algo-
rithms are used such as HITS or PageRank to rank the nodes in order to select salient
ones. The selected nodes represent the summary; non-salient nodes are removed from
the graph.

Other approaches use word order to create the graphs [6]. The graphs are directed.
Nodes are words, and the edges represent the precedence of the word in the sentence,
that is, the word in the word order is important. The resulting graph is ranked similar
to TextRank approach.

In [3] the notion of weighting edges was introduced in HITS algorithms. Overlap
of sentences was used as a kind of weight, but because of an unnatural way of using
weights, the study was mainly on undirected and unweighted graphs. In contrast, a
conceptual graph can be considered as a weighted graph having sense because con-
ceptual relations between concepts provide a semantic flow through the graph, name-
ly, the semantic flow over agent relations, object relations, attribute relations, etc.
Another feature in our model is the preference of the node in order to select concepts
(nodes) which the users are interested (see Section 3.3 and Section 3.4.).

There have been attempts to use the semantics of the document, such as in Seman-
tic Graphs approach [4, 7]. This approach uses triplets (subject—predicate—object).
Each triple is characterized by a rich set of linguistic, statistical, and graph attributes.
A Support Vector Machine classifier is used to identify important triples to generate
the summary. Nevertheless, a real and complete, fine-grained semantic representation
is not used.

3 Approach Using Conceptual Graph

3.1 Conceptual Graphs Formalism

Conceptual Graphs (CGs) [8] are structures for knowledge representation based on
first-order logic. They are natural, simple, and fine-grained semantic representations

 Summarizing Conceptual Graphs for Automatic Summarization Task 247

to depict texts. A conceptual graph is a finite, connected and bipartite graph. It has
two kinds of nodes: conceptual relations (ovals) and concepts (rectangles) (Fig. 1)
[8]. A concept is connected to a related concept by conceptual relation. Each concep-
tual relation must be linked to some other concept.

In our approach, by concepts, we consider content words (that is, all except for
stop words); by conceptual relations we consider semantic roles [11]: agent, causer,
instrument, experiencer, patient, location, time, object, source, and goal, as well as
some other relations, such as attribute, quantity, measure, etc.— approximately 30
relations used in [8].

Fig. 1. Conceptual graph for sentence: Joe buys a necktie from Hal for $10

Other element of CGs is concept types. Concept types represent classes of entities
(Person, Money, Fig. 1), attribute, state and event. It is also called concept type hie-
rarchy that represents an AKO (is-a-kind-of) hierarchy, and it is used to map concepts
into the hierarchy for inference purposes [8, 15]. For example, in Fig. 1, Person:Joe
denotes the concept type Person, and its referent Joe is an instance of Person.

CG Framework allows graph-based operations for reasoning. A number of opera-
tions such as: restriction, simplification, unification (join), graph matching (projec-
tion), and indexing can be performed to create, manipulate and retrieve large sets of
conceptual graphs [8, 15].

3.2 Construction of Conceptual Graphs

The construction of a conceptual graph from a text is not direct. It requires an addi-
tional process to discover relationships among text units. Approaches have been pro-
posed for automatically generating conceptual graphs such as in [10], but tools are not
available. Thus, we manually created the collection of conceptual graphs based on
news of DUC-2003 competition in order to prove our ideas.

We use simple conceptual graphs (without negations, situations, or contexts) to
simplified our task. For instance, the conceptual graphs for the following news are
shown in Figure 2: “Typhoon Babs weakened into a severe tropical storm Sunday
night after it triggered massive flooding and landslides in Taiwan and slammed Hong
Kong with strong winds. The storm earlier killed at least 156 people in the Philip-
pines and left hundreds of thousands homeless.”

In Figure 2, we use a notation ‘(number)’ for a concept that would be referred, and
‘#’ for a co-reference to the concept marked with the specific number; for instance, #3
refers to the concept Typhoon-Babs (3). In addition, we use the hierarchy of WordNet
[12] to map a referent to its concept type. For instance, Hong-Kong, Taiwan is
mapped to City.

248 S. Miranda-Jiménez, A. Gelbukh, and G. Sidorov

Fig. 2. Example of news as conceptual graph

3.3 Weighted Conceptual Graphs

We introduce a weighted conceptual graph (Fig. 3). The idea behind these kinds of
conceptual graphs is the interest in the semantic flow of graphs. In our approach,
edges and nodes have weights. The edge weights are assigned according to the se-
mantic flow in the graph—flow through conceptual relations—, and node weight
measures the degree of interest of the topics to the user.

Thus, if the interest is on some semantic flows such as agents, locations, attributes,
or other thematic roles, the edge weight that pass through them should be increased in
order to reward the flow that pass through them such as in Fig 3. Similar to node pre-
ference, a value greater than 1 rewards the topic preference; a value less than 1 pena-
lizes the preference; a value equal to 1 for no reward.

 Summarizing Conceptual Graphs for Automatic Summarization Task 249

Fig. 3. A weighted conceptual graph for sentence: The cat Yojo is chasing a brown mouse

For example, if we are interested in the flows that pass through agent relations
(AGNT) the incoming and outgoing edges for these conceptual relations are set to
value of 2 (see Fig 3).

3.4 Ranking Algorithm

HITS [5] is an iterative algorithm that takes into account both in-degree and out-
degree of nodes for ranking. The algorithm makes a distinction between authorities
(nodes with a large number of incoming links) and hubs (nodes with a large number
of outgoing links). For each node, HITS produces two sets of scores: AUTHority and
HUB. We use the authority score (means that the node is good as information source)
in order to choose the nodes that will take part in the summary. We used a modified
version of HITS algorithm similar to the proposed in [3].

The equations (1) and (2) are used to compute authorities and hubs scores. Where I
is the set of incoming links for node ܸ; O is the set of outgoing links for node ܸ; ܹ is the weight of semantic flow of edge; and PREF is the node preference.

(1)

(2)

3.5 Ranking Algorithm of Conceptual Graphs

In order to select the important nodes in CGs, we carry out the following steps:

1. Set hub and authority scores associated to each node a value of 1.
2. Apply the operation Authority, equation (1).
3. Apply the operation Hub, equation (2).
4. Normalize the Authority and Hub values by Euclidian norm.
5. Repeat from 2–4 up to convergence or N iterations.
6. Sort nodes by authority values in descending order.
7. Expand the connected concepts for each selected conceptual relation.
8. Expand the associated nodes for each selected concept (verb concept) accord-

ing to its semantic pattern.
9. Select the top concepts according to a threshold in order to prune the graph.

250 S. Miranda-Jiménez, A. Gelbukh, and G. Sidorov

Mihalcea and Tarau [3] used 20–30 iterations to converge the HITS algorithm; others
use one iteration [6]. We identified that more than 15 iterations are enough in our
collections of graphs.

Steps 1–6 calculate the HITS scores. Step 7 applies rules to expand the concepts
that a conceptual relation connects; for instance, the relation OBJ(trigger,flooding)
(see Table 1) is expanded into two concepts flooding and trigger. Step 8 applies the
verb pattern rules in order to keep coherent structures.

The semantic patterns of verb concepts were extracted from VerbNet [13]. For ex-
ample, the pattern for the chase concept (Fig. 3) is identified in the VerbNet class ID
chase-51.6. The pattern is NP V NP (Noun Phrase, Verb, Noun Phrase), and the verb
is Basic Transitive. The role for the first NP is agent, and the second NP is Theme.
Both of them are required for the concept chase because it is defined as transitive
verb. Thus, the agent and the theme must be included in a summary.

After applying steps 1–8, Step 9 applies the pruning operation by means of a thre-
shold set by user. It selects nodes without duplicates according to the threshold. The
selected nodes represent the summary at the semantic level (see Table 2).

4 Experimental Results

We carried out our experiments on the collection of news articles provided by the
DUC 2003 [9]. We selected news with length from 40 to 60 words. For each article,
there are 3 summaries on average made by humans.

We created three groups of documents from DUC: 2-senteces, 3-sentences, and 4-
sentences length such as news in Fig 2. Each group consists of 4 documents
represented as conceptual graphs. We set the threshold for pruning operation to 20%
of concepts of the original document. As a baseline, we selected the first concepts
beginning at the first paragraphs up to the established threshold (except stop words).
We set the semantic flow value for agent relations to value of 2. Standard metrics
(precision and recall) are used to evaluate our method. Recall is the fraction of con-
cepts chosen by the human that were also correctly identified by the method. Preci-
sion is the fraction of concepts chosen by the method that were correct. F-measure is
the harmonic mean of precision and recall.

Table 1 shows the selected nodes by ranking method including conceptual rela-
tions. Also, expansions of conceptual relations are shown such as object relations
(OBJ). Table 2 shows the selected concepts by the method that are part of the sum-
mary considering their interrelationships between them; (req) indicates that the con-
cept was added because the verb pattern requires it, i.e., kill pattern requires its Object
(People:@lt=156).Table 3 shows the average of the evaluation of the approach for
the three collections of graphs.

Our method slightly outperforms the baseline. It is because text documents are
very short and the baseline covers the concepts in a good way. Although other ap-
proaches have demonstrated that the first and last sentences in the paragraphs are
good indicators to find relevant information [14], our method uses all the net and
outperforms the baseline. It demonstrates that the method in huge graphs could

 Summarizing Conceptual Graphs for Automatic Summarization Task 251

operate equally as in small graphs. Finally, the selected concepts in Table 2 represents
the summay; according to the CG representation in Fig 2. It could be read: “Typhoon-
Babs triggered flooding and landslides in Taiwan. The storm killed at least 156
people. Typhoon-Babs slammed in Hong Kong.“

Table 1. Selected concepts and conceptual relations by ranking method with expansion of
conceptual relations

NODE RELATION EXPANSION AUTH HUB

Cyclone:Typhoon-Babs - 0.729 0.3E-16
Atmospheric_phenomenon:storm - 0.680 0.70E-03
AGNT(trigger-Cyclone:Typhoon-Babs) trigger/:Typhoon-Babs 0.054 0.147
OBJ(trigger-flooding) trigger/ flooding 0.027 0.10E-04
OBJ(trigger-landslide) trigger/landslide 0.027 0.67E-05
LOC(trigger-City:Taiwan) trigger/:Taiwan 0.027 0.137
AGNT(kill- Atmospheric_
 phenomenon:storm)

kill/:storm/ People:@lt=156
(req)

0.022 0.147

AGNT(slam-Cyclone:Typhoon-Babs)
slam/:Typhoon-Babs/
City:Hong Kong (req) 0.022 0.67E-05

LOC(kill-Country:Philippines) kill/:Philippines 0.011 0.38E-16

Table 2. Final selected concept by the ranking method

NODE AUTH HUB

Cyclone:Typhoon-Babs 0.729 0.3E-16
Atmospheric_phenomenon:storm 0.680 0.70E-03
trigger 0.054 0.147
flooding 0.027 0.10E-04
landslide 0.027 0.67E-05
City:Taiwan 0.027 0.137
kill 0.022 0.147
slam 0.022 0.67E-05
City:Hong Kong 0.022 0.147

People:@lt=156 0.022 0.70E-03
Country:Philippines 0.011 0.38E-16

Table 3. Evaluation of the system

Precision Recall F-Measure

Baseline System Baseline System Baseline System

Group I (2-sentences) 0.38 0.50 0.38 0.50 0.38 0.50

Group II (3-sentences) 0.11 0.25 0.13 0.22 0.12 0.23

Group III (4-sentences) 0.43 0.50 0.45 0.50 0.43 0.50

252 S. Miranda-Jiménez, A. Gelbukh, and G. Sidorov

5 Conclusions

We have proposed a novel graph-based approach for single-document summarization.
Our approach is based on the Hub-Authority framework and conceptual graphs as
underlying semantic text representation. It combines the text content with semantic
roles into graph-based ranking algorithms. The method uses semantic patterns from
VerbNet to keep coherent structures when a threshold is applied in order to prune the
nodes. Furthermore we introduced a weighted conceptual graph to provide a flexible
schema to focus on certain semantic flows or topics by means of weights and prefe-
rences. We evaluate our method on DUC-2003 data. The results show that our ap-
proach is promising.

In future work, we plan to apply operations such as generalization and join on re-
sulting conceptual graphs in order to improve the quality of the generated summaries.
Also, we expect to improve the results on larger conceptual graphs, 500–1000 words
per document.

Acknowledgments. This work was done under partial support of the Mexican Gov-
ernment (SNI, COFAA-IPN, PIFI-IPN, SIP-IPN 20121823 and 20120418,
CONACYT 50206-H and 83270), CONACYT-DST India (122030, “Answer Valida-
tion through Textual Entailment”), Mexico City Government (ICYT PICCO10-120),
and European project WIQ-EI 269180.

References

1. Spärck Jones, K.: Automatic summarising: The state of the art. Information Processing &
Management 43(6), 1449–1481 (2007)

2. Erkan, G., Radev, D.: LexRank: Graph-based Lexical Centrality as Salience in Text Sum-
marization. Journal of Artificial Intelligence Research 22(1), 457–479 (2004)

3. Mihalcea, R., Tarau, P.: TextRank: Bringing Order into Texts. In: Proceedings of the Con-
ference on Empirical Methods in Natural Language Processing (EMNLP 2004), Barcelona,
Spain, pp. 404–411 (2004)

4. Leskovec, J., Grobelnik, M., Milic-Frayling, N.: Learning Semantic Graph Mapping for
Document Summarization. In: Proceedings of ECML/PKDD 2004, Workshop on Know-
ledge Discovery and Ontologies, Pisa, Italy, pp. 1–6 (2004)

5. Kleinberg, J.: Authoritative Sources in a Hyperlinked Environment. Journal of the
ACM 46(5), 604–632 (1999)

6. Litvak, M., Last, M.: Graph-based keyword extraction for single-document summarization.
In: Proceedings of the Workshop on Multi-source Multilingual Information Extraction and
Summarization, Manchester, United Kingdom, pp. 17–24 (2008)

7. Tsatsaronis, G., Varlamis, I., Nørvåg, K.: SemanticRank: ranking keywords and sentences
using semantic graphs. In: Proceedings of the 23rd International Conference on Computa-
tional Linguistics, Beijing, China, pp. 1074–1082 (2010)

8. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addi-
son-Wesley, Reading (1984)

9. DUC. Document Understanding Conference (2003),
http://duc.nist.gov/pubs.html#2003

 Summarizing Conceptual Graphs for Automatic Summarization Task 253

10. Hensman, S., Dunnion, J.: Automatically Building Conceptual Graphs Using VerbNet and
WordNet. In: Proceedings of the 3rd International Symposium on Information and Com-
munication Technologies, Las Vegas, USA, pp. 115–120 (2004)

11. Jackendoff, R.: Semantic Interpretation in Generative Grammar. MIT Press, Cambridge
(1972)

12. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
13. Kipper, K., Trang Dang, H., Palmer, M.: Class-Based Construction of a Verb Lexicon. In:

Proceedings of Seventeenth National Conference on Artificial Intelligence (AAAI 2000),
Austin, TX, pp. 691–696 (2000)

14. Hovy, E., Chin-Yew, L.: Automating Text Summarization in SUMMARIST. In: Mani, I.,
Maybury, M.T. (eds.) Advances in Automatic Text Summarization, pp. 81–94. MIT Press,
Cambridge (1999)

15. Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation: Computational
Foundations of Conceptual Graphs. Springer, London (2009)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 254–265, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Logical Form vs. Logical Form: How Does the Difference
Matter for Semantic Computationality?

Prakash Mondal

Indian Institute of Technology Delhi, Hauz Khas
New Delhi 110016, India

mndlprksh@yahoo.co.in

Abstract. This paper aims at pointing out a range of differences between
logical form as used in logic and logical form (LF) as used in the minimalist
architecture of language. The differences will be shown from different angles
based on the ways in which they differ in form and represent some natural
language phenomena. The implications as following on from such differences
will be then linked to the issue of whether semantic realization in mind/brain is
computational. It will be shown that the differences between logical form as
used in logic and logical form (LF) as used in the minimalist architecture of
language will help us latch on to the realization that there is no determinate way
in which semantics can be computational or computationally realized.

Keywords: Logical form, logic, minimalist architecture, semantic realization.

1 Introduction

Is semantics really computationally realized? How much of meaning can be
computationally realized? And how much cannot? The path toward an answer to such
questions can be tremendously difficult to follow given the fact that such questions
are still faintly understood or grasped given a huge dearth in understanding what
meaning really is. Here in this paper such a path will be traced through tracking the
differences between logical form as used in logic and logical form in the minimalist
architecture of language which will be extrapolated to approach the question of how
such differences can throw light on whether meaning can be computationally realized.
Both logical form as used in logic and logical form in the minimalist architecture of
language represent semantics of natural language. If they can really represent
meaning in natural language, their computability can have ramifications over how and
to what extent semantics is computational. The question is whether semantics or
meaning in language can be computational or computationally realized in mind/brain
at all on the basis of concrete facts that the differences between logical form as used
in logic and logical form in the minimalist architecture of language will provide us
with. An important proviso has to be added right at this juncture. The question is not
to scout out and magnify differences between logical form in logic and logical form
as used in generative grammar. Such differences are quite well-known. The focus is

 Logical Form vs. Logical Form: How Does the Difference Matter 255

rather on how such differences matter for and unlock aspects of semantic
computationality given that both meta-languages represent natural language
semantics. Why do differences in formal representation actually matter given that
logical form as used in logic and logical form in the minimalist architecture of
language formally represent semantics of natural language in different ways? One can
write numbers in binary or decimal and countless other ways. That does not certainly
change the fact that arithmetical operations are algorithmic; the details of the
algorithm just vary appropriately based on the representation used. But the case in
point is here semantics, not mathematical facts. Semantics is different from
mathematical facts both in form and nature. The latter may well lie in the Platonic
realm, but the former cannot perhaps be such given the fact that the very
metalanguages that encode or represent semantics are not uniform in their
representational faithfulness. This is not true of mathematical facts or objects as one
can really write numbers in binary or decimal formats without any differences in the
faithfulness with which decimal format or binary format can represent numbers. This
is what will be shown below in the section 2 and these differences are crucial as far as
the matter about the question of whether semantics is computational or not is
concerned.

1.1 Logical Form in Logic and Logical Form (LF) in Generative Grammar

Logical Form in Logic. In brief, logical form of sentences of natural language is
what determines their logical properties and logical relations. Logical form of natural
language sentences is always constructed relative to a theory of logical form in the
language of a theory of logic (say, first order logic) [1]. To schematize what we have
in mind when we talk about logical form in logic, we can have

 T = {T1 … Tn}, L = {L1 … Lm}, L = {L 1 … L k}
 A= {A1 … Aj}, B = {B1 … Bi} (1)

Here T is the set of theories of logical form; L is the set of all possible logical forms

and L is the set of theories of logic. LLk
Tm is the set of logical forms relative to a

theory of logical form Tm and in the formulas of a theory of logic L k. Then:

 LL k
 Tm ⊆ L & Ψ : LL k

 Tm →A × B (2)

Here A is the set of logical properties and B is the set of logical relations. Logical
properties consist in truth values as fixed by the terms assigned to predicates and
logical relations are relations between sentences which are linked by chains of
different types of inferences; so entailment, implication, equivalence etc. are different
kinds of logical relations which are defined with respect to a set of sentences which
must not be a singleton set. The function Ψ ensures a proper mapping from a set of
logical forms to ordered pairs containing logical properties and logical relations. The

256 P. Mondal

mapping Ψ might be a little idealized given certain approximations that might exist at
the interface between what we call logical properties and what we brand as logical
relations. In sum, logical forms are a way of making out what logical properties and
logical relations are. The following example can perhaps make it clearer.

(1) Peter danced and Clare sang. [D(p) ∧ S(c)]
(2) Peter danced. [D(p)]

Here we have two sentences with their logical forms alongside. The logical form of
each determines whether each is true if the given circumstances hold true of them.
This is what logical property is. And then the sentence in (1) entails the sentence in
(2). Again it can be determined by looking at the logical forms of both (1) and (2).
This falls under logical relations. It now becomes clear that the logical forms of the
sentences in (1-2) lead us to the logical properties and logical relations in question.

Logical Form (LF) in Generative Grammar. Logical Form (LF) as used in
generative grammar has a little different, if not too distant, sense embedded in it.
From now onwards ‘LF’ will be used to denote logical form as used in generative
grammar and the full form will be reserved for the identical term in logic, just to
avoid any confusion. So to come to the point of discussion, Logical form (LF) in an
architecture of grammar is a level of syntactic representation which is interpreted by
semantics. LF represents properties of syntactic form relevant to semantic
interpretations or aspects of semantic structure that are expressed syntactically [2]. As
May [2] argues, it all starts with Russell’s and Freges’ concerns with the relation of
logical form to the syntax of natural language in that the logical form representing the
semantic structure is not akin to the syntactic form of natural language (in fact, it
dates back to the Greek thinkers including Aristotle who bothered about this
mismatch, and then it lasted well into the twentieth century pervading all thinking
about language and logic). Logical form is masked by the syntactic structure of
natural language. An example can be given to show this:

(3) Coffee grows in Africa.

Here one might want to say the grammatical subject is ‘coffee’ and the rest is the
predicate. But logically, ‘be in Africa’ characterizes the property-so it is the logical
predicate and ‘the growth of coffee’ is the logical subject [3]. It can be written as:

(4) + P (Be in Africa) ([growth of coffee])

In this sense LF has a similarity of purpose with logical form in logic. More on this
will be drawn up later. So they are two different strata of representational structures.
Since LF is a syntactic level of representation, the question of representations at this
level and meanings assigned to structures at this level are of paramount significance.
In reality such a level gains its theoretical justification through the existence of a
number of independent descriptive levels each of which has its own well-formedness

 Logical Form vs. Logical Form: How Does the Difference Matter 257

conditions and formal representations as maintained throughout the main streams of
thought in generative grammar. Overall, LF attempts to characterize the extent to
which a class of semantic interpretations that can be assigned to syntactic structures at
this level are a function of their grammatical properties; but it does not mean that LF
has any commitment to all possible semantic interpretations that can be assigned to
syntactic structures which are derived out of their grammatical properties. LF was
actually motivated on facts about quantificational NP movement which fulfills the
purpose of showing the difference between surface structure and covert structure in
natural languages. An epitome of such a case is the following:

(5) Every woman loves a man.

(6) i. [S a man2 [S every woman1 [S e1 loves e2]]]

ii. [S every woman1 [S a man2 [S e1 loves e2]]]

(5) can have two different LF representations based on the two different scopal
interpretations shown in (6i-ii). So much for LF. Let’s now look at the parallels
between logical form and LF. This will give us a handle to an exploration of the ways
they differ from each other in their fundamental nature and form too.

1.2 Some Parallels between Logical Form and LF

Given that we have got a rough outline of what logical form and LF are, here are
some parallels between them that can be brought out. Throughout this article we will
be using first-order logic for any discussion on logical form; it is not due to any bias
toward it but because of its more widespread use. However, these parallels can be
highlighted on three grounds: (i) They are both aimed at uncovering the
semantic/logical properties masked by grammatical forms; (ii) They are both
translations of natural language sentences in a kind of meta-form. (iii) They are both
‘paraphrases of natural language sentences’, to use Quine’s words [4]. A simple
example can exhibit the parallels most succinctly.

(7) Every boy likes a game.

Logical Form (Logic): (i) ∀x∃y [L(x,y)], (ii) ∃y∀x [L(x,y)]

Logical Form (LF): (i) [S a game2 [S every boy1 [S e1 likes e2]]]
 (ii)[S every boy1 [S a game2 [S e1 likes e2]]]

Even if such parallels between logical form and LF might seem to be apparently
evident, they mask the fundamental differences between them. Let’s now turn to those
differences.

258 P. Mondal

1.3 Of the Differences between Logical Form and LF

The differences between logical form and LF can now be put forward. They will be
traced out from a number of angles in terms of how they behave. Extrapolating
Quine’s [4] postulated difference between logical form and deep structure, let’s say
that logical form and LF are used for quite different purposes. Logical form of natural
language sentences is used in logic for logical calculations and inferential
implications. Whereas LF is a level of syntactic representation generated through a
sequence of derivational operations used for further semantic interpretations. This
leads us to a much better characterization of the differences. Here’s is how. Logical
form as used in logic is externally motivated, but LF is internally motivated as it is a
part of internalist architecture of grammar in that LF is a part or component of an
internalist architecture of language regarded as the faculty of language which is itself
a part or component of mind/brain. LF is a level of syntactic operations/computations
which feeds semantic interpretations at Conceptual-Intentional (C-I) interface in the
minimalist architecture of the language faculty. Logical form is not anchored to any
such system; so logical form cannot be characterized in that way. The differences
between them can now be zoomed in on from a number of focal perspectives.

Differences in Ontology. Logical form and LF have differences in ontology too.
Logical forms are constructed in the language of theory of logic which consists of two
quantifiers (existential and universal). LFs in natural language represent a whole
range of quantifiers apart from the two, like ‘most’, ‘many’, ‘two’, ‘few’, ‘likely’,
‘seem’ etc. etc [5]. Such differences in ontology pave the way for fundamental
differences between logical form and LF come into a clearer view.

Differences in Formal Representations. Logical forms and LF have remarkable
differences in formal representations which unmask the distinction in terms of their
fundamental forms. The examples below show this clearly enough.

(8) Sam killed every tiger.
 LF: [S every tiger1 [S Sam killed e1]]
 Logical Form: ∀x [Tiger(x) → Killed (s, x)]

(9) Most linguists sleep.

LF: [S most linguists1 [S e1 sleep]]
 Logical Form: (most x: x is a linguist) [sleep(x)]

(10) Few philosophers like cats.

 LF: [S few philosophers1 [S e1 sleep]]
 Logical Form: (few x: x is a philosopher) ∃y [Cat(y) ∧ Like(x, y)]

But the point to be noted is that even if the formulas in (9-10) use restricted
quantification, it is done through an extension of natural language quantifiers like

 Logical Form vs. Logical Form: How Does the Difference Matter 259

‘few’, ‘most’ into logic. Hence it cannot be said that logical forms do not lack all
quantifiers found in natural languages.

Differences in Restriction. It is quite well known that that in logical forms
quantifiers range over a universe of individuals, as in (11) below.

(11) Every linguist drinks. ∀x [linguist(x) → drinks(x)]

But in LF the range is restricted by the head noun, as in ‘few good girls’ by ‘good
girls’.

Differences as Seen from the Phenomenon of Crossed Binding. The phenomenon
of crossed binding is interesting because it opens a window onto the crucial
differences between logical form and LF. Crossed binding is a problem for LF as has
been seen in Bach-Peters sentence. Let’s see how in the example in (12) taken from
May[2].

(12) Every pilot who shot at it hit some MIG that chased him.

(13) i. [[Every pilot who shot at it]1 [[some MIG that chased him]2 [e1 hit e2]]]
ii. [[some MIG that chased him]2 [[Every pilot who shot at it]1 [e1 hit e2]]]

This sentence in (12) can have two LF representations in (13).As can be seen above,
in (13i) the pronoun ‘him’ is bound by the hierarchically higher antecedent ‘every
pilot…’; but in (13ii) only the pronoun ‘it’ is bound by the antecedent ‘some MIG…’.
Both these two bindings are not represented in any single LF representation. To
alleviate this situation, May has proposed ‘absorption’:

 … [NPi … [NPj … → … [NPi NPj]i ,j … (3)

Such a representation turns (n-tuples of) unary quantifiers into binary (n-ary)
quantifiers. Crossed binding is not a problem for logical forms. Need for absorption
does not arise either. Let’s see how:

(14) i. ∀x∃y [[pilot(x) ∧ [MIG(y) ∧ Shot at(x, y)]] → [Hit(x, y) ∧ Chased (y, x)]]
ii. ∃y∀x [[pilot(x) ∧ [MIG(y) ∧ Shot at(x, y)]] → [Hit(x, y) ∧ Chased (y, x)]]

Interesting to note is the fact that the LF representations in (13) can be mapped in a
partial manner to the ones in (14). Thus (13i) can be mapped to (14i) and (13ii) to
(14ii), but crossed binding is reflected in the either of logical forms in (14i-ii), but not
in any of (13i-ii). The LF representation with the mechanism of ‘absorption’ applied
can be mapped to both in (14i-ii). Hence again, it will be a case of partial homology if
we try to map LF structures to logical forms. Meaning representation is blocked due

260 P. Mondal

to a bottleneck in the mapping process itself. This will have its repercussions across
other cases to be discussed below.

Differences as Seen from the Phenomenon of Crossover. Other differences
between logical form and LF can be telescoped through the phenomenon of crossover.
Let’ see look at the sentences below.

(15) *Hisi cat loves every boyi.
(16) *Heri friend loves some spinsteri.

The indexes indicate co-reference between the NPs. As has been argued and shown
throughout the generative literature, this is due to the covert movement of the QNPs
(quantificational noun phrases) ‘every boy’ and ‘some spinster’. So the LF
representations will look like:

(17) [S every boy1 [S hisi cat loves e1]]]
(18) [S some spinster1 [S heri friend loves e1]]]

Logical forms do not reflect such problems so much so that we can have perfectly fine
logical forms for (15) and (16), contrary to facts in natural language as shown below:

(19) ∀x [Boy(x) → ∃y[x’s cat(y) ∧ Loves(y, x)]]
(20) ∃x [Spinster(x) ∧ ∃y[x’s friend(y) ∧ Loves(y, x)]]

Again this reveals the fact that logical forms can sometimes overgenerate or
overrepresent natural language sentences, LF do not. One could, of course, argue that
some further syntactic rules may be added to formal logic to capture some constraints
that will bar the constructions in (15-16); but this begs the question as the lack of
existence of these to-be-postulated syntactic constraints or rules is the reason why we
find (19) and (20) to be problematic as far as logical form is concerned. Again this
reveals the fact that logical forms can sometimes overgenerate or overrepresent
natural language sentences, LF do not. Of course, in the case of (19), one may argue
that it is a representation for the sentence "Every boy is loved by his cat". But a fact
that is basic and obvious but not of trivial significance can be driven home from this.
It is that logical form does not distinguish between the two. That is where the problem
lies.

Differences as Seen from the Phenomenon of Binding. Further evidence can be
accumulated regarding the nature of differences between logical form and LF. This
can come from further facts about binding. The examples taken from Miyagawa [6]
below exhibit this clearly.

(21) Some students from hisi class appear to every professori to be idiots.
(22) Jacki’s mother seems to himi to be wonderful.

 Logical Form vs. Logical Form: How Does the Difference Matter 261

(23) ∃x [Student(x) ∧ ∀y [Professor(y) → ∃z [y’s class(z) ∧ From (x, z) ∧
Appear-to-be-idiot(x, y)]]]

(24) ∃x [j’s mother(x) ∧ Seem-to-be-wonderful(x, j)]

The logical forms of (21-22) are (23-24). (23) does not represent the fact that the
surface form and LF do not coincide in (21) in that the QNP ‘some students…’ has
moved from the position below ‘every professor’; and (24) does not reflect the fact
that in (22) the surface form and LF correspond with each other as had it not been the
case the sentence would have created a violation of binding principle C when the
referring expression ‘Jack’ if lowered is c-commanded by the pronoun ‘him’. This has
significant implications for the differences between LF and logical form. LFs are thus
sequence-dependent and sensitive to levels of representations in an architecture of
grammar; logical forms are not sequence dependent in this way and are self-
contained.

2 What Does It All Reveal?

It is now the time to wrap up the differences between logical form and LF into a space
of important generalizations and implications on the differences as shown above.
Let’s now flesh them out. LF is a stage in a derivational sequence of computations.
Let’s call it <D1 … Dn> where each Di is computed from the output generated by Di-1.
Let’s assume that Dn is the stage where LF is computed. Since <D1 … Dn> is driven
by computational considerations of locality, economy and other syntactic constraints
(global or local), LF is also sensitive to such constraints. LFs are constructed on the
basis of the computational operations as required by the derivations. But logical forms
are constructed without any reference to any prior or posterior stages in a sequence of
operations. Hence the differences in representational forms too! Logical forms cannot
be specified this way. Hence the problems above that LF faces do not get reflected in
logical forms. LFs are also sensitive to the requirement of generating licit sentences,
while logical forms are not. Moreover logical conservatism which goes in for an
economy in extensions in a logical theory and ontological conservatism which favors
fewer ontological commitments constrain the form of logical forms [1]; LF, on the
other hand, is constrained by computational parsimony which favors fewer
computations in Merge operations. Inclusive Condition which bans entities not
present in the Numeration (selected items from the lexicon) as defined in the
minimalist architecture of grammar can at best carry the tenets of ontological
conservatism but it is more global if we want to draw some parallels between the
constraints governing logical form and those governing LF.

2.1 Fodor’s Isomorphy, Logical Form and LF

To see how the differences between logical form and LF play out at the level of
semantic representations in mind/brain, it is necessary to look into the roles they each
play in Fodor’s [7] postulated supervenience of logical forms of propositional

262 P. Mondal

attitudes on the syntactic properties of mental representations. This supervenience is
also a sort of isomorphy as whatever the nature of logical form of a propositional
attitude like belief is, the corresponding mental representation will have the same
syntactic property. Such an isomorphy runs into fiendish problems in assignment of
meanings. Let’s see how.

(25) a. M1∼ John walks. F(j)
 b. M2 ∼ Max walks. F(m)

(26) a. M1∼ Crystal is bright. G(c)/ ∃x [C(x) ∧ G(x)]
 b. M2 ∼ John is bright. G(j)

(27) a. M1∼ Crystal is bright. G(c) ∃x [C(x) ∧ G(x)]
 b. M2∼ Summer is bright. G(s)

Here M refers to mental representation. The logical forms of the sentences are placed
alongside the sentences as indicated by arrows. In (25), the logical forms are different
based on a difference in terms in that in (25a) the logical form contains ‘John’ and in
(25b) it is ‘Max’ the predicate is about. So the corresponding mental representations
M1 and M2 will also have different syntactic properties aligned with the respective
logical forms. What happens in (26) is pretty interesting. In (26a), the sentence will
have two possible logical forms based on whether we interpret ‘Crystal’ as a common
noun or a proper name. But in (26b) this problem does not arise. What is of
significance is that the indeterminacy present in (26a) cannot be resolved from within
the sentence in question; it needs context which is not a syntactic property. Overall,
on one hand, logical form does not supervene on the syntactic property of the mental
presentation as we see in (26a); on the other logical form supervenes on the syntactic
property of the mental representation as in (26b). The case in (27) leads to
inconsistency in that both the sentences, on one hand, have two different logical forms
and on the other possess the same logical form too. The inconsistency is again due to
the unavailability of context which is not a syntactic property.

This suggests that the postulated isomorphy between logical forms of propositional
attitudes and the syntactic properties of mental presentations is misleading and based
on a shaky ground. Interestingly LFs may not run into this problem as it is anchored
to C-I (Conceptual-Intentional) system. In generative grammar semantic structures-
whatever their form is- are determined by syntactic computations. Hence the relation
between syntax and semantics is much more restricted and constrained than is
supposed to be. Much of semantics has been pushed into the mapping between C-I
(Conceptual-Intentional) interface and the domain of concepts, meanings. C-I system
might resolve the indeterminacy when the pairs are interpreted at C-I system after
being shipped to it. If this is the case and the fact that only logical form-syntax
isomorphy runs into problems as shown above but LF does not, then it follows that
logical form and LF are different in kind and phenomenology, a fortiori.

 Logical Form vs. Logical Form: How Does the Difference Matter 263

3 What Does It Mean for Semantics to Be Computational?

The question of what it means for semantics to be computational needs to be keyed
onto how computationality is involved in semantics. This needs a little more
elaboration given a faint understanding and absence of a full grasp of what meaning
is. The same can be said about the notion of computation. What is it that is meant
when a question on whether semantics is computational or not is asked? Computation
is one of the most confounded and unclear notions employed in cognitive science [8],
[9]. So when a question on whether semantics is computational or not is asked, much
hinges on the fact that the right concept of computation is applied to the phenomenon
that is under the scan of the evaluation criteria of computation [8]. So here the notion
of semantic computationality will be used in the classical sense of computation where
inputs are mapped to outputs according to some well-defined rules by means of
symbolic manipulation of digital vehicles in the form of linguistic strings. This notion
of computation is the narrowest in the hierarchy of notions of digital computation [8].
The reason behind the employment of this notion of computation is that this is the
very notion of computation that has been keyed to much of generative linguistics. The
question of whether semantics is computational in the analog sense of computation or
in the generic sense [8] that encompasses both digital and analog computation will not
be touched upon here in that the differences between logical form as used in logic and
logical form in the minimalist architecture of language are targeted as the pedestal on
which the issue of semantics being computational will be teased apart. And these are
the two metalanguages that represent apparently intangible semantics, which is what
has been capitalized on for the sake of an investigation into whether semantics is
computationally realized or not. But of course, the question of whether semantics is
computational in the analog sense of computation or in the generic sense can be
sharpened to a larger degree from the following discussion as we will see below.

4 Semantic Computationality, Logical Form and LF

Now let’s turn to the issue of semantic computationality as we gather the implications
derived from what we have shown above so far. The discussion above indicates that LFs
are semantically more accessible and transparent, while logical forms are not, given the
problems pointed out above. Apart from that, the correspondence between logical forms
and syntactic properties might be a case of partial homology, but not a full correlation.
If this is so, logical forms weaken the case for semantic computationality as they are in a
patchy correspondence with syntactic properties which are actually computational
properties. LFs do strengthen the case for semantic computationality as LF is anchored
to the C-I system thereby being more semantically accessible and LF representations for
cases in (25-27) will be identical in parts which contain the subjects that will be treated
uniformly as the same in being all amenable to interpretation only at the later stage at C-
I system. In addition, the fact that at LF aspects of semantic structure supervene on
syntactic properties, qua Fodor [10] further regiments aspects of meaning being
computational by dint of being represented at LF. But if we co-opt Fodor’s analysis and

264 P. Mondal

view of what is computational, we may run into severe problems as we have already
encountered problems of other kinds derived from his isomorphy of logical form with
syntactic properties. It is because he has allowed for the possibility that C-I system
intentions, beliefs and other inferential (global) processes supervene on syntactic
properties (internal or internal), qua Fodor [7]. So by that means, such processes are also
computational. Therefore everything at and beyond LF becomes computational and it is
computational all around! Such a conclusion seems to be unwarranted and uncalled for
given that it forces the case for globality in semantic computationality all the way
throughout the entire gamut of cognition. It also leads to the absurd conclusion that
semantic properties or aspects of semantics are actually syntactic! Nothing then prevents
intentions, beliefs and other inferential (global) processes from flowing into (narrow)
syntax. In fact Fodor’s notion of computation is based on his classical notion of
computation; and hence if it is Turing or Von Neumann style of computation, then
semantics at LF are computational, but those from the C-I system are not. But as
Langendoen and Postal [11] show in their NL (Natural Language) Non-Constructivity
Theorem, this is also flawed under a closer analysis in that there is no Turing machine-
style-constructive-procedure for generating either syntactic rules or semantic rules at LF
if NL (Natural Language) Non-Constructivity Theorem is to be believed to be true.

But there are a range of views of computation-causal, functional and semantic [12];
and in addition, there are a lot of problems inherent in the notion of computation itself
that blocks the path that differentiates computing systems from non-computing
systems [13]. This borders on Searle’s [14] conclusion that any physical system
computes an algorithm leading to an emptiness in the notion of computation.
Semantic computationality becomes a non-issue over which we are all perhaps
cudgeling our brains as everything computed by the brain is computational. The
matter becomes more complicated as we try to home in on the issue of semantic
realization being computational. LF, on one hand, trivializes the notion of semantic
computationality by overextending, overspecifying its domain; logical form, on the
other, underspecifies it. LF cannot act as a standard against which we can assess
semantic computationality chiefly because there are other parallel logical systems
including logical form which do a similar job of representing meaning and these
parallel logical systems project a different picture of semantic computationality. We
thus fall into the trap of a relativistic notion of semantic computationality. Worse than
that is the fact that LF and logical form are not interconvertible and intertranslatable
without any change in meaning as shown in the sections above as they cannot be
mapped onto one another without much readjustment in meanings. Therefore, there
cannot even appear any sense in which we can assess or examine semantic
computationality as this issue cannot be checked against any standard, nor can it be
put on the pedestal of test as both the notational/representational languages (LF and
logical form) project varying pictures of semantic computationality even though
Steedman and Stone [15] have defended a realist interpretation of semantics within
which semantics can be conceived of in computational terms by keeping semantics
from aspects of processing. For semantics to be representable, we need some
representational (meta)language which can be checked for how much space it allows
for so that semantics can be seen to be computationally realizable. But the discussion

 Logical Form vs. Logical Form: How Does the Difference Matter 265

above shows that no such representational (meta)language is consistent and uniform
with respect to the way meaning can be shown to be computationally realized. Hence,
this fact extends to conceptual graphs as well which also represent meaning. The
problem of logical form equivalence in cases of semantic distinctions [16] makes it
more unlikely that logical representational (meta)languages can actually represent
meaning fully, let alone reveal the extent of semantic computationality. There is then
no determinate way to determine whether semantics is computationally realized in
mind/brain.

5 Conclusion

To conclude, semantic computationality is very much an issue to be determined through
a thorough consideration of the representational devices that represent semantics. But
these very devices or systems of representation do not provide a constant testing ground
on which semantic computationality can be scrutinized. Rather what we find is that
either there is an exaggeration of semantic computationality or there cannot be any case
for semantic computationality at all. We lose out in both ways. Further thinking and
research can clarify which path is the better one.

References

1. Menzel, C.: Logical Form. In: Craig, E. (ed.) Routledge Encyclopedia of Philosophy,
vol. 5. Routledge, London (1998)

2. May, R.: Logical Form: Its Structure and Derivation. MIT Press, Cambridge (1985)
3. Seuren, P.A.: Language in Cognition, vol. 1. Oxford University Press, New York (2009)
4. Qunie, W.V.O.: Methodological Reflections on Current Linguistic Theory. Synthese 21(3-

4), 386–398 (1970)
5. Harman, G.: Deep Structure as Logical Form. Synthese 21, 275–297 (1970)
6. Miyagawa, S.: Why Agree? Why Move? MIT Press, Cambridge (2010)
7. Fodor, J.: The Mind does not Work that Way. MIT Press, Cambridge (2000)
8. Piccinini, G., Scarantino, A.: Information Processing, Computation and Cognition. Journal

of Biological Physics 37, 1–38 (2011)
9. Fresco, N.: Concrete Digital Computation: What does it Take for a Physical System to

Compute? Journal of Logic, Language and Information 20, 513–537 (2011)
10. Fodor, J.: LOT2. Oxford University Press, New York (2008)
11. Langendoen, D.T., Postal, P.: The Vastness of Natural Languages. Basil Blackwell,

Oxford (1984)
12. Fresco, N.: Explaining Computation without Semantics: Keeping it Simple. Minds and

Machines 20, 165–181 (2010)
13. Shagrir, O.: Why we View the Brain as a Computer. Synthese 153, 393–416 (2006)
14. Searle, J.: The Rediscovery of the Mind. MIT Press, Cambridge (1992)
15. Steedman, M., Stone, M.: Is Semantics Computational? Theoretical Linguistics 32(1), 73–

89 (2006)
16. Shieber, S.M.: The Problem of Logical Form Equivalence. Computational Linguistics 19,

179–190 (1993)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 266–276, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Model for Knowledge Representation
of Multidimensional Measurements Processing Results

in the Environment of Intelligent GIS

Alexander Vitol1, Nataly Zhukova2, and Andrey Pankin2

1 Saint-Petersburg State Technical University, Information Systems Dept, Russia
2 Saint-Petersburg Institute for Informatics and Automation of the Russian Academy

of Sciences, Research Laboratory of Object-Oriented Geo-Information Systems, Russia
abg-778a@yandex.ru, {gna,pankin}@oogis.ru

Abstract. The paper describes models for knowledge representation, i.e.
extracted at different steps of multidimensional measurements processing
procedure, in the context of JDL data fusion model. Models are developed
taking into account the requirements of geo information systems environment.
As a case study system of conditions lighting which implements the models for
oceanographic data processing is described.

Keywords: knowledge representation, multidimensional measurements, data
processing, data fusion, intelligent geo information systems.

1 Introduction

Over the past few years in the field of information systems development much
attention is paid to the development of geographic information systems (GIS), in
particular intelligent geographic information systems (IGIS). Intellectual
geoinformation system refers to GIS, which includes means of artificial intelligence
(AI) as a component. Attention to IGIS increased due to the requirements of end users
to informtiveness and ease of use for information provided by the system on the
researched phenomena, entities, environments, and the results of their processing. AI
techniques can also be used to justify variants of complex problems solutions that
require consideration of different factors, their interconnections and mutual influence.
Due to efficiency of use of IGIS most part of multi-dimensional measurements
processing and analysis systems are based on intelligent geographic information
systems technologies. As measurements various environmental and technical
parameters measurements are considered. Recent active development of the area of
measurements processing is associated with increasing number of measuring
instruments, the appearance of new types of measuring instruments that provide data
for geographic information systems. It results in a substantial increase in the volume
of data that must be processed while maintaining the requirements of efficiency and
accuracy. Measurements that are to be processed usually have rather bad quality,
aren't coordinated in time and space and are implemented as non-stationary time

 Model for Knowledge Representation 267

series. To solve the problem of measurements processing and analyses in automation
mode, a unified adaptive approach is proposed. It is based on the use of ontologies,
providing automated construction of the processing chains and analysis of multi-
dimensional structures, based on the structure of processed data, requirements to the
formed decisions, and available processing algorithms [1]. Application of a unified
adaptive approach involves formalizing the processed data description and the results
of its processing, the formalization of the applicable processing algorithms and
methods. The formalized description of algorithms and processing methods described
in [2, 3] and can be efficiently used for the organization of multidimensional
measurements processing. For modeling geospatial data on the base of Semantic Web
technologies many approaches are developed[4], including approaches based on
Semantic Web technologies [5]. For the description of the data and the results of its
processing and analysis the JDL data fusion model is widely used [6, 7].
Unfortunately, measurements processing results formed at different steps of
measurements processing and analyses cannot be completely described using this
model. For example, representation of time series in the form of a sequence of
stationary time series blocks, clusters and patterns of measurements that are formed
during measurements processing need specialized models for presentation. In the
paper we propose a formal definition and implementation of JDL model for
multidimensional data for intelligent GIS systems. In section 2 of the paper we
propose a formal model for initial measurements and measurements results processing
representation. The proposed model is to be considered as detailing of JDL data
fusion model. In section 3 geospatial data representation model that is used to
represent data about sources of measurements is described. JDL model specification
for measurements processing provides possibility to use a uniform approach to
presentation of different types of data and knowledge in GIS.

2 Measurements and Processing Results Representation Models

According to the general concept of multi-dimensional measurement processing and
analysis three main stages of processing are being proposed: measurements
harmonization, measurements integration and measurements fusion. Harmonization of
measurements involves defining the basic concepts and their relationships (ontology)
on the relevant domain area and/or areas of responsibility. Measurements integration
provides merging of information from different sources and access to information
resources for applications. Measurements fusion is defined as the process of merging
data from different sources, which can provide a new quality of information and
discard unnecessary data.

To formally describe the measurement data and knowledge resulting from its
processing according to the defined stages four types of data and knowledge
representation levels have been developed: representation baseline measurements
(Table 1, baseline measurements representation models), representation of
measurements harmonization (Table 1, models for structural representation of
measurements), representation of measurements integration results (semantic

268 A. Vitol, N. Zhukova, and A. Pankin

measurements representation models and multidimensional measurements
representation models (Table 1), models describing qualitative and quantitative data
(Table 2)), presentation of data fusion results (model for combined representation of
different types of data (Table 3)). Data represented with the use of described models
is used as input data for level one of JDL data fusion model. Such input data
representation allows effectively estimate objects of subject domain as not only
measurements but also knowledge about them is provided.

Table 1. Time series presentation models

N Level Description Basic algorithms
Presentation
methods

Baseline measurements representation models
1 001 −L Structured binary data stream - XML/XML

Schema
2 101 −L Initial set of measurements - XML/XML

Schema
3 201 −L Measurements after

preprocessing
Data
preprocessing
algorithms

XML/XML
Schema

Models for structural representation of measurements

4 011 −L Measurement as a set of
segments

Segmentation
algorithms

RDF/ RDF
Schema

5 111 −L Measurements as a set of object
states

Clustering
algorithms

RDF/ RDF
Schema

Semantic measurements representation models
6 021 −L Alphabetical representation of

measurements
Algorithms of
alphabet
constructing

RDF/ RDF
Schema

7 121 −L Measurement templates Statistical
processing
algorithms

RDF/ RDF
Schema

8 221 −L Measurement images Image
constructing
algorithms

RDF/ RDF
Schema

Multidimensional measurements representation models

9 031 −L Measurements as a state
transition graph

Sequential
analysis
algorithms

RDF/ RDF
Schema

10 131 −L Measurements as a set of
behavior dependencies

Association
algorithms

OWL

 Model for Knowledge Representation 269

1. Baseline measurements are transmitted in the form of structured binary stream
containing metadata about the measurements, and the measurements themselves.
Original binary stream will be denoted as G , original measurements contained in a

binary stream as C . For data processing the original binary stream is converted into a
set of separate time series represented as plain text. For converting the binary stream
to the set of separate measurements, the binary stream structure description Ω , is
required. Then structured binary stream of baseline measurements can be represented

as: >Ω=< FCG , where F - function, providing binary-to-text conversion.

2. Baseline measurements are set of time series >=< MCCC ,...,1 , iC - i -th

time series. N
jjNjkji tctctcC 11)}(),...,(),...,({ == , M - the total number of time

series contained in a binary stream, N - number of measurements contained in the

time series,))(),(),(()(jjjkjk tztytxctc = ,)(jtx ,)(jty ,)(jtz - latitude,

longitude, and depth at which the measurements were made at time jt . Set of

measurements is a set ordered by time:)max(...)min(21 ItttI N ≤≤≤≤≤ ,

where I is a measurement interval, intervals between measurements are equal:

1−−=Δ iii ttt ; Ntt Δ==Δ ...2 .

3. The format of measurements representation after pre-processing, involving
removal of outliers and noise, filling missing values, is represented in the format of
baseline measurements.

4. Presentation of measurements as a set of segments requires the description of

time series iC as a sequence of blocks. Measurements within one block represent

stationary time series according to defined criteria set. Each block can be defined as:

},...,,{),(1 rll cccrlB += , where l and r are indices of the initial and final

measurements in the sequence. Partition of an interval I is a set of disjoint blocks:

}}{,{)(1
blocksN

kkblocks BNIP == , where
 blocksN

is a number of blocks. Set of allocated

segments can be divided into three subsets: },,{ SPTk BBBB ∈ , where
TB is

typical segments,
PB is template segments,

SB is special segments. Typical

segments are segments that can be allocated using a single criterion such as change in
the sign of the first and second derivative, change of frequency characteristics, etc.
Template segments are defined a priori and reflect one of the states of the data source.
Special segments are segments allocated during the segmentation which belong
neither to typical segments, nor template segments.

5. For cases where the observed behavior of time series in a single block can
uniquely determine the state of the data source, blocks are labeled, each label
corresponds to one of the possible states of the source. Set of states, if necessary, can
be broken down into classes. Presentation of the measurements as a set of states
requires a formed presentation of measurements as a sequence of segments and can be

270 A. Vitol, N. Zhukova, and A. Pankin

described as:)),(...,),,((1 jNi mBmB
blocks

,),(),,(jkil mBmB∀ ,

blocksNkl <<≤0 :
ji mm ≠ , where Mmm ji ∈, - set of all distinct states of

the data source.
6. Alphabetic representation allows determining the set of the characteristics to be

calculated for each of the possible states of the data source. Alphabetical

representation is defined as blocksN
kkLA 1}{ =><=

,
>=< kikk DmBL ,,

with a set of

characteristics)...,,,(kkkkD ωβα= defined for each block, where k - number of

block, α , β , ω - calculated characteristics. Types T can be defined for time series.

Each type Tt ∈ defines a set of time series which have similar characteristics for
each block. Description of type i contains one or more time series

reflecting the

typical behavior of the time series (etalons) for the type:

CC E
i ∈ , EtalonsNi ...,,1=

,

EtalonsN - number of etalons.

7. Measurement template is an extended description of a time series type. The
measurement template for the type j includes a set of object states description,

which cover possible data source states jL and a description of a set of possible

states sequences jR . So the measurement template can be defined as:

),(jjj RLH = .

Table 2. Quantitative and qualitative data presentation model

N Level Description Basic algorithms Result
Quantitative and qualitative data presentation model

1 002 −L Statistical description
of the data

Statistical processing
methods

Vector of the
statistical
characteristics

2 102 −L
Description in
reduced feature space

Dimensionality
reduction algorithms

Values
vectors

3 202 −L Description as data
groups

Cluster analysis
methods

Data groups

3 302 −L
Description as data
classes

Methods of classifiers
construction

Data classes

Different data types dependencies description models

4 012 −L
Dependencies in the
values of quantitative
and qualitative data

Association methods

Association
rules

 Model for Knowledge Representation 271

8. An image kO of type k consists of two components. The first component,

namely +
kO , contains a template of a time series type together with a set of time

series defined for type k :),(E
kkk CHO =+ . The second component −

kO contains

time series representing the examples of deviational behavior regarding the template.
9. To describe the data source state transition graph in the case of multidimensional

measurements the set of possible states of the data source and the set of admissible
state transitions observed in the various time series are defined.

10. Dependencies in the measurements behavior are presented with associative
rules: YX , =∩YX ∅, where X and Y are data source states. Association

rules like YX
lationRe

 can be used to describe the transition graph.

The model for quantitative and qualitative data presentation is shown in Table 2,
model for combined representation of different types of data is shown in Table 3.

Table 3. Model for combined representation of different types of data

N Level Description Basic algorithms Result

Model for combined representation of different types of data
1 003 −L

Calculated
characteristics

Methods for solving
computational problems

Values vector

2 103 −L
Description in
reduced feature space

Dimensionality
reduction algorithms

Values vector

3 203 −L
Description as data
groups

Cluster analysis
methods

Data groups

3 303 −L
Description as data
classes

Classification methods Data classes

Different data types dependencies description models
4 013 −L

Different data types
dependencies
description

Algorithms for
identifying
dependencies

Association
rules

5 113 −L Data groups
dependencies
description

Algorithms for
identifying
dependencies

Association
rules

Combined spatial data description models
6 123 −L Spatial-temporal data

sets
Algorithms for
identifying
dependencies

Association
rules

7 223 −L Regular data grids Algorithms for data
grids

Data grids

To determine the algorithms of processing and analysis of multi-dimensional
measurements on each of the levels a classification of measures is developed. The
main types of time series are as follows: calculable / measured, slowly changing / fast

272 A. Vitol, N. Zhukova, and A. Pankin

changing / specialized, without breaking / with a break of given order of derivative,
typed / without a type, stationary / non-stationary / piecewise stationary. As
classification criteria for slowly changing measurements following criteria’s have
been chosen: complexity (global / local / weighted), behavior (convexity / concavity),
variability, proximity to the curve of a given order (polynomial), characteristic points
(number of maximums, minimums, and predetermined level crossings), curvature
(maximum, minimum, median). The classification of adaptive and non-adaptive
representation of time series of the data has been developed. For presentation of
adaptive time series following presentations can be used: sorted coefficients,
piecewise polynomial representation (piece-wise linear approximation (interpolation /
regression), adaptive piecewise constant approximation), singular value
decomposition, symbolic representation (natural language / string), trees. For
presentation of non-adaptable time series: wavelets (orthonormal: Haar, Daubechies;
biorthogonal: symlets, coiflets), spectral representation (discrete Fourier transform,
discrete cosine transform), piecewise aggregate approximation. As an exploratory
procedure it is proposed to use a set of procedures designed to ensure the definition of
the type of time series and the way for its representation based on developed
classification criteria. Also exploratory procedures include methods and algorithms
that are applicable to the time series in accordance with classification of algorithms,
build on the base of specified time series types.

3 Geospatial Data Representation Models

To represent the measurements and the results of their processing in a GIS
environment, an integration of processing results presentation models and geospatial
data presentation and displaying models is made [8]. Description of the model for
geospatial data representation is shown in Table 4. It uses two types of geospatial
objects - points, which include data sources, they are binding measurements,
quantitative and qualitative data, and the area corresponding to a limited part of the
space environment, which is a binding set of measurements processing results.

Table 4. Geospatial data representation models

№ Information type Description
1 Type information catalog Contains basic data about catalog type, data

supplier, base data type (SXF, S-57)
2 Metadata catalog Contains catalog of meta information
3 Spatial object type

information
Contains information about spatial object type

4 Spatial object metadata Contains spatial object metadata
5 Spatial object attribute type

information
Contains information about spatial object
attribute type

6 Spatial object attribute
information

Contains information about spatial object
attribute

7 Spatial object geometry
information

Contains information about spatial object
geometry

 Model for Knowledge Representation 273

4 Case Study

The proposed approach of data and processing results presentation is used in the
implementation of an adaptive measurements processing and analysis of
oceanographic data in geographic information system of conditions lighting. The
conditions lighting system is a situation assessment system, that provides end-users
with integrated information about the situation and the state of the environment in the
interests of making justified decisions in a particular situation. The system provides
access to geospatial and meteorological data, technical facilities and objects, to the
environment description data, data obtained from external sources. It provides the
solution of mathematical problems (problems of the theory of search, sonar, radar,
etc.) and the tasks of modeling. In the course of the pilot study was carried out data
processing on the Arctic region. Baseline data included measurements obtained using
different facilities for the period from 1870 to 2010. The total number of processed
measurements is about 2,000,000. Example of sample input data is shown in Figure 1.
Components that implement the processing and analysis of oceanographic data were
integrated into the system. Figure 2 shows the distribution of the measurements of
temperature and salinity over the years.

Fig. 1. Sample of input data

To meet the challenges of processing and analysis of oceanographic data, the
system of lighting of conditions includes the following components:

• the service to receive data from centers providing measurements obtained by Argo
buoys and other means of measurements of the ocean parameters is a part of the
server interfaces to external systems;

• the server of modeling and mathematical models includes services for processing
management as well as services with the implementation of the algorithms used in
the processing and analysis;

• the server of hydrometeorological information includes services providing the
results of calculations of oceanographic parameters in a given area upon request.

Ontology of the system of lighting of conditions is expanded to include the following
members:

274 A. Vitol, N. Zhukova, and A. Pankin

• objects involved in gathering, processing and analysis of oceanographic data, such
as objects that describe means of measurement, centers providing measurement
data, etc.

• measurements obtained from different sources of data, and processing results of
single measurements and results of the joint analysis of the measurements;

• formal descriptions of algorithms and groups of algorithms used in the processing
and analysis of measurements;

• formal description of completed processes.

The system's knowledge base includes logic patterns derived from the analysis of
accumulated oceanographic data showing the relationship between the changes in
various parameters of the aquatic environment, as well as changes of parameters
depending on the geographical location and the time of measurements.

 а) temperature vary b) salinity vary

Fig. 2. Measurements distribution over the years

a) Temperature b) Salinity

Fig. 3. Measuring facilities and environment parameters example images in the aquatic
environment lighting system

Execution of processing and analysis chain for oceanographic data in order to build
regular grids involves two main phases: data verification, under which runs the
harmonization and integration of data, and the stage of regularization data, solving the
problem of data fusion. The main purpose of the data verification step is systematic

 Model for Knowledge Representation 275

storage, analysis and processing of data in order to prepare them to deal with the
problem of constructing regular grids. The main objective of the regularization stage
is to build a regular grid of accumulated measurements and evaluation of the accuracy
of data in the grid. Results of data processing produced by the proposed approach are
shown on Figure 3.

Evaluation of the results was carried out on the basis of a comparison of the
calculated values of temperature and salinity in grid using the proposed approach and
the results obtained by the expert. Results of the comparison showed that the accuracy
of the results has not worsened, while experts estimate the processing time was
reduced by 20%.

5 Conclusion

Application of the proposed models of formalized data description within the system
of adaptive processing and analysis of multi-dimensional yielded the following
positive effects:

• The integration of formal multidimensional measurements presentation models and

JDL model, as well as geospatial objects data models, allowed to create a single
representation model of various data used in GIS;

• The ability to build dynamic processing of multi-dimensional measurements with
the accumulated knowledge in the automatic mode, as it allowed to use all the
knowledge about the measurements, which were obtained from the solution of
other problems;

• The hierarchical model allows gradually obtain and add the knowledge about the
measurements to the knowledgebase, with each successive level reducing the
amount of stored data and increasing it’s informational content;

• The formalized representation of measurements and results of their processing
allows the accumulation of knowledge about measurements and ability to reuse it
both within the developed system and in other systems of processing and analysis
of oceanographic data.
 The further direction of development of this approach involves the expansion of
the considered model in the description of data and knowledge on the functioning
of the processing and analysis system for multi-dimensional measurements.

References

1. Zhukova, N.A., Pankin, A.V.: Principles of managing the processing and analysis of multi-
dimensional measurements in IGIS. In: Proceedings of the Information Technologies in
Management, Saint-Petersburg, October 9-11 (2012)

2. Smith, H., Fingar, P.: Business Process Management (BPM): The Third Wave. Meghan-
Kiffer Press (2003)

3. Mathias, W.: Business Process Management: Concepts, Languages, Architectures. Springer
(2007)

276 A. Vitol, N. Zhukova, and A. Pankin

4. http://www.opengeospatial.org/standards
5. http://www.w3.org/2005/Incubator/geo/XGR-geo-ont-20071023/
6. Steinberg, A.N., Bowman, C.L., White, F.E.: Revisions to the JDL data fusion model. In:

The Joint NATO/IRIS Conference, Quebec (1998)
7. Llinas, J., Bowman, C., Rogova, G., Steinberg, A., Waltz, E., White, F.: Revisiting the JDL

data fusion model II. In: Proceedings of the Seventh International Conference on
Information Fusion, Stockholm, Sweden (2004)

8. Koh, S.V.: Software tools for data integration in GIS tasks solution. In: Proceedings of the
Information Technologies in Management, Saint-Petersburg, October 9-11 (2012)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 277–288, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Transformation of SBVR Business Rules
to UML Class Model

Stuti Awasthi and Ashalatha Nayak

Dept. of Computer Science and Engineering,
Manipal Institute of Technology, Manipal University

Manipal, Karnataka, India, 576104
stutiawasthi27@gmail.com, asha.nayak@manipal.edu

Abstract. Multiple attempts have been made these days to automate the
creation of class diagrams by providing structured English statements as input.
The resulting diagrams are of close proximity to what the user wants. This
paper is one such attempt to transform business designs written in OMG’s
(Object Management Group) standard SBVR (Semantics of Business
Vocabulary and Rules) framework, into a set of classes in UML (Unified
Modeling Language) Class Model using a theoretical approach. SBVR provides
a set of specific rules which are processed in order to get class diagram of close
proximity. It involves the transformation of “Structured English” into a set of
UML Class Model with SBVR as a mediator. Further, the results of the
approach are validated using VeTIS tool.

Keywords: SBVR(Semantics of Business Vocabulary and Rules), Class
Diagram, Business Rules, UML (Unified Modeling Language), OOA (Object-
Oriented Analysis).

1 Introduction

Object-oriented analysis (OOA) looks at the problem domain, with the aim of
producing a conceptual model of the information that exists in the area being
analysed. Analysis models do not consider any implementation constraints that might
exist, such as concurrency, distribution, persistence, or how the system is to be built
[5]. The development of a business model is the stage where a Business Analyst (BA)
designs and puts the constraints on the system. The OMG’s SBVR [2] is an approach
which allows creating the business design in terms of business vocabulary and rules in
natural language format. SBVR was originally developed to share the business
semantics between different communities practicing UML and its variants [9].

SBVR provides a way to capture specifications in natural language and represent
them in formal logic so they can be machine-processed. Methodologies used in
software development are typically applied only when a problem is already
formulated and well described. The actual difficulty lies in describing the problems
and getting expected functionalities. This is due to the anomalies and ambiguities in
natural language specifications. Example is, We now have dress shirts on sale for men
with 16 necks. The anomaly here is whether shirts are available in 16 different collar

278 S. Awasthi and A. Nayak

designs or ’a’ shirt has 16 collars in it. The statement will make legitimate sense to a
human but same is not the case with a computer.

Stakeholders involved in software development can express their ideas using a
language very close to them, but they usually are not able to formalize these concepts
in a clear and unambiguous way. SBVR can be used in order to overcome this
problem enabling natural language to well represent and formally define problems
and requirements [3]. The contribution of this paper is to analyse all those
requirements and presenting a methodology which allows business people to convert
their business designs into UML Class Diagram in a theoretical approach.

Main challenge in transforming the Business Model is the detection of automatable
business rules and their automation. ”Automating” a rule means to enforce the rule
through automation. In general, an enforcement policy needs to be specified for each
rule and putting an obligation on the system or process as to exactly how, when, and
where the system or process will enforce the SBVR rules. That is, there should be a
rule or a set of rules for each automatable rule about how each of them will be
enforced by the system and this paper, tries to develop those set of rules. This is non-
trivial, as there are often several options available, and it is a system design choice
which one to use. Additionally, the enforcement may be complex, involving many
steps and coordinated activity to enforce the rule. This information is generally not in
the automatable rule itself, but involves other considerations too such as complexity
of the English language, construction of the SBVR rules etc.

Here in this paper, we take SBVR rules as our input and transform it into a class
model using grammar and parse tree approach. We then validate the proposed design
using MagicDraw software [8] with VeTIS plugin. VeTIS plugin was proposed by the
Department of Information Systems, Kaunas University of Technology, Lithuania.
Additionally, the proposed approach is validated using the unified approach proposed
by Bahrami [1]. In this way, the proposed design algorithm can be checked for its
theoretical and practical correctness.

The paper is organized as follows: Section 2 presents the background information
onOOA and SBVR. In Section 3, previous related work is described. The methodology
describing the parsing of SBVR rules to facilitate the transformation into Class
Diagram is explained in Section 4. The experimental results are presented in Section 5
to provide an example with VeTIS tool [7]. In this section, various other approaches by
which we automatically transform the business vocabulary and rules written in SBVR
into UML Class Diagram are presented. Finally, Section 6 concludes the paper.

2 Background

OOA
Object-oriented analysis (OOA) is the process of extracting the needs of a system to
satisfy the user’s requirements. The goal of OOA is to understand the domain of the
problem and the system’s responsibilities by understanding how the users will use the
system. This is accomplished by constructing several models of the system. Models
concentrate on describing what the system does rather than how it does. Separating
the behavior of a system from the way it is implemented requires viewing the system
from the user’s perspective rather than that of the machine [1].

 Transformation of SBVR Business Rules to UML Class Model 279

SBVR
The Semantics of Business Vocabulary and Business Rules (SBVR) [2] is an adopted
standard of the Object Management Group (OMG)[9] intended to be the basis for
formal and detailed natural language declarative description of a complex entity such
as a business. SBVR is intended to formalize complex compliance rules, such as
operational rules for an enterprise, security policy, standard compliance, or regulatory
compliance rules. Such formal vocabularies and rules can be interpreted and used by
computer systems [2].

Figure 1 shows the model driven architecture in OMG. SBVR comes under the
business model section of the MDA (Model Driven Architecture) which can undergo
transformation in order to generate elements required to generate Class Models.

Fig. 1. Position of SBVR in Model-Driven Architecture in OMG [2]

3 Related Work

In the last decade, a number of software tools have been designed and implemented to
facilitate in automatic generation of UML class model from natural languages, such as
SBeaVeR [10] and VeTIS [7]. In the following, we provide a brief survey of these
approaches.

Paper [4] attempts dynamic generation of the OCL (Object-Constraint Language)
constraints from the NL (Natural Language) specification provided by the user. The
input text in natural language is parsed to form a set of business rules which are
finally translated to OCL expressions as the output.

Paper [6] presents a methodology to generate UML AD (Activity Diagram), SD
(Sequence Diagram) and CD (Class Diagram) from the SBVR model driven business
design. The paper attempts to bridge the gap between business people and IT people,
by converting business designs into platform independent UML Activity Diagram,
Sequence Diagram and Class Diagram.

SBeaVeReditor [10] is an Eclipse based plugin that allows business modelers and
analysts to create fact-oriented business models and rules based on OMG's SBVR
standard. SBeaVeR provides a tool for formalizing the semantics of business
knowledge using the Structured English notation.

280 S. Awasthi and A. Nayak

VeTIS tool [7] is SBVR-compliant plug-in for the CASE tool MagicDraw, which
can also be used as a standalone tool. The user interface of VeTIS was developed on
the basis of SBeaVeR an Eclipse plug-in, which was a part of the Digital Business
Ecosystem project. VeTIS tool is used for the definition of Business Vocabularies and
Business Rules using controlled natural language (a subset of English language) and
for transformation of SBVR specifications into UML class diagrams with OCL
constraints.

However, our survey reveals that these tools are limited to verify the syntax and
type checking of the already written SBVR rule. In this paper a methodology has been
proposed to use SBVR rules taken from the natural language by using a technique
presented in paper [6]. Then, we generate a class model based on the SBVR rules and
further verify our investigations in the experimental results.

4 Methodology

A) Pre-processing: NL to SBVR Rules
The first stage in our approach is lexical processing, which processes an input text in
SBVR. In lexical processing the input is a plain text file containing English
description of the target SBVR business rule. The output is an array list that contains
tokens with their associated lexical information. The lexical processing steps are
performed in the following sequence:

1.Tokenization: In first step, the input English text is read and tokenized to identify
the tokens.

2.Sentence Splitting: The sentence splitter identifies the margins of a sentence and
each sentence is separately stored.

3.Identification: After performing the previous steps all nouns and verbs are
identified. These identified nouns form the class names whereas verbs form the
methods of that class. The Fact Types and Quantifiers are also identified during this
phase.

The following mapping rules assist in identifying different SBVR elements for the
subsequent stages. Basic SBVR elements such as noun concept, individual concept,
object type, verb concepts, etc. are identified from the English input [4].

• All proper nouns are mapped to the individual concepts
• All common nouns appearing in subject part are mapped to the noun

concepts or general concept
• All common nouns appearing in object part are mapped to object type
• All action verbs are mapped to verb concepts
• All auxiliary verbs and noun concepts are mapped to the fact types
• The adjectives and possessive nouns (i.e. ending in’s or coming after ‘of’)

are mapped to the attributes
• All articles and cardinal numbers are mapped to quantification

The above rules are applied to the English text and the output is stored in an array list.
The example shown in Figure 2 highlights the proposition of basic SBVR elements in
a typical SBVR rule.

 Transformation of SBVR Business Rules to UML Class Model 281

Ex: A person’s age must be 18 years.

Fig. 2. Semantic analysis of English text

The second stage in our approach is parsing the SBVR rules corresponding to
natural text into various elements. These elements are stored in the form of a table.
Figure 2 gives the semantic analysis of English text based on which the SBVR rules
are generated to give the statement a less ambiguous meaning. This table will depict
various classes, their attributes, relationships between other classes etc., which can
assist a Business Analyst in drawing a class diagram manually.

B) Transformation of SBVR Rules into Class Diagram
In this paper, two algorithms are proposed to convert business rules into class
diagram. In the first algorithm Algorithm-A1, the business rules are parsed one by one
for nouns, verbs, fact types and quantifiers after defining the type of the business rule.

Figure 3 present the composition of business rules into various components. Here
BR is Business Rule, TBR is Type of Business Rule, SIS is for Search in Statement,
Q is Quantifier, N is Noun, V is Verb, and FT is Fact Type.

Fig. 3. Division of business rules into various categories

The various phases to parse the specified business rules are explained as follows:

Phase 1:
The given SBVR business rules as input are parsed one at a time. During parsing, the
type of the business rule is specified as one of the following types.

1. Structural Business Rules
2. Definitional Business Rules
3. Operative Business Rules
4. Behavioral Business Rules

Phase 2:
Now, for each Business Rule (BR), every word is parsed to identify its category as
Quantifiers, Nouns, Fact Types or Verbs. The category to which the word belongs to
is pushed into its respective stack. The word which doesn’t belong to either of the

282 S. Awasthi and A. Nayak

specified categories is pushed into a temporary stack. Each time a word is pushed into
a stack its respective counter is incremented. At the end of this activity, we get a stack
of all elements together which will be used to create the class diagram. Let us name
this stack as ‘main_stack’.

The stack data structures helps in preserving the actual elements by eliminating the
repetitive elements and is best for such applications where frequent updating of the
elements stored in them is required.

Phase 3:
First, for the noun stack each element is popped out of the main_stack one by one and
is matched with the class rules. If the popped element qualifies the rules for being a
class then the element is pushed into class stack else if the element is a noun but not
qualified to be a class, it is pushed into the attribute stack. If both the conditions for
the noun fail, the element is pushed back into the main_stack.

Similarly, the remaining elements in the main_stack are matched with respective
rules one by one for verb, fact type and quantifier and the qualifying elements are
pushed into their respective stacks. If the rules are satisfied, for verb, the element is
pushed into the method stack.

The fact types and quantifiers are used for defining the association between two
classes. After Phase 3, all the stacks such as noun, verb, fact type and quantifier stacks
are cleared. These steps are repeated for all the business rules. Note that before
pushing an element into any of the stacks, it is checked if the element is already
present in that stack. If present, it is not pushed to the stack.

In the second algorithm, each of the stacks is used to create the class diagram, first
using the noun stack based on the rules. Algorithm A2 gives a flow of how all the
steps are to be followed. First, each Business rule is traversed for the fact type. If the
fact type exists, its respective classes are associated using the predefined association
rules. The qualifying class rules, attributes rules, association rules and quantifiers for
the business rules are referenced from guidelines proposed by Bahrami [1].

Implementation
The following algorithms give the step by step process to be followed to extract the
components and then use these components to get a close proximity class diagram for
the given rules.

Algorithm A1
start

Step 1: for (each BR k of n)

{
Current_rule rules[k]
Type = TBR (Current_rule)

// search in statement BR

Step 2: while (! End_of_line)

{
 for each word w
 {

 Transformation of SBVR Business Rules to UML Class Model 283

 if (w=noun)
 Stack_noun push (w)
 N_count = N_count+1

else if (w=verb)
 Stack_verb push (w)
 V_count = V_count+1

else if (w=fact_type)
 Stack_ft push (w)
 Ft_count = Ft_count+1

else if (w=Quantifier)
 Stack_q push (w)
 Q_count=Q_count+1
 }

}

Step 3: The elements are put into their respective

stacks

for (i=0; i<N_count ; i++)
{

 Element pop (Stack_noun)
 N_count = N_count – 1;

if (Class_rules (Element))
 Classes push (Element)
 C = C+1

else
 Attributes push(Element)
 A = A+1

 }

for (i=0; i<V_count;i++)
{
Element pop (stack_verb)
V_count = V_count – 1
Methods push(Element)
M=M+1
}

clear_stack(stack_noun)
clear_stack(stack_verb)
} // end the top most for loop

end

284 S. Awasthi and A. Nayak

Algorithm-A1 shows how the SBVR rules are parsed to get various elements for
the class diagram. Here BR is a Business rule, n is the total number of business rules,
TBR is type of business rule Structural, Definitive, Operative or Behavioral. The
Current_rule is the rule being parsed presently. The variable ‘w’ holds the word for
the Current_rule from the beginning to end to check for the qualifiers. N_count,
V_count, Ft_count and Q_count keep the count of nouns, verbs, fact type and
quantifiers respectively.

Algorithm A2:

start
Step 1: create classes
 while (classes stack not empty)
 {

Current_classpop(classes)
 Create_class (Current_class)
 C = C-1

}

Step 2: insert attributes into empty classes created
while (attributes stack not empty)
{
Current_attributepop(attributes)
for (each BR k of n BRs)
{
Current_rule rules[k]
search Current_attribute in Current_rule

if (Current_attribute in Current_rule)
{
Current_class pop (classes)
if (Current_class in Current_rule)

{
insert_attribute(Current_class,

Current_attribute)
 C = C – 1

A = A – 1
}

}
}

Step 3: insert methods into their respective classes
while (methods stack not empty)
{
Current_methodpop(methods)
 for (each BR k of n BRs)
 {
 Current_rule rules[k]

 Transformation of SBVR Business Rules to UML Class Model 285

search Current_method in Current_rule
if (Current_method in Current_rule)

 {
 Current_class pop (Classes)

if (Current_class in Current_rule)
{
insert_method (Current_class, Current_method)

 C = C – 1
M = M – 1

}
}
}

Step 4:find relations between the classes

search each Fact_type in BRs
if (Fact_type exists in Current_BR)
{
for each class in Class stack
if (Current_class exists in Current_BR)
{
if the same fact_type exists in the other BR
create_association(Classes)

}
}

Step 5: use the stack_quantifiers to set the association
rules between the classes associated

end

Algorithm A2 comprises of 5 steps. In the first step, the nouns are popped of the

noun stack and classes are created. In step 2 the attributes are inserted into the classes
created in the previous step using the Business Rules. In step 3 the methods are
inserted into their respective classes. In step 4 and 5 the fact type and quantifiers are
used to create associations between the classes.

The summary of the algorithms are as follows. Algorithm-A1 is for transformation
of SBVR rules into various elements. This algorithm shows how to process a SBVR
rule to get class diagram components. Algorithm-A2 uses the components extracted
above to create the final class diagram. In other words, at the end of algorithm A1 we
get various components required to draw the relevant class diagram. Algorithm A2 is
used to use these components to get associations and relationship between the classes.

5 Experimental Results

VeTIS tool [7] is used for the definition of Business Vocabularies and Business
Rules using controlled natural language (a subset of English language) and for

286 S. Awasthi and A. Nayak

transformation of SBVR specifications into UML class diagrams with OCL
constraints. The SBVR rules developed from the natural language become the input
for deriving the various components of the class diagram. MagicDraw [8] software is
used to create different types of UML diagrams. The VeTIS tool is a plugin which is
installed on MagicDraw. The resultant diagram generated by VeTIS is created in
MagicDraw project.

Figure 4 illustrates our methodology by taking an example of a business rule stated
as Example Business rule 1. When the proposed algorithms are applied to the given
business rule(s), the class diagram in Figure 4 is obtained. Based on the given BR, the
reader can verify the results by creating a class diagram using the proposed algorithms
or by treating the BRs as problem statement and manually creating the class diagram.

Fig. 4. Example 1 Class diagram

Example Business rule 1: It is necessary that a person has exactly one loan.

Here, Person and Loan qualify as classes. The association is formed by the terms
‘necessary’ and ‘has’. Figure 4 shows the class diagram obtained for the above
business rule. The class diagram has been validated using VeTIS tool. Figure 5 shows
the snapshot of VeTIS editor with our example business rule as input. Figure 6 depicts
the corresponding class diagram generated. The above example clarifies the procedure
for obtaining the class diagram and validation process [7].

Fig. 5. Business rule in the VeTIS tool

 Transformation of SBVR Business Rules to UML Class Model 287

Fig. 6. Class diagram generated by the business rule specified in the VeTIS tool

Another example of a business rule is stated below as Example Business rule 2
with its class diagram in Fig.7.

Example Business rule 2:

It is necessary that a person owns at least 1 account.
It is necessary that a person owns at most 5 account.
It is necessary that the account is owned by exactly one person.

Fig. 7. Example 2 Class diagram

A similar diagram will be generated if the proposed approach is applied for the given
BRs. However, the accountNumber and personCode attributes are generated by
VeTIS tool only. When the business rules have been defined in the VeTIS editor it
has to be exported to MagicDraw UML tool so that it can be pictorially represented in
the form of a class diagram. At present, our theoretical approach is limited only for
generation of class diagram from the business rules and not directly from the natural
language specifications.

6 Summary

This paper first briefs about how natural language can be converted into more
specific, business rules using existing approaches. Then, a theoretical approach is
applied to extract various components from SBVR rules. Algorithm A1 deals with
extracting the various elements of the class diagram from the SBVR rules. Algorithm
A2 deals with how each of these extracted elements can be used to create a class
diagram. Further, the results obtained via these algorithms have been verified using a
plugin, VeTIS used with the MagicDraw software.

288 S. Awasthi and A. Nayak

This paper gives a direction for the people working in software engineering
community showing transition from ambiguous natural language specification to
more specific SBVR rules to finally a class diagram. Hence, the reader gets an
overview of entire processing from requirements to the final class diagram. The
theoretical algorithms are an attempt to present an approach for automation of
creating class diagrams. Even if the algorithms are followed manually, they give a
more accurate way for class diagram formation.

References

1. Baharami, A.: Object-oriented System development. McGraw-Hill Publications (1999)
2. SBVR: Semantics of Business Vocabulary and Business Rules, v1.0. Object Management

Group (January 2008), http://www.omg.org/spec/SBVR/1.0/PDF
3. Semantics of Business Vocabulary and Business Rules, Wikipedia,

http://en.wikipedia.org/wiki/
Semantics_of_Business_Vocabulary_and_Business_Rules

4. Bajwa, I.S., Lee, M.G., Bordbar, B.: SBVR Business Rules Generation from Natural
Language Specification. In: Proceedings of Artificial Intelligence for Business Agility,
AAAI 2011 Spring Symposium, USA (2011)

5. Object-orientedanalysis and design, Wikipedia,
http://en.wikipedia.org/wiki/
Object-oriented_analysis_and_design

6. Raj, A., Prabhakar, T.V., Hendryx, S.: Transformation of SBVR Business Design to UML
Models. In: Proceedings of the First India Software Engineering Conference, ISEC,
Hyderabad, India (2008)

7. VeTIS User Guide,
http://www.magicdraw.com/files/manuals/VeTISUserGuide.pdf

8. MagicDraw homepage, https://www.magicdraw.com/
9. UML 2.3 homepage, http://www.omg.org/spec/UML/2.3/

10. SBeaVeR host webpage, http://SBeaVeR.sourceforge.net/

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 289–300, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Representation of the Event Bush Approach
in Terms of Directed Hypergraphs

Cyril A. Pshenichny and Dmity I. Mouromtsev

Intellectual Systems Laboratory, National Research University of Information Technologies,
Mechanics and Optics, Kronverksky Prospect, 49, St. Petersburg 197101, Russia

cpshenichny@yandex.ru, d.muromtsev@gmail.com

Abstract. The paper discusses the relation between a novel approach of
knowledge engineering, the event bush, and the formalism of directed
hypergraph. Despite the seemingly obvious similarity, the relation appears to be
far from transparent. However, if formulated accurately, it may give a handy
demonstration tool for the event bush approach and open a new avenue of
research in directed hypergraph theory.

Keywords: event bush, directed hypergraph, vulgar bush, knowledge
engineering.

1 Introduction

Traditional knowledge representation tools (OWL, KIF, RDF, ER, N3 and many
others) operate with objects considered either as classes (i.e., types: concept types or
relation types) or as individuals [3]. This has proven to be efficient for a wide range of
tasks like building data models and search algorithms or description of those domains
in which things, their properties and relations are considered fixed – e.g., production
units of a factory or biological species. Nevertheless, there are tasks in natural-
scientific and technical domains that urge us to analyze not relations between the
objects but relations between their combinations in a form of statements. The latter
relations are based on relations between the objects but cannot be reduced to these.
For instance, considering the notion, “when the bus comes, people at the bus stop
stand up”, we deal not with relations between the objects “bus”, “to come”, “people”,
“stop”, “to stand up”, but between the events “bus comes” and “people stand up”.
Conceptual graphs add action to statements and treat verbs, which denote it, as names
of specific classes (e.g., classes “to come” or “to stand”). However, this can be only a
part of solution, because in some cases one needs to consider operations between
statements per se. These operations could be not only logical, as was shown by Rieger
[7] who attempted to formalize some common-sense relations between events.
Methods that organize knowledge in a form of statements united by operations make
up a separate group and unlikely can be substituted by traditional tools of knowledge
representation, mainly because they allow an object to change its properties and
relations and even transform to another object. Such a change can be considered as

290 C.A. Pshenichny and D.I. Mouromtsev

event. This gave ground to Pshenichny and Kanzheleva [5] to recognize object-based
and event-based methods, which should address static and dynamic knowledge,
correspondingly (herewith, not only classical ontologies but also conceptual graphs,
dynamic and process ontologies must be regarded as object-based, as they view
dynamic knowledge in a “static” way). Event-based methods include influence
diagrams, sequence diagrams, Petri nets, event/probability trees, Bayesian belief
networks, causal loops and other approaches. They allow to show scenarios of
evolution of some domains and relations between the events.

However, while the semantics of object-based methods is well defined, that of
event-based ones remains quite loose. Even the statements there are not always
explicitly put. To cope with this shortcoming and suggest an event-based method that
would be as detailed semantically as the object-based ones, the event bush was
proposed [6]. It will be described below based on the most recent publication [5].

This method, suggested first mainly for the geosciences, is gaining importance in
other fields, e.g., decision support in marketing [4]. Nevertheless, its formal basement
is still being elaborated. Therefore, it looks pertinent to compare this method with
existing mathematical and logical formalisms used in the knowledge engineering to
find out whether and how they relate to each other. Graphs have been commonly used
to visualize both static and dynamic knowledge representation tools. Among the
graphs, based on structural similarity, directed hypergraph [2] is the first candidate to
be examined for representation of the event bush. The present paper aims to do this,
proceeding from syntactic fundamentals of the method to its connectives and
inference and, finally, discussing pros and cons of hypergraph formalization of the
event bush.

2 Basic Syntax of the Event Bush

The event bush was designed to address a particular kind of modeling environment,
often observed in the Earth science domain but also occurring in many others – that of
directed alternative changes [5]. This type of environment can be metaphorized as an
arena for various, intertangling processes, which are thought to originate from a
limited number of causes or sources (but not less than two), tend to leave a definable
result and can be followed as more or less distinct scenarios.

Formalisms describing such environments are expressed graphically as constructions
having many “roots” or net-shaped, allowing various paths at least between some of the
nodes, and permitting local cycles, i.e., notations strongly resembling graphs and likely
interpretable as such. Many of the abovementioned event-based notations apply to these
environments, excluding tree-shaped (event/probability trees, Bayesian trees) and
completely cyclic ones (e.g., causal loops).

The environment of directed alternative changes is described by the event bush as a
set of events of four types arranged in certain order (defined as multiflow structure –
see Fig. 1) and connected by special connectives.

 Representation of the Event Bush Approach in Terms of Directed Hypergraphs 291

Fig. 1. Syntax of basic blocks of event bush – a multiflow structure

The events of the event bush fall into following classes, or types.

(ia) Primary internal events. These are primary, non-unique inputs representing the
“passive conditions”. These would determine any further course of events
("happenings").
(ib) Primary external events meaning the “invading agents”. They may affect basic
inputs or influence their further, indirect manifestations, thus "shaping up" different
"happenings".
(ii) Secondary events that result from primary internal inputs with or without the
contribution of primary external ones – the "happenings" proper formulated in a strict
concise way indicating their core features determined by the causes, following the
principle “one more cause – one change of event”.
(iii) Tertiary events that denote end results, or products, generated either by primary
internal or by secondary events, with or without primary external ones. Tertiary
events document the completed "happenings".

Any event in event bush is uniquely characterized by the set of subjects, set of
predicates and type (ia, ib, ii or iii) and, in some cases, generality. Two primary
events may not have similar subject.

This structure can be projected on the formalism of directed hypergraph.
In mathematics, hypergraph is a generalization of graph in which an arc can connect

any number of vertices. Formally, a hypergraph is a pair G= (V,E), where V={v1, v2,...,
vn} is the set of vertices (or nodes) and E={E1, E2,..., Em}, with Ei ⊆ V for i=1,…, m, is the
set of non-empty subsets of V called hyperedges, or arcs [2]. However, as “E” is reserved
in the event bush semantics for “event”, i.e., node, henceforth we will denote hypergraph
as G=(E,A), E standing for the set of events, or nodes, and A, for the set of arcs, or
hyperedges. Also, not to confuse “hypergraph” and “hyperarc head” (see below), the
symbol “H” will be used for the latter, and the hypergraph proper, though commonly
denoted as “H” in the literature, is henceforth designated as “G”.

In the event bush, E is a set consisting of non-empty disjoint subsets Ia, Ib, II and
III, where Ia are nodes describing primary internal events, Ib, nodes describing
primary external events, II, nodes describing secondary, and III, tertiary events. Every
node in the event bush belongs simultaneously, first, either to Ia, or to Ib, or to II or to

292 C.A. Pshenichny and D.I. Mouromtsev

III, and then, at least to one arc. Nodes belonging to Ia are denoted as ia, those
belonging to Ib, ib, to II, ii, and to III, iii.

In general, one can say that any node of the event bush describes an event, which is
a verbal expression having general form “S is P” where S is subject, and P, predicate
or predicates: E={Ei, i=1, 2, …, n}, Ei being “S is P”.

A, by definition, is a subset of Ρ(E)\{∅}, Ρ(E) being the power set of E.
Directed arc in the event bush is an ordered pair, A = (X,Y), of necessarily non-empty

disjoint subsets of vertices (which is a restriction to the hypergraph theory which
normally allows X and Y be empty); X is the tail of A while Y is its head. In the following,
the tail and the head of arc A will be denoted by T(A) and H(A), respectively.

The subsets Ia, Ib, II and III can be defined as follows,
Ia includes nodes that necessarily are in the head of at least one arc and may not be in
the tail of any arc;
Ib includes nodes that necessarily are in the head of at least one arc if this head
includes one more node of different type and may not be in the tail of any arc;
II includes nodes that necessarily are in the head of at least one arc and in the tail of at
least one arc;
III includes nodes that necessarily are in the tail of at least one arc and may not be in
the head of any arc.

The arcs of event bush meet the following requirements:

• not a single node can be in the tail and head of similar arc;
• not a single ia node can be in the head of any arc;
• not a single ib node can be in the head of any arc;
• every ia node must be in the tail of at least one arc;
• every ib node must be in the tail of at least one arc, and in this case the tail consists

of two nodes and includes, along with the ib, one ia or ii node;
• not a single iii node can be in the tail of any arc;
• every iii node is in the head of only one arc and no other nodes are in the head of this

arc;
• every ii node is in the tail of at least one arc and in the head of at least one arc;
• if an ai node is alone in the tail of an arc, only one ii or iii node can be in the head

of the same arc;
• if an ai node is in the tail of an arc not alone, it may be accompanied there only by

one ib or one ii nodes;
• two ai nodes cannot occur in the tail of one arc;
• no arc with empty tail or head is allowed;
• no arc that simultaneously has a head having more than one node and a tail having

more than one node is allowed.

In terms of backward and forward arcs (b-arcs and f-arcs), the above requirements can
be reformulated as follows (here we have to add simple one-to-one arcs not
considered by Gallo et al. [2]).

Allowed one-to-one-arcs include

• T(ia), H(ii),
• T(ia), H(iii),

 Representation of the Event Bush Approach in Terms of Directed Hypergraphs 293

• T(ii), H(ii),
• T(iii), H(ii).

Allowed b-arcs include

• T(ia, ib), H(ii),
• T(ii, ib), H(ii),
• T(ii, ii), H(ii),
• T(ii, ii, …, ii), H(ii).

Allowed f-arcs include T(ii), H(ii, ii, …, ii).

3 Event Bush Connectives and Inference

Inference in the event bush still needs to be elaborated but in general it is governed by
the connectives defined as follows, taking e as an individual event, or, mathematically
speaking, an element of E.

Flux connective (Fig. 2, a) describes one event (ei) producing another (ej):
ei Flux ej.

Influx connective (Fig. 2, b) describes two events (ei, ej) producing another (ek),
but playing different roles (this will be described below):

ei, ej Influx ek.

Furcation connective (Fig. 2, c) describes production of multiple events (ei+1, e i+2,
…, en) by one (ei):

ei Furcation ei+1, ei+2, …, en.

Conflux connective (Fig. 2, d) describes production of one event (en) by multiple
events (ei, ei+1, ei+2, …, en-1):

ei, ei+1, ei+2, …, en-1 Conflux en.

Fig. 2. Graphic notation for the connectives of the event bush: (a), flux, (b), influx, (c),
furcation, (d), conflux,; e1, e2, …, en are connected events

294 C.A. Pshenichny and D.I. Mouromtsev

Depending on the of event in the bush (ia, ib, ii or iii) and type of change (there can
change subject, predicate or both; also, some particular modes of change are
specified) there exist different modi of the connectives.

Flux connective:
ii SiPk Flux Modus 1 ii SjPk,
ii SiPk Flux Modus 2 ii SjPl,

ii SiPj Flux Modus 3 ii SPjPSi,
ii Si~Pk Flux Modus 4 ii SiPk, ii SiPk Flux Modus 4 ii Si~Pk,

ia SiPj Flux Modus 5 ii SiPj, ii SiPj Flux Modus 5 iii SiPj, ia SiPj Flux Modus 5 iii SiPj,
ia any SiPj Flux Modus 6 ii some SiPj,
ii any SiPj Flux Modus 6 ii some SiPj.

Furcation connective:
ii SiPjPkPl Furcation Modus 1 ii SiPj~PkPl, ii SiPjPk~Pl,

ii SiPl Furcation Modus 2 ii SjPl, ii SkPl.
Conflux connective:

ii SiPk, ii SjPk Conflux Modus 1 ii SPkPSiPSj,
ii SiPi, ii SjPi Conflux Modus 2 ii SSiSjPi,

ii some SiPj, ii some SiPj Conflux Modus 3 ii any SiPj.

For detail, the reader is referred to [5].
An example of event bush used in volcanological studies is given below. It

describes an environment presented in Fig. 3.

Fig. 3. Described environment: slope of Mt. Etna, Sicily, near Rifugio Sapienza; photo by
C. Pshenichny

The event bush for this environment is presented in Fig. 4 (see also Appendix).
The event bush connectives can be represented by the following types of arcs of

directed hypergraph. Flux is a one-to-one arc. Subtypes of flux include T(ia), H(ii);
T(ia), H(iii); T(ii), H(ii) and T(iii), H(iii). Six modi of flux fit these subtypes: T(ia),
H(ii) – one case of modus 5, one case of modus 6, T(ia), H(iii) – one case of modus 5,
T(ii), H(ii) – modi 1, 2, 3, 4, one case of modus 6, T(iii), H(ii) – one case of modus 5.
Similarly other connectives can be treated.

 Representation of the Event Bush Approach in Terms of Directed Hypergraphs 295

F
ig

. 4
.

T
he

 e
ve

nt
 b

us
h

ex
pl

ai
ni

ng
 h

ow
 t

he
 o

bs
er

ve
d

bo
di

es
 w

er
e

fo
rm

ed
 a

nd
 w

ha
t

ot
he

r
bo

di
es

 h
ad

 t
o

co
ge

ne
ti

ca
ll

y
fo

rm
 b

el
ow

 t
he

 s
ur

fa
ce

 o
r

co
ul

d
al

te
rn

at
iv

el
y

fo
rm

 o
n

an
d

be
lo

w
 th

e
su

rf
ac

e
in

 th
e

de
sc

ri
be

d
en

vi
ro

nm
en

t.
S

ee
 te

xt
ua

l d
es

cr
ip

tio
n

in
 A

pp
en

di
x.

296 C.A. Pshenichny and D.I. Mouromtsev

A path Pst, of length q, in hypergraph G=(E,A) is a sequence of nodes and arcs
Pst=(e1=s, Ai1, e2, Ai2, ..., Aiq, eq+1=t), where:

s ∈ (Ai1), t ∈ H(Aiq), and ej ∈ (Aij-1)∩T(Aij), j = 2, ..., q.

Nodes s and t are the origin and the destination of Pst, respectively, and we say that t
is connected to s.

In the event bush, any path is a subpath of a “full” path that goes from an ai or ib
node to an iii node (and this path can be considered a subpath of itself). Such “full
paths” are termed flows of events, or just flows, in the event bush terminology.
Therefore, one can put forth that every ai and ib node is an origin, and every iii node,
destination of one or several flows.

Flows begin either with flux modus 5 that includes ia or with influx that includes
ib. Then, at every influx two paths (and flows) become one, at every conflux several
paths (and flows) become one, at every furcation, on the contrary, one path (flow)
becomes several. All flows end up with a one-to-one arc corresponding to flux modus
5 – either T(ii), H(iii), or T(ia), H(iii), and a iii node as destination. Thus each ii and
iii node appears directly or indirectly connected either to ia, or to a pair of ia and ib,
or to a pair of ii and ib, or to a pair of two ii nodes united by influx, and each such
pair and each ia node alone necessarily lead to ii and iii nodes. Cycles are enabled in
the event bush only for ii nodes; ia, ib and iii nodes may not enter cycles. Therefore,
no cyclic paths are possible in the event bush, only paths that include local cycles in
the ii zone.

Obviously, due to obligatory presence of influx, the paths in the event bush are
either simple one-to-one, or b-paths. If furcation is added, f- and/or bf-paths appear.

4 Discussion: Resolved and Unresolved Issues

Obviously, hypergraph does not discern modi 1-4 but unnecessarily divides modus 5
and modus 6; nonetheless, the connective of flux in general does correspond to one-
to-one type of arc.

Influx is a kind of b-arc with two nodes in the tail: T(ia, ib), H(ii); T(ii, ib), H(ii);
and T(ii, ii), H(ii). However, the latter case of influx with two ii nodes formally
cannot be discerned from conflux with the same set of nodes in the causal (“tail”)
part, while semantically the difference is principal and crucial for the event bush, as
shown in many publications (see, e.g., [1; 4]). Besides, no modi are recognized in
influx, so three different b-arcs do not reflect any valuable distinction in meaning or
usage of this connective except for the fact that the influx involving ib node is
essential for the event bush along with the flux connective (see below), while others
are optional.

Furcation is an f-arc of the only permitted type, T(ii), H(ii, ii, …, ii). Two modi
recognized in this connective are not pronounced in hypergraph structure. Conflux is
a b-arc of the type T(ii, ii, …, ii), H(ii). Its two modi are not pronounced either.
Moreover, in one particular case, if the number of nodes in the tail is two, the conflux
per se is not discernable from one type of influx, as was stated above.

In general, one may say that directed hypergraph can define the basic syntax and
connectives of the event bush but cannot, its semantics and modi of connectives.

 Representation of the Event Bush Approach in Terms of Directed Hypergraphs 297

Therefore, generally speaking, directed hypergraph in its present form does not
support inference in the event bush and cannot be used for formal definition of this
method. However, given the extension of directed hypergraph accounting for
semantics of verbal expressions in vertices, the modi of all event bush connectives
may be defined and discerned. If such extension is elaborated (with all the corollaries
constraining the paths in the graph), the event bush could be considered a particular
case of semantically-sensitive directed hypergraph. At present, the event bush in
terms of directed hypergraph can be termed as “vulgar bush” having the set of
connectives the same as the event bush except the conflux (which is optional), but no
semantic rules, which make up the virtue of this approach [6]. However, yet in this
perverted form, it can be useful at least for demonstration purposes, and this alone
urges us to examine further how it fits the directed hypergraph formalism.

By the definition of event bush, it must include flux and influx and may, though
not necessarily does, have furcation and conflux. In the vulgar bush, conflux should
be omitted, as shown above. However, this definition may be constrained further: flux
modus 5 involving ia and iii nodes and influx involving ib node are required for the
event/vulgar bush. In terms of hypergraph, this can be put down as follows: subsets
T(ia), H(iii) and T(ia, ib), H(ii) are necessarily non-empty. This, in turn, implies that
at least one more flux, T(ii), H(iii), is not empty too. Other arcs may be empty
(sub)sets. Here the hypergraph notation definitely helps define things more precisely.
Hence, the event bush in general case can be viewed as a kind of BF-hypergraph, but
in absence of conflux and furcation it becomes a B-hypergraph.

Multiple arcs with the same set of nodes are not allowed, i.e., the event bush
cannot be multigraph. Symmetric image for an event bush is a hypergraph but is not
an event bush.

As is seen from the above, connectives are arbitrary sets of nodes and can therefore
contain an arbitrary number of nodes. Even in the simplest case, if the bush has only
flux and influx, yet these two have different cardinality and therefore cannot form a
K-uniform hypergraph.

The same time, the event bush/vulgar bush can be regarded as clutter, where no arc
appears as a subset of another arc, though several arcs may have similar tail or similar
head, i.e., in terms of sets theory, arcs of the event bush do intersect.

Further implications can be made from the directed hypergraph formalism to the
event bush approach, but this seems pertinent with development of ad hoc extension
of the said formalism accounting for semantic rules of the event bush.

5 Conclusions

1. The event bush basic syntax can be well defined in terms of directed hypergraph,
and this gives ground to introduce a concept of vulgar bush, which may be useful for
demonstration purposes and some straightforward applications..
2. Nevertheless, semantics of the event bush cannot be adequately represented in
terms of directed hypergraph, because the latter is ignorant to the event formation
rules and, hence, fails to define the modi of the event bush connectives.
3. If an extension of directed hypergraph theory is developed to account for semantics
of verbal expressions that may be associated with its vertices, this will open an

298 C.A. Pshenichny and D.I. Mouromtsev

opportunity to entirely formalize the event bush as a semantically restricted (or
semantically sensitive) directed hypergraph.

Acknowledgements. The authors are deeply obliged to Dmitry Ignatov whose
enthusiasm largely fueled up the creation of this paper; also, Sergey Nikolenko, Anthony
Yakovlev, Oksana Kanzheleva and Roberto Carniel should be thanked for their vigorous
discussion of the issue in 2008-2010.

References

1. Carniel, R., Pshenichny, C., Khrabrykh, Z., Shterkhun, V., Pascolo, P.: Modeling Models:
Understanding of Structure of Geophysical Knowledge by Means of the Event Bush
Method. In: Marschallinger, R., Zobl, F. (eds.) IAMG Proceedings, Salzburg. Mathematical
Geosciences at the Crossroads of Theory and Practice, Salzburg, pp. 1336–1350 (September
2011)

2. Gallo, G., Longo, G., Nguyen, S., Pallottino, S.: Directed hypergraphs and applications.
Discrete Applied Mathematics 42, 177–201 (1993)

3. Martin, P.: Knowledge Representation in CGLF, CGIF, KIF, Frame-CG and Formalized-
English. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI),
vol. 2393, pp. 77–91. Springer, Heidelberg (2002)

4. Mouromtsev, D.I., Pshenichny, C.A., Yakovlev, A.V.: Semantic and structural delineation
of market scenarios by the event bush method, Submitted to Decision Support Systems and
Electronic Commerce

5. Pshenichny, C.A., Kanzheleva, O.M.: Theoretical foundations of the event bush method. In:
Sinha, K., Gundersen, L., Jackson, J., Arctur, D. (eds.) Societal Challenges and
Geoinformatics. GSA Special Paper 482, pp. 139–165 (2011)

6. Pshenichny, C.A., Nikolenko, S.I., Carniel, R., Vaganov, P.A., Khrabrykh, Z.V.,
Moukhachov, V.P., Akimova-Shterkhun, V.L., Rezyapkin, A.A.: The Event Bush as a
Semantic-based Numerical Approach to Natural Hazard Assessment (Exemplified by
Volcanology). Comp. Geosc. 35, 1017–1034 (2009)

7. Rieger, C.: The common-sense algorithm as a basis for computer models of human
memory, inference, belief and contextual language comprehension. Theoretical Issues in
Natural Language Processing, Cambridge (1973)

Appendix

The event bush plotted in Fig. 4 can be represented in text form as a succession of the
following expressions.

(ia Host rocks exist in volcano without fissures and dislocations) Flux Modus 5 (iii
Host rocks exist in volcano without fissures and dislocations)

(ia Host rocks exist in volcano without fissures and dislocations, ib Fissures develop)
Influx (ii Host rocks in volcano are dissected by fissures yet not dislocated)

(ii Host rocks in volcano are dissected by fissures yet not dislocated) Flux Modus 5
(iii Host rocks in volcano are dissected by fissures yet not dislocated)

 Representation of the Event Bush Approach in Terms of Directed Hypergraphs 299

(ii Host rocks in volcano are dissected by fissures yet not dislocated) Flux Modus 2 (ii
Fissures develop in non-dislocated host rocks of volcano but are not filled with

magma)
(ii Fissures develop in non-dislocated host rocks of volcano but are not filled with

magma) Flux Modus 5 (iii Fissures develop in non-dislocated host rocks of volcano
but are not filled with magma)

(ii Fissures develop in non-dislocated host rocks of volcano but are not filled with
magma, ib Magma ascends) Influx (ii Fissures that develop in non-dislocated host

rocks of volcano are filled with magma)
(ii Fissures that develop in non-dislocated host rocks of volcano are filled with

magma) Flux Modus 3 (ii Magma fills the fissures in non-dislocated host rocks of
volcano)

(ii Magma fills the fissures in non-dislocated host rocks of volcano neither stopping in
the fissures in non-dislocated host rocks of volcano and solidifying nor ascending
through fissures in non-dislocated host rocks of volcano) Furcation Modus 1 (ii

Magma that filled the fissures in non-dislocated host rocks of volcano stops in the
fissures in non-dislocated host rocks of volcano yet does not solidify and does not

ascend through fissures in non-dislocated host rocks of volcano, ii Magma that filled
the fissures in non-dislocated host rocks of volcano does not stop in the fissures and

yet does not solidify in non-dislocated host rocks of volcano but ascends through
fissures in non-dislocated host rocks of volcano)

(ii Magma stops in the fissures in non-dislocated host rocks of volcano and yet does
not solidify) Flux Modus 4 (ii Magma that stopped in the fissures in non-dislocated

host rocks of volcano solidifies in the fissures in non-dislocated host rocks of
volcano)

(ii Magma that stopped in the fissures in non-dislocated host rocks of volcano
solidifies in the fissures in non-dislocated host rocks of volcano) Flux Modus 5 (iii

Magma that stopped in the fissures in non-dislocated host rocks of volcano solidifies
in the fissures in non-dislocated host rocks of volcano)

(ii Fissures develop in non-dislocated host rocks of volcano but are not filled with
magma) Flux Modus 3 (ii Host rocks of volcano are dislocated along fissures not

filled with magma)
(ii Host rocks of volcano are dislocated along fissures not filled with magma) Flux

Modus 5 (iii Host rocks of volcano are dislocated along fissures not filled with
magma)

(ia Undeformed slope without fissures, uncovered by lava exists on volcano) Flux
Modus 5 (iii Undeformed slope without fissures, uncovered by lava exists on volcano)

(ia Undeformed slope without fissures, uncovered by lava exists on volcano, ii
Fissures develop in non-dislocated host rocks of volcano but are not filled with

magma) Influx (ii Undeformed slope of volcano uncovered by lava is dissected by
fissures)

(ia Undeformed slope without fissures, uncovered by lava exists on volcano, ii Host
rocks of volcano are dislocated along fissures not filled with magma) Influx (ii Slope
of volcano uncovered by lava is deformed by host rocks of volcano dislocated along

fissures not filled with magma)

300 C.A. Pshenichny and D.I. Mouromtsev

(ii Slope of volcano uncovered by lava is deformed by host rocks of volcano
dislocated along fissures not filled with magma) Flux Modus 5 (iii Slope of volcano
uncovered by lava is deformed by host rocks of volcano dislocated along fissures not

filled with magma)
(ii Fissures develop in non-dislocated host rocks of volcano but are not filled with

magma, ii Magma ascends through fissures in non-dislocated host rocks of volcano)
Influx (ii Fissures that develop at slope of volcano are filled with magma)

(ii Fissures that develop at slope of volcano are filled with magma) Flux Modus 5 (iii
Fissures at slope of volcano are filled with magma)

(ii Fissures that develop at slope of volcano are filled with magma) Flux Modus 2 (ii
Lava reaches the slope of volcano)

(ii Lava reaches the slope along fissures on slope of volcano yet neither flowing form
fissures nor forming lava cones along fissures) Furcation Modus 1 (ii Lava that

reached the slope along fissures on slope of volcano flows along fissures on slope of
volcano from fissures and does not form lava cones on slope of volcano, ii Lava that
reached the slope along fissures on slope of volcano does not flow along fissures on

slope of volcano but forms lava cones along fissures on slope of volcano)
(ii Lava forms lava cones along fissures on slope of volcano) Flux Modus 3 (ii Lava

cones form and erupt lava along fissures on slope of volcano)
(ii Lava cones form and erupt lava along fissures on slope of volcano) Flux Modus 5

(iii Lava cones form and erupt lava along fissures on slope of volcano)
(ii Lava cones form and erupt lava along fissures on slope of volcano) Flux Modus 2

(ii Lava flows along fissures on slope of volcano from fissures)
(ii Slope of volcano uncovered by lava is deformed by host rocks of volcano

dislocated along fissures not filled with magma, ii Lava forms lava cones along
fissures on slope of volcano) Influx (ii Slope of volcano deformed by host rocks of
volcano dislocated along fissures not filled with magma is covered by lava erupted

from lava cones along fissures)
(ii Slope of volcano deformed by host rocks of volcano dislocated along fissures not
filled with magma is covered by lava erupted from lava cones along fissures) Flux
Mode 5 (iii Slope of volcano deformed by host rocks of volcano dislocated along
fissures not filled with magma is covered by lava erupted from lava cones along

fissures)

Concept Lattices of a Relational Structure

Jens Kötters

Abstract. Conceptual patterns can be described by graphs, entailment
by graph homomorphism. The mapping of a pattern to its set of instanti-
ations, represented as a table, constitutes one half of a Galois connection.
The join operation is the infimum in a complete lattice of tables, and a
most descriptive pattern can be assigned to each table by means of a
categorial product construction. This construction constitutes the other
half of the Galois connection. In this approach, relational structures as-
sume the role of formal contexts in standard Formal Concept Analysis
(FCA). Concepts arise as connected components of powers of these re-
lational structures. The ordered set of these concepts may be conceived
as a navigation space.

Keywords: Formal Concept Analysis, Relational Structures, Category
Theory, Databases.

1 Introduction

The idea of using concept lattices to browse data can be traced back to [7]. In
[7], a set of attributes is considered a query, and the set of objects having all
the attributes (which is a concept extent) is the corresponding result set. The
downward (upward) edges in a lattice’s line diagram indicate the ways in which
a query can be refined (weakened) to effect a minimal change in the result set.
The capability to successively modify queries in this fashion is thought to make
data more accessible to the information seeker.

More advanced applications of lattice-based browsing make use of conceptual
scales to incorporate and distinguish between different types of values in the
data. Relational scales can be used to account for inter-object relations in the
data. The reader is referred to [1,3] for recent applications that treat relational
data. In this paper, we describe mathematically a navigation space akin to those
underlying the mentioned systems, but it is obtained directly from a relational
structure and not by means of relational scaling.

For an example, consider the family tree in Fig. 1. The nodes represent the
family members A(nne), B(ob), C(hris), D(ora) and E(mily). The arcs say that
Anne is the m(other) of Bob and Chris, and Bob is the f(ather) of Dora and
Emily. This graph defines (and visually represents) a relational structure F with
underlying set {A,B,C,D,E}, unary relations � and � and binary relations m
and f . We assume that F also has a p(arent) relation p, which is not drawn here.
In Fig. 2, the nine nodes arranged as a cube form a particular concept lattice.

The concept intents, drawn to the right of each concept, are relational struc-
tures representing conjunctive queries [2]. The black nodes designate the subject(s)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 301–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

302 J. Kötters

A �

C �B �

D � E �

mm

ff

Fig. 1. Example: family tree F

X

A
D
E

�

X

X

A
B
C
D
E

X

X

B
C
D
E

X

p

X

D
E

�

�

�

X

m

f

X

A

X �

�

�

m

f

X

A
B

X
p

X

B

�

X
�

�

m

f

X

m f

��

X

X

B
C

�

�

�

X

�

m m

f

XY

BA
CA
DB
EB

X

Y
p

XY

BA
CA

Y

�

�

�

�

X

m

f

m

XY

BA

Y
�

X

�

�

m

f

Fig. 2. Example: concept lattice CF [{x}] (plus three concepts from CF [{x, y}])

Concept Lattices of a Relational Structure 303

of a query, variable names are assigned to them (technically by a function ν).
The white nodes correspond to existentially quantified variables. The top con-
cept and its lower neighbors (from left to right) are ’person’, ’child’, ’parent’ and
’female’. The concept extents, drawn to the left of each concept, are result sets
of the intent queries. Each result arises from a homomorphism from the intent
to F . Consider now the three lower neighbors of ’child’. The right one can be
identified with ’granddaughter’, but note that the most precise description (the
intent) tells us more. The middle one can not be identified with ’uncle’ because
we do not (and can not) express that the males are different persons. We could
make up a name ”parentship” for the left one, the intent has two free variables
x, y and the extent consists of all instances of ’parentship’. This concept does
not belong to the ”cube” CF [{x}] (the lattice of all concepts definable with one
free variable x), it belongs to the concept lattice CF [{x, y}]. Only three concepts
of CF [{x, y}] are shown in Fig. 2.

Graphs are a natural candidate for the formal representation of queries over
RDF. Chandra and Merlin’s result on query optimization by graph folding [2]
may exemplify on a more general level the benefits of such representation. Pat-
tern Structures [5] formalize the idea of representing concept intents by some
kind of pattern rather than by an attribute set. In [5], the authors mention
Conceptual Graphs and formalize chemical graphs (see also [4]) as examples for
patterns. The notions of homomorphism which accompany these graphs make
their approach seem very similar to the one presented here. A difference is that
in [5], extents are still sets of objects, while here we use tables for their repre-
sentation (although one-column tables are naturally identified with object sets).
One could argue that such a construction is no longer a concept lattice, but in
fact we have identified concepts in the foregoing example.

We will stipulate that concepts are described by connected graphs. However,
the Galois connection in Sect. 5 extends to all windowed structures (i.e. conjunc-
tive queries, Sect. 3), it does not harm to allow even infinite ones. The concept
lattices lie embedded in the complete lattice that arises from this Galois con-
nection (Sect. 6). Before the Galois connection is defined, the preordered class
of windowed structures (Sect. 3) and the complete lattice of tables (Sect.4) are
introduced independent of each other.

2 Preliminaries

A relational signature is a set S of relation symbols. The arity of a symbol R ∈ S
is a natural number |R| ≥ 1. A relational structure over the signature S, also
called an S-structure, is a pair A = (A, (A(R))R∈S), where A(R) ⊆ A|R| for all
R ∈ S. The set A is called the underlying set of A and can also be denoted by
|A|. A homomorphism from an S-structure G1 to an S-structure G2 is a map
ϕ : |G1| → |G2| such that for all R ∈ S and (x1, . . . , x|R|) ∈ G1(R) we have
(ϕ(x1), . . . , ϕ(x|R|)) ∈ G2(R).

304 J. Kötters

The product
∏

i∈I Gi of S-structures is defined by

|
∏
i∈I

Gi| =×
i∈I

|Gi|

and, for all symbols R of S,

(x1, . . . , x|R|) ∈ (
∏
i∈I

Gi)(R) :⇔ ∀i ∈ I : (x1(i), . . . , x|R|(i)) ∈ Gi(R) .

The I-th power of a structure G is the product×i∈I G and is denoted by GI .
The product of relational structures is a product in the sense of category theory:

Proposition 1. Let (Gi)i∈I be a family of S-structures. Then each projection

πi : ×i∈I |Gi| → |Gi| is a homomorphism from
∏

i∈I Gi to Gi. Furthermore,
for each S-structure H and family (ϕi : H → Gi)i∈I , there exists a unique
ϕ : H →

∏
i∈I Gi such that ϕi = πi ◦ ϕ for all i ∈ I.

When we talk about the nodes of A, what we mean are the elements of |A|. A
sequence (a1, . . . , an) of nodes of A is called a path from a1 to an in A, if for all
1 ≤ i < n there exists an R ∈ S such that {ai, ai+1} ⊆ {x1, . . . , x|R|} for some
(x1, . . . , x|R|) ∈ A(R). We call a structure A connected if there exists a path
from a to b for all a, b ∈ |A|. We define an equivalence relation

a ∼ b ⇔ there exists a path from a to b

over |A|. A connected component of A, or simply a component of A, is an S-
structure C for which |C| is a class of ∼ and C(R) = A(R) ∩ |C||R| for all R ∈ S.

Throughout the paper, we will use Var to denote a countably infinite set
of variables. By ι (or any variety such as ι̃, ι1, . . .) we shall always denote an
inclusion map from some set X1 to some set X2, i.e. a map with ι(x) = x for all
x ∈ X1, where X1 ⊆ X2 is implied. The sets X1 and X2 will be clear from the
context.

3 Windowed Structures

Definition 1. Let S be a relational signature. A windowed S-structure is
a triple (X, ν,G) consisting of a set X ⊆ Var, an S-structure G and a map
ν : X → |G|.
Definition 2. Let W1 = (X1, ν1,G1) and W2 = (X2, ν2,G2) be windowed S-
structures. A homomorphism ϕ : W1 → W2 of windowed structures is a
structure homomorphism ϕ : G1 → G2 with ϕ ◦ ν1 = ν2 ◦ ι, where X1 ⊆ X2 is
assumed.

Homomorphisms of windowed S-structures are closed under composition. Also,
the identity id : |G| → |G| is a homomorphism of any windowed S-structure
(X, ν,G) onto itself. These two facts imply that windowed S-structures with
homomorphisms form a category. Furthermore, they imply that the following
relation on the class of windowed S-structures is a preorder:

Concept Lattices of a Relational Structure 305

Definition 3 (Homomorphism Preorder). For windowed S-structures W1

and W2, we set
W1 � W2 :⇔ ∃ ϕ : W1 →W2 .

The homomorphism preorder induces an equivalence relation on the class of
windowed S-structures:
Definition 4 (Homomorphic Equivalence). For windowed S-structures W1

and W2, we set
W1 !W2 :⇔ W1 � W2 ∧W2 � W1 .

Definition 5. The product of a family ((Xi, νi,Gi))i∈I of windowed S-struc-
tures is the windowed S-structure∏

i∈I

(Xi, νi,Gi) := (
⋂
i∈I

Xi, νI ,
∏
i∈I

Gi) ,

where νI(x) := (νi(x))i∈I .

The product of the empty family is (Var, ν∅, (∅, ({∅}|R|)R∈S)), where ν∅(x) = ∅
for all x ∈ Var.

The product is indeed a product in the category theoretical sense, as the
following proposition shows:

Proposition 2. Let ((Xi, νi,Gi))i∈I be a family of windowed S-structures. Each
projection πi : ×i∈I |Gi| → |Gi| is a homomorphism from

∏
i∈I(Xi, νi,Gi) to

(Xi, νi,Gi). Furthermore, for each windowed S-structure (Y, μ,H) and family
(ϕi : (Y, μ,H)→ (Xi, νi,Gi))i∈I , a unique ϕ : (Y, μ,H)→

∏
i∈I(Xi, νi,Gi) exists

such that ϕi = πi ◦ ϕ for all i ∈ I.

Proof. From Prop. 1 we obtain πi :
∏

i∈I Gi → Gi for i ∈ I. The definition of
νI provides πi ◦ νI = νi ◦ ιi for all i ∈ I (see the right circuit in Fig. 4). This
proves the first claim. Now let (ϕi : (Y, μ,H) → (Xi, νi,Gi))i∈I be a family of
homomorphisms on some (Y, μ,H). In particular, we have ϕi ◦ μ = νi ◦ ι̃i for all
i ∈ I (outer circuit). Also, Y must be a subset of each Xi, and so we have an
inclusion map ι : Y →

⋂
i∈I Xi. The equations ι̃i = ιi ◦ ι (upper circuit) hold

trivially. Again from Prop. 1 we obtain ϕ : H →
∏

i∈I Gi with ϕi = πi ◦ϕ (lower
circuit). Altogether, we obtain

πi ◦ ϕ ◦ μ = ϕi ◦ μ = νi ◦ ι̃i = νi ◦ ιi ◦ ι = πi ◦ νI ◦ ι

for all i ∈ I, and thus ϕ ◦ μ = νI ◦ ι (left circuit). Note that this last equation
can not be inferred from the commutativity of the diagram!

We have shown that ϕ is a homomorphism from (Y, μ,H) to
∏

i∈I(Xi, νi,Gi).
From ϕi = πi ◦ ϕ it follows that ϕ(x) := (ϕi(x))i∈I , so ϕ is unique. "#
The coproduct

∐
i∈I(Xi, νi,Gi) of windowed graphs is identical to a pushout of

S-structures, if all Xi are the same. In the general case, it is constructed from
the disjoint union of the Gi, i ∈ I, by identifying all nodes νi(x) and νj(x) where
x ∈ Xi ∩Xj .

The product and coproduct can be understood as infimum and supremum in
the homomorphism preorder. This is made precise in the corollary:

306 J. Kötters

X1

X2

G1

G2

ι

ν1

ν2ϕ

Fig. 3. Windowed graph morphism

Y

⋂
Xi

Xi

H
∏

Gi

Gi

ι

ιi
μ

νI

νi

ϕ

πi

ι̃i

ϕi

ϕ
ιj

πj

Fig. 4. Product of windowed graphs

Corollary 1. Let (Wi)i∈I be a family of windowed S-structures. The following
equivalences hold for all windowed S-structures W :

W �
∏
i∈I

Wi ⇔ ∀i ∈ I : W � Wi , (1)∐
i∈I

Wi � W ⇔ ∀i ∈ I : Wi � W . (2)

4 Tables

Definition 6. Let G be a set. A table over G is a pair (X,Λ), where X ⊆ Var
and Λ ⊆ GX . The set of all tables over G is denoted by Tab(G).

Definition 7. For tables (X1, Λ1) and (X2, Λ2) over G, we define

(X1, Λ1) ≤ (X2, Λ2) :⇔ X2 ⊆ X1 ∧ Λ1 ◦ ι ⊆ Λ2 .

Proposition 3. The pair (Tab(G),≤) is a complete lattice. The infimum of a
family ((Xi, Λi))i∈I of tables is given by the join operation

��
i∈I

(Xi, Λi) := (
⋃
i∈I

Xi, ΛI) , (3)

where ΛI := {λ :
⋃

i∈I Xi → G | ∀i ∈ I : λ ◦ ιi ∈ Λi}. The supremum is

��

i∈I

(Xi, Λi) := (
⋂
i∈I

Xi,
⋃
i∈I

(Λi ◦ ιi)) . (4)

5 Galois Connection

Definition 8. Let D be an S-structure. The solution (in D) of a windowed
S-structure (X, ν,G) is a table over |D|, given by

(X, ν,G)′ := (X,Hom(G,D) ◦ ν) . (5)

Concept Lattices of a Relational Structure 307

The description (over D) for a table (X,Λ) over |D| is a windowed S-struc-
ture, given by

(X,Λ)′ := (X, νΛ,DΛ) , (6)

where νΛ(x) := (λ(x))λ∈Λ for x ∈ X. The two operations thus defined are both
denoted by the same sign and are called the derivation operations with re-
spect to D.

Proposition 4. Let D be an S-structure. The derivation operators w.r.t. D
form a Galois connection. That is, the following equivalence holds for all win-
dowed S-structures (X, ν,G) and for all tables (Y, Λ) over |D|:

(X, ν,G) � (Y, Λ)′ ⇔ (Y, Λ) ≤ (X, ν,G)′ . (7)

Proof. The left side of the statement can be transformed into the right side by
a series of equivalences (explained below):

(X, ν,G) � (Y, νΛ,DΛ) ⇔ ∀λ ∈ Λ : (X, ν,G) � (Y, λ,D)
⇔ Λ ◦ ι ⊆ Hom(G,D) ◦ ν
⇔ (Y, Λ) ≤ (X,Hom(G,D) ◦ ν) .

To see the first equivalence, use that (Y, Λ)′ is the product of all (Y, λ,D), λ ∈ Λ,
and then apply Cor. 1. For the second equivalence, note that the statements on
either side assert that for each λ ∈ Λ there exists ϕ : G → D with λ ◦ ι = ϕ ◦ ν.
The last equivalence follows from Def. 7. "#

In Props. 5 and 6 we state some consequences of (7) which are well-known in
their general form. Proofs can e.g. be found in the introductory chapter of [6].
These carry over to our case of a Galois connection involving a preordered class
(note Prop.5(iii), however).

Proposition 5. Let D be an S-structure. The following holds for all tables T ,
T1 and T2 over |D|, and for all windowed S-structures W , W1 and W2:

(i) T ≤ T ′′ (i′) W � W ′′

(ii) T1 ≤ T2 ⇒ T ′
2 � T ′

1 (ii′) W1 � W2 ⇒W ′
2 ≤W ′

1

(iii) T ′ ! T ′′′ = T ′′′′′ (iii′) W ′ = W ′′′

Proposition 6. Let D be an S-structure. The following holds for all families
(Wi)i∈I of windowed S-structures and for all families (Ti)i∈I of tables over |D|,
respectively:

(
∐
i∈I

Wi)
′ =��

i∈I

W ′
i ,

(��

i∈I

Ti)
′ !

∏
i∈I

T ′
i .

308 J. Kötters

6 Concepts and Lattices

As in Formal Concept Analysis, we proceed to define a set of pairs which are
stable under the Galois connection,

LD := {(T,W) | T ∈ Tab(D) ∧ T ′ = W ∧W ′ = T } , (8)

and define an order on that set,

(T1,W1) ≤ (T2,W2) :⇔ T1 ≤ T2 ⇔ W2 � W1 . (9)

The second equivalence in (9) follows from Prop. 5(ii)(ii’). Note that the elements
of LD are precisely the pairs (W ′,W ′′), or equivalently the pairs (T ′′, T ′′′), gen-
erated by the windowed S-structures W and tables T ∈ Tab(D), respectively
(see Prop. 5(iii)(iii’)). For X ⊆ Var we define

LD[X] := {((X,Λ)′′, (X,Λ)′′′) | (X,Λ) ∈ Tab(D)} (10)

= {((X, ν,G)′, (X, ν,G)′′) | (X, ν,G) windowed S-structure} .

The following definition of concept is suggested:

Definition 9. A concept is a pair (T, (X, ν,G)) ∈ LD for which all nodes ν(x),
x ∈ X, belong to the same component of G. The set of all concepts of the rela-
tional structure D is denoted by CD.

In analogy to (10), we define

CD[X] := LD[X] ∩ CD . (11)

We may identify a concept intent with the component containing ν(X).

Theorem 1. The ordered set (LD ,≤) is a complete lattice. Infimum and supre-
mum are given by ∧

i∈I

(Ti,Wi) =

(
��
i∈I

Ti, (
∐
i∈I

Wi)
′′
)

, (12)

∨
i∈I

(Ti,Wi) =

(
(��

i∈I

Ti)
′′, (

∏
i∈I

Wi)
′′
)

. (13)

For all X ⊆ Var, the suborders (LD[X] ∪ {�},≤) and (CD[X] ∪ {�},≤), where
� denotes the maximum of (LD,≤), are

∧
-sublattices of (LD,≤).

Proof. The formulas for the infimum and supremum follow from Prop. 6. Now
let (Ci)i∈I be a family in LD[X] ∪ {�} and C :=

∧
i∈I Ci, and let us further

define Ci =: ((X,Λi), (X, νi,Gi)). If Ci = � for all i ∈ I, the infimum is �. Else
(3) simplifies to

��
i∈I

(X,Λi) = (X,
⋂
i∈I

Λi) , (14)

which means in particular that C ∈ LD[X]. We write C =: ((X,Λ), (X, ν,G)).
If (Ci)i∈I is a family in CD[X]∪{�}, we have to show in addition that C ∈ CD

if Ci ∈ CD for some i ∈ I. In this case, there exists ϕ : Gi → G. Homomorphisms
preserve paths, so C must also be a concept. "#

Concept Lattices of a Relational Structure 309

7 Construction

In this section, a brute force construction algorithm for CD[X] is given (X and D
finite), where intents are (and need be) computed up to homomorphical equiv-
alence only. A key observation is that all concept intents are components of
powers of D, complemented by some assignment from X to the nodes (cf. (6)).
It can be shown that conversely, each windowed structure (X, ν, C), where C is
a component of a power of D and ν is chosen arbitrarily, is homomorphically
equivalent to some concept intent. If we pick one of these windowed structures
from each !-class, we have determined all concept intents up to homomorphical
equivalence. Note that the components C can be taken from the power structures
D1, . . . ,Dn, n := ||D|X |, because a power DΛ, Λ ⊆ |D|X , is isomorphic to D|Λ|.
The following terminating condition can be proven: If we compute the powers
D1, . . . ,Dn in sequence and reach some Di, 1 < i ≤ n, such that every windowed
structure obtained from a component of Di is homomorphically equivalent to one
computed earlier, then the set of concept intents (up to isomorphism) is com-
plete. To build the line diagram (or check for homomorphical equivalence), it
may be more convenient to compare extents. If data is stored in a database,
extents could be computed by the query engine (this would involve translating
windowed structures into some other form of query).

The nine concepts of CD[{x}] from our initial example are obtained from the
ten components of F and F2 (see Figs. 1 and 5). Thirty windowed structures
are obtained from these components (as many as there are nodes), each can be
folded onto some equivalent graph in Fig. 2. Higher powers of F do not yield
any further concepts.

AC AD
�

AE
�

CA DA
�

EA
�

AA

�

CB
�

BC
�

CC
�

m
m

m

BB
�

m

DE

�

f

DD

�

f

EE

�

f

ED

�

f

AB CDp

BE

p

BD

p

CE

p

BA DCp

EB

p

DB

p

EC

p

Fig. 5. Example: family tree (squared)

310 J. Kötters

8 Conclusion

We have generated concept lattices directly from a relational structure. The
representation of concept intents and extents by graphs and tables establishes
connections to graph theory and database theory with their proven formalisms.
This gives hope that notions and results from these areas may produce new
insights into questions related to lattice-based navigation, and thus guide the
development of applications. The similarity of the model to well-known Pattern
Structures requires further, detailed comparison. The model will also have to be
compared with other formal approaches dealing with relational data, including
Concept Graphs [9,8] and Relational Semantic Systems [10].

References

1. Azmeh, Z., Huchard, M., Napoli, A., Hacene, M.R., Valtchev, P.: Querying rela-
tional concept lattices. In: Proc. of the 8th Intl. Conf. on Concept Lattices and
their Applications (CLA 2011), pp. 377–392 (2011)

2. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational databases. In: Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing, STOC 1977, pp. 77–90. ACM, New York (1977)

3. Ferré, S.: Conceptual Navigation in RDF Graphs with SPARQL-Like Queries.
In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 193–208.
Springer, Heidelberg (2010)

4. Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-Based
Data Mining with Scaled Labeled Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach,
H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg
(2004)

5. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142.
Springer, Heidelberg (2001)

6. Ganter, B., Wille, R.: Formal concept analysis: mathematical foundations.
Springer, Berlin (1999)

7. Godin, R., Saunders, E., Gecsei, J.: Lattice model of browsable data spaces. Inf.
Sci. 40(2), 89–116 (1986)

8. Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Lukose, D., Del-
ugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS 1997. LNCS, vol. 1257, pp.
290–303. Springer, Heidelberg (1997)

9. Wille, R.: Formal concept analysis and contextual logic. In: Hitzler, P., Schärfe,
H. (eds.) Conceptual Structures in Practice, pp. 137–173. Chapman & Hall/CRC
(2009)

10. Wolff, K.E.: Relational Scaling in Relational Semantic Systems. In: Rudolph, S.,
Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009. LNCS, vol. 5662, pp. 307–320. Springer,
Heidelberg (2009)

Representing Median Networks with Concept Lattices

Uta Priss

Ostfalia University of Applied Sciences
Wolfenbüttel, Germany
www.upriss.org.uk

Abstract. Median networks have been proposed as an improvement over trees
in phylogenetic analysis. This paper argues that concept lattices represent es-
sentially the same information as median networks but with the advantage that
there is a larger FCA research community and a variety of available software
tools. Therefore evolutionary analysis is an interesting new application domain
for FCA.

1 Introduction

The field of phylogenetics tries to establish evolutionary relations among groups of
organisms - usually in form of evolutionary trees. For example, by sampling DNA from
organisms and looking at differences evolutional changes can be reconstructed. For
obvious reasons most of the DNA is extracted from currently living organisms, thus any
reconstruction of phylogenetic trees is somewhat hypothetical. There are established
means for inferring such trees (for example, involving “genetic distances”, statistical
maximum parsimony and maximum likelihood) but in cases where parallel mutations
or reversals occur, it is difficult to decide on the exact sequences of the mutations. For
example, the left-hand side in Figure 1 shows two possible trees for the changes between
1, 2, 3 and 4. As Sykes (2001, p. 178) explains, in such cases it is often not necessary
to ultimately decide which change occurred first, i.e., whether 4 derived from 1 via 2 or
via 3. Instead of deciding which of the trees is correct, one can use a graph as shown in
the right half of Figure 1 which summarises both possible trees. Not only simplifies this
the analytic process, it can also lead to more readable diagrams. Bandelt et al. (1995)
have developed the construction of such graphs into a method using median networks
as explained in the next section.

4

1

2 3

4

1

2 3

1

2 3

4

Fig. 1. Two possible trees (on the left) are summarised in one graph (on the right)

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 311–321, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

312 U. Priss

Since the graph on the right-hand side of Figure 1 is a lattice and since trees can
be embedded into lattices, the question arises as to whether Formal Concept Analysis1

(FCA) can be used instead of or in addition to median networks. One advantage of
using FCA is that FCA has a larger research community than median networks/graphs2.
Furthermore, there exist more well-tested software tools for FCA3 compared to median
networks and, for example, Bandelt et al. (2000) still discuss “manual construction” of
median networks alongside some algorithms.

From the viewpoint of FCA, it is interesting to establish a further application of FCA
in the field of genetics or bioinformatics (for median networks this was first suggested
by Priss (2012)) and a further connection with a similar or related graphical represen-
tation method. This extends previous research showing similarities between FCA and
other fields, for example, Priss and Old (2008) show that concept lattices are similar to
lattice-based methods developed in information retrieval and computational linguistics.
The following section provides further details about median networks. Section 3 dis-
cusses how the phylogenetic data can be modelled with FCA and what is different or
similar to how the data is modelled with median networks. The paper finishes with a
concluding section.

2 Median Networks and Phylogenetics

This section provides a brief introduction to the application area of this paper4. Median
graphs are undirected graphs where any three vertices have a unique median. More
precisely, an interval between two vertices x, y in a graph is defined as I(x, y) = {v |
d(x, y) = d(x, v)+d(v, y)} where d() is the usual distance function in a graph. In other
words, an interval consists of the vertices on the shortest paths between two vertices.
A graph is called a median graph if the following property holds: ∀x,y,z : |I(x, y) ∩
I(x, z) ∩ I(y, z)| = 1. That means that there is a unique vertex (called median) that
belongs to shortest paths between any two of three vertices.

Below is a brief summary of the close relationship between median graphs, distribu-
tive lattices and median semilattices (mostly following Bandelt (1984)). In this paper
we are using the dual of the usual definition of a median semilattice (which we call a
“reverse” median semilattice) because it fits better with the constructions in the next
section. A reverse median semilattice is a join-semilattice such that every principal fil-
ter {x | x ≥ a} is a distributive lattice and any three elements have a lower bound
whenever each pair of them does.

1 Because FCA has been a topic of this conference for many years, this paper does not pro-
vide an introduction to FCA. Information about FCA can be found, for example, on-line
(http://www.fcahome.org.uk) and in the main FCA textbook by Ganter & Wille
(1999).

2 As confirmed by retrieving about 10000 hits for a search for “formal concept analysis” on
Google Scholar, as opposed to 1200 for “median network” and 900 for “median graph”.

3 See http://www.upriss.org.uk/fca/fcasoftware.html
4 Based on Bandelt et al. (1995 and 2000), Sykes (2001) and Wikipedia pages.

http://www.fcahome.org.uk
http://www.upriss.org.uk/fca/fcasoftware.html

Representing Median Networks with Concept Lattices 313

• The covering graph of any finite distributive lattice is a median graph.
• A finite graph G is the covering graph of a finite distributive lattice ⇐⇒ G is

a median graph with two vertices 0 and 1 such that every other vertex lies on a
shortest path between them.

• In a distributive lattice, Birkhoff’s median operation can be observed: m(a, b, c) =
(a∧ b)∨ (a∧ c)∨ (b∧ c) = (a∨ b)∧ (a∨ c)∧ (b∨ c) which also fulfills the axioms
of a median algebra.

• Every median graph is a covering graph of a reverse median semilattice with largest
element a where a is any fixed vertex.

• The covering graph of a reverse median semilattice S is a median graph provided
that S is discrete, i.e., all intervals are finite.

• A discrete lattice L with 0 is distributive⇐⇒ the covering graph of L is median.
• Tree graphs are median graphs.

Although the relationship between median graphs and lattices is mathematically well-
understood, there are still open questions left with respect to how FCA can be used to
generate meaningful concept lattices from the data.

As mentioned in the introduction, in the field of phylogenetics, it is attempted to infer
evolutionary trees from observed characteristics of species. Trees are considered best
if they are most parsimonious which means that the number of presumed evolutionary
changes is minimal. For example, in the right-hand side of Figure 1 it would be more
parsimonious to assume that 2 evolved directly from 1 instead of evolving from 1 via 4
and 3. A goal of phylogenetic analysis is to compute all “most parsimonious trees” for
a given data set, thus out of all possible trees the ones with minimal number of changes.
Unfortunately, this is a computationally complex task. Median networks (or Buneman
graphs) are median graphs where each vertex represents a species and each edge rep-
resents a genetic change. Bandelt et al. (1995) argue that since a median network is
guaranteed to contain all most parsimonious trees, it is a preferred representation of
evolutionary change and a significant improvement over other methods which artifi-
cially construct a tree from the data using statistical methods (see also Sykes (2001)
and Bandelt et al. (1995 and 2000)).

Figure 2 shows an example of a median network on the left-hand side. The example
is hypothetical and not based on real data. On the left side are white mice versus brown
mice on the right. The top two vertices represent large mice, the other ones small mice.
The bottom two vertices represent tailless as opposed to tailed mice. The vertex on
the left in the middle is empty (latent) because no species in the data displays these
characteristics. This vertex is generated from the data because without it, it would not
be a median graph and not contain all most parsimonious trees. Without assuming that
small tailed white mice are latent, the difference between small and large white mice
would have coincided with loss of tail whereas in brown mice first the size changed, then
the tail was lost. Not all possible combinations are latent. For example, the existence
of large tailless mice is not implied by the data. The right-hand side of Figure 2 is
explained in the next section.

The median network in Figure 2 summarises all possible evolutionary trees. If one
assumes that the root of the trees is the top left vertex, four trees are possible. For
example, large white mice could have first become small and then brown or first become

314 U. Priss

large −>
small

tailed −>
tailless

brownwhite −>

tailless

brownsmall

Fig. 2. Median network with latent vertex (left) and concept lattice (right)

brown and then small. While the sequence between the changes in colour and size is
not known, the change in size definitely preceded the loss of tail. If one assumes that
the change in size for white mice occurred before the change in colour, then the change
in colour is an instance of parallel mutation because large white mice became brown
independently of small white mice becoming brown. If the change in colour occurred
first, then the change in size would be parallel mutation. If no parallel mutations or
reversals were to occur in some data, then its median network would automatically be
a tree. But considering the examples by Bandelt et al. (1995 and 2000), most data sets
tend to contain at least some parallel mutations.

If the sample size is large, an unmodified median network may be too complex to
be graphically represented. Bandelt et al. (1995) suggest a method for reducing median
networks based on weight and frequency. In order to construct a median network, one
summarises all changes that occur simultaneously with respect to the sample species
as “weight”. For example, if colour changes in mice always correspond to changes in
ear size (hypothetically), then one would not draw separate edges for colour and ear
changes. Instead one would record one change but with a higher weight. Graphically
this can be represented by drawing a longer edge.

In the same manner, if several species have the exact same characteristics, one creates
only one vertex for this group of species but records a higher frequency for this vertex.
This can be graphically represented by a larger node for the vertex. Using frequencies
and weights one can reduce the network by eliminating some of the edges which are less
likely to have occurred. Bandelt et al. (1995) state that in all examples they considered
so far even reduced networks still contained all most parsimonious trees, but there is no
guarantee that that is always the case.

Characteristics in phylogenetic analysis are often binary, i.e., having two possible
values. In the example in Figure 2, the characteristics are naturally binary (such as large

Representing Median Networks with Concept Lattices 315

or not large). Other characteristics can be made binary. For example, although DNA
sequences can be of four values (A, G, C or T), Bandelt et al. (1995) argue that it is
unusual for more than one change to occur at the same site in a set of closely related
species. Thus it is sufficient to record for each site whether a change occurred or not,
ignoring the value of the change.

A median network contains all most parsimonious trees independently of where the
root of the tree is. There are methods for determining the root or evolutionary ancestor
of a set of species although it might not be easy and the root might be latent. One
method is to compare a set of species with an outgroup or reference group which is
more distantly related to all the other species than they are too each other.

3 Modelling with FCA

It is straightforward to represent the example on the left-hand side in Figure 2 as a
concept lattice as presented on the right-hand side. One advantage of using FCA is
the availability of established mathematical vocabulary for describing the phylogenetic
phenomena. Important phylogenetic notions can be directly translated into FCA ter-
minology. Series of evolutionary changes that are unambiguous correspond to attribute
implications in the lattice. For example, the implication from “tailless” to “small” in the
lattice in Figure 2 corresponds to the evolutionary loss of tail occurring after the change
in size. Latent species correspond to concepts that do not contain objects in their contin-
gent. Each meet-reducible concept in the lattice corresponds to a choice point between
different possible trees.

Table 1 shows a more complex example using mitochondrial data from Ward et al.
(1991) which was also used by Bandelt et al. (1995). In FCA terms it represents a many-
valued context. The second row from the top shows the default values for each column.
A dot in the matrix means that the default value occurs. A letter indicates a change. As
can be seen in the table, only one type of change occurs in each column. For example,
in the first data column the default value is “T” which is changed to “C” in three rows.
No changes to “A” or “G” occur in the first data column. As discussed by Bandelt et
al. (1995) this is usually the case. Therefore such tables can be interpreted as binary
matrices or single-valued contexts by only considering whether the default value or a
change occur and ignoring the type of change.

In FCA terminology, the formal objects in Table 1 are 28 mitochondrial lineages.
The right-hand column indicates the frequency of the lineages. For example, lineage 1
occurred in 3 individuals. A total number of 63 individuals was involved in the study.
The formal attributes encode the positions where the DNA sequences occur in the hu-
man reference sequence. If one encodes the attributes so that each cross represents the
positions where an object differs from the reference group then the top of the lattice will
correspond to the root of the possible evolutionary trees. This is because, as discussed
in the previous section, comparison with a reference group can be used to determine the
root. Using FCA the preprocessing of summarising objects with identical row values
and attributes with identical column values is not really necessary because such objects
(or equivalently attributes) would be grouped into the contingent of a single concept
automatically in the concept lattice.

316 U. Priss

Table 1. Nuu-Chah-Nulth mitochondrial lineages (Ward et al., 1991) as a formal context

69 88 91 106 124 149 162 166 190 194 200 219 233 247 251 255 267 271 275 296 301 302 304 319 339 344
T C C G C T C T G T C C C C G C C C T G T T C T T A

1 C A . T T 3
2 A . T T 2
3 T T 1
4 T T C . 1
5 . T . A . . T . . . T T . . A C . 2
6 . T . A T A C . 2
7 C T . A T . . T A C . 1
8 . T . A T T . . A C . 2
9 C T T T . . A C . 2
10 . T T T . . A C G 1
11 . T T T . . A C . 5
12 . T T . . A C . 9
13 . T A T . . A C . 1
14 . T T T T . . A C . 1
15 . T T T T . . A C . . . C . 2
16 T T T . C . 1
17 T T C . . . C . 1
18 T T C . . C . 2
19 . . T T T . . . C . . C . 1
20 C T . . . A C . . C . 3
21 T C . . C . 3
22 C T C 3
23 T T C . . C 1
24 T C . . C T . . . 7
25 T T C . . C T C . . 3
26 T C . . C T C . . 1
27 C . C 1
28 C . C . . T 1

Because the median network and concept lattice for Table 1 are fairly complex, we
will first discuss a network and lattice derived for a simpler context of the same type
before discussing the one in Table 1. Figure 3 shows a concept lattice for a data table
discussed by Bandelt et al. 2000 (using HVS I data by Vigilant et al.). Two attributes are
called compatible in Bandelt’s terminology if they are lattice-theoretically comparable
or their meet is the bottom node. Bandelt calls a set of attributes a clique if the attributes
are pairwise compatible and the set is maximal with respect to inclusion. In other words,
cliques represent maximal trees. In Figure 3 one clique contains all attributes except
16243 and another clique contains all attributes except 16294 and 16239. These are the
only two cliques in Figure 3. Bandelt et al. describe a fairly complicated algorithm for
deriving the median network using cliques, peripheral elements and torsos (where the
torso data matrix consists of the non-compatible attributes).

Figure 4 shows a median network for the data in Figure 3. In contrast to Bandelt et al.
(2000), the attributes, frequencies and weights are omitted in the figure. This means that
all nodes are of the same size and the length of the edges does not carry meaning. The
lattice in Figure 3 is not distributive and thus not a covering graph of a median graph.
Nevertheless if one omits the bottom node from the lattice then its covering graph and
the median network in Figure 4 differ only by one vertex: the vertex next to the one
labelled with “8” in Figure 4. Using the statements about reverse median semilattices
from the last section, an algorithm for converting a concept lattice as in Figure 3 into a

Representing Median Networks with Concept Lattices 317

Fig. 3. Concept lattice for HVS I data of Vigilant used by Bandelt et al. (2000)

median network as in Figure 4 consists of omitting the bottom node and then checking
every principal filter for distributivity and turning it into a distributive lattice if it is not
already one.

15

8

14

6,13

12

11

7

5

9−10 1−4

Fig. 4. The median network for Figure 3

The principal filter in Figure 3 that is not distributive is shown on the left in Figure 5
alongside the median network of the torso of Figure 4. In contrast to Figure 2 where both
the lattice and the graph produce a latent vertex, in this case the lattice does not have
one. The reason is because in Figure 2 the attribute “small” is shared by small tailless
white mice and small brown tailed mice whereas in Figure 5 object “12” does not share
any attributes with the objects “1, 2, 3, 4”. The median network in Figure 5 generates
a latent species because the difference between objects “12” and “8” consists only of

318 U. Priss

one characteristic whereas the difference between “5,7,9-11” and “1-4” consists of two
characteristics. The lattice in Figure 5 does not contain all most parsimonious trees
but the median network on the right side could be generated from it. This is an issue
that would need to be discussed with evolutionary biologists. After years of working
with FCA, the author’s intuition is that the lattice on the left is a more appropriate
representation of the data because it makes fewer assumptions about information that
is missing (i.e., latent species). But, presumably, evolutionary biologists have different
intuitions about the data than mathematicians. Thus although there is a clear algorithm
for converting concept lattices into median networks, the question is whether it is really
necessary to do so or whether a concept lattice would be a sufficiently informative
representation of the data without containing all most parsimonious trees.

9−11

6

8

12

16243 16294

16239

1−4

5,7

13−156,13,15; 14

5; 7; 9,10; 11

8

16243

12

16239

1,2,3,4

16294

Fig. 5. Concept lattice (left) of the only non-distributive principal filter in Figure 3 and median
network (right) which is the “torso” of the median network in Figure 4

Coming back to the data presented in Table 1, Figure 6 shows the reduced median
network from Bandelt et al. (1995) for the data. Again, the frequencies and weights are
not represented in the diagram. The root of the tree is the node labelled “X”. The net-
work contains 10 latent vertices. Ward et al. (1991) identified four clusters among the
lineages ({1, 2}, {5, 6, 7, 8, ..., 15}, {23, 24, 25, 26}, and {27, 28}) by deriving a phy-
logenetic tree using statistical methods. Bandelt et al. (1995) criticise the tree presented
by Ward et al. because they believe that one cluster is missing and several other clus-
ters could be modified. The large boxes in Figure 6 are meant to indicate the clusters
according to Bandelt et al. who observe that the cluster consisting of 18, 19, 20 and 21
(and possibly also 16, 17 and 22) is missing from Ward’s tree and that maybe 3 and
4 should also belong to the cluster of 1 and 2. They argue that the information about
the clusters is very clear in the median network but might not be visible in a tree. They
further state that these problems are not restricted to Ward’s paper but can be observed
in other papers as well.

Representing Median Networks with Concept Lattices 319

X

1

3 16

27 56

7

8

9

10

11 12 13

14

15

17

18

19 20

2122

23

24

25

26

28

4

2

Fig. 6. Reduced median network for Table 1 (following Bandelt et al. (1995))

The median network in Figure 6 is reduced. The reduction algorithm is described by
Bandelt et al. in great detail. Effectively the reduction algorithm splits some attributes
into versions a and b so that objects in one cluster have version a and the objects in
other clusters have b. For example, attribute 166 applies to lineages in two different
clusters. If the attribute is split into 166a for lineage 1 and 166b for lineages 27 and
28, then the structure of the network is simplified. The reasoning behind this is that if
the same change occurs for lineages that are in very different clusters, it is quite likely
that the change does not represent a single event but instead happened several times
independently. The basis for these decisions are frequencies and weights. We do not
have an exact list of which attributes were split in Figure 6. Therefore the attributes that
were split in Figure 7 are not necessarily the same as in Figure 6. We chose to split
attributes 69, 166 and 190. Furthermore we completely omitted attribute 200 because
it applies to almost all objects. The resulting lattice is shown in Figure 7. Structurally,
the graphs in Figure 6 and Figure 7 are quite similar although in Figure 7 attribute 16
is closer to the cluster involving 23 to 26 and there is a connection between 4 and 14.
We do not know whether either representation is more plausible from a phylogenetic
viewpoint.

In order to decide which attributes to split, one needs to first determine which ob-
jects form clusters. Figure 8 shows the object ordering (implications) of Table 1. Apart
from the already mentioned connection between 4 and 14, the clusters emerging from
the object ordering are the same as the ones discovered by Ward et al. and Bandelt
et al. Thus we propose an algorithm for reducing concept lattices as follows: determine

320 U. Priss

Fig. 7. Reduced lattice for Table 1 (splitting 69, 166, 190 and omitting 200)

10

17 22

4

3

2

2019 18

21

1

28

27

25

26 24 23

15

14

13

9

5

8

11

12

6

7

16

Fig. 8. Object ordering for Table 1

clusters of objects by considering the object ordering. Then investigate attributes that
apply to objects belonging to different clusters. If these attributes are high up in the
lattice, consider splitting the attribute. The resulting lattice will have fewer line cross-
ings and be more “tree like”. We are not necessarily proposing that the attributes are
completely automatically selected, but that instead expert advice is considered in the
selection process.

Representing Median Networks with Concept Lattices 321

4 Conclusion

This paper discusses the representation of phylogenetic data as concept lattices instead
of or in addition to median networks. Both concept lattices and median networks contain
essentially the same information but FCA has a larger research community. The paper
sketches an algorithm for converting a concept lattice into a median network and for
reducing a lattice based on clustering of objects. Further discussion with phylogenetics
researchers will need to establish in how far they would be willing to accept concept
lattices that do not contain all most parsimonious trees as a representation of their data.
More experiments with larger data sets are needed to determine the practical feasibility
of the suggested algorithms and to compare more examples of median networks and
concept lattices with respect to the readability of the diagrams. One aim of the paper
is to alert the wider FCA community to this application area. Because median graphs
have many interesting properties and applications themselves, establishing a connection
between them and FCA could lead to further interesting research (for example, social
network analysis or other graph and networking applications).

References

1. Bandelt, H.J.: Discrete Ordered sets whose covering graphs are median. Proceedings of the
American Mathematical Society 91, 1 (1984)

2. Bandelt, H.J., Forster, P., Sykes, B.C., Richards, M.B.: Mitochondrial portraits of human pop-
ulations using median networks. Genetics 141(2), 743–753 (1995)

3. Bandelt, H.-J., Macaulay, V., Richards, M.: Median networks: Speedy construction and greedy
reduction, one simulation, and two case studies from human mtDNA. Molecular Phylogenetics
and Evolution 16(1), 8–28 (2000)

4. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Heidel-
berg (1999)

5. Priss, U., Old, L.J.: Lattice-based Modelling of Thesauri. In: Lattice-Based Modeling Work-
shop, Olomouc, Czech Republic (2008),
http://researchrepository.napier.ac.uk/3477/

6. Priss, U.: Concept Lattices and Median Networks. In: Szathmary, Priss (eds.) Proceedings of
the Ninth International Conference on Concept Lattices and Their Applications, Universidad
de Malaga, pp. 351–354 (2012)

7. Sykes, B.: The seven daughters of Eve. Bantam Press (2001)
8. Ward, R.H., Frazier, B.L., Dew-Jacer, K., Pääbo, S.: Extensive mitochondrial diversity within

a single Amerindian tribe. Proc. Natl. Acad. Sci., USA 88, 8720–8724 (1991)

http://researchrepository.napier.ac.uk/3477/

H.D. Pfeiffer et al. (Eds.): ICCS 2013, LNAI 7735, pp. 322–331, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Txt2vz: A New Tool for Generating Graph Clouds

Laurie Hirsch and David Tian

Sheffield Hallam University, Sheffield, UK
l.hirsch@shu.ac.uk

Abstract. We present txt2vz (txt2vz.appspot.com), a new tool for automatically
generating a visual summary of unstructured text data found in documents or
web sites. The main purpose of the tool is to give the user information about
the text so that they can quickly get a good idea about the topics covered.
Txt2vz is able to identify important concepts from unstructured text data and to
reveal relationships between those concepts. We discuss other approaches to
generating diagrams from text and highlight the differences between tag clouds,
word clouds, tree clouds and graph clouds.

Keywords: visualization, concept map, tag cloud, tree cloud.

1 Introduction

Tag clouds are simple visualizations that display word frequency information via font
size and colour, that have been in use on the web since 1997. Users have found the
visualizations useful in providing an overview of the context of text documents and
web sites. Whereas many systems are formed using user provided tags, there has been
significant interest in ‘word tags’ or ‘text tags’ which are automatically generated
using the text found in documents or web sites. For example, the popular tool Wordle
has seen a steady increase in usage [1]. Word clouds are based on the frequency of
individual words found in the available text after stop word removal. The most fre-
quent words are selected and then presented using various techniques to adjust font,
colour, size and position, in a way that is pleasing and useful to the user. The words
are commonly sorted alphabetically, although various systems of sorting and ar-
rangement have been proposed and attempts have been made to place similar words
together [2] [3]. Word clouds are simple and are commonly presented on web sites
with little or no explanation of how they should be used or interpreted. Three distinct
tasks have been identified which may be accomplished namely, searching, browsing
and “impression formation” whereby “The cloud can be scanned to get a general idea
about a subject” [4]. Successful realisation of this last task is the main objective of
the Txt2vz tool. Trees have been presented as an easy to read and meaningful format
and the term 'tree cloud' has been proposed. A freely available system which gene-
rates trees based on the semantic distance between words derived from the original
text is also available [5].

Co-occurrence information has long been understood to be an important aid to un-
derstanding the meaning of words, and using this information has proved essential to

 Txt2vz: A New Tool for Generating Graph Clouds 323

many natural language processing and information retrieval tasks [6] [7]. We extract
and use co-occurrence information here as a way of giving context to words presented
to the user and as a way of identifying and highlighting the most important words. We
propose a new method of generating diagrams, based on co-occurrence information
derived from the original text. We suggest the term ‘word graphs’ for the Txt2vz
generated diagrams since they are not necessarily in tree format and indeed can some-
times be in the form of two or more disjoint graphs. An important feature of the
Txt2vz graphs is that link information is the critical element of graph construction:
co-occurrence links are directly displayed and nodes (words) with the most links are
placed toward the centre of the graph.

2 Description of Txt2vz

2.1 The Overall Methodology

To reduce dimensionality of the document(s) all words are placed in lower case, stop
words are removed and stemming applied, such that only the most frequent form of a
word is preserved. Depending on the size of the document or the collection, this can
still leave a large number of words, and further reduction is achieved by ordering
words according to their frequency or tf-idf (term frequency-inverse document fre-
quency) weighting in the case where the document is part of a collection, and then
selecting the top N words from the sorted list.

After dimension reduction, every possible pair of the remaining words is analysed
for co-occurrence information. Many techniques have been described for identifying
co-occurrence [6] [7] but we take a relatively simple approach here. A graph is gener-
ated by selecting the top K pairs of words from a list of word pairs in descending
order of their significance value defined as follows.

2.2 Significance Measure

We define a measure of significance for a pair (P, Q) of words, based on the number
of occurrences of (P, Q), or more specifically the co-occurrences and the distance
between P and Q where the distance between P and Q is defined to be the number of
words between P and Q:

=

=
M

i

PQcedis

B iQPcesignifican
1

)(tan
),((1)

where M is the number of co-occurrences of P and Q;)(distance iPQ is the distance

between P and Q in the ith co-occurrence; 0<B<1 B is typically set to 0.9. We do not
consider the significance if the distance is beyond a pre-set maximum distance which
has a default of 20 words.

324 L. Hirsch and D. Tia

2.3 Graph Generation

The significance of each pa
in descending order by thei
selecting the top K word pa
of each pair. The degree of
node, can be used as an ind
cant word is the word wit
words of similar importanc
tance of the words within th

The type of graph produ
have provided an adjustme
words (N) to analyse; the n
allowed between words wh

Algorithm
1. Tokenize the text an

and word stemming
2. Order the words acc

a collection.
3. Create a set of wor

where N has a defau

an

Algorithm

air of words is computed and all the word pairs are sor
ir significance values. An undirected graph is then built
airs in the rank and creating an edge between the two wo
each node (word) i.e. the number of edges attached to e
dication of the importance of that word. The most sign
h the largest degree. Different colours are used to gro

ce and node and font sizes are used to highlight the imp
he graph.
uced can be partly determined by the user. In particular
ent facility whereby the user can change the number
number of links to display (K) and the maximum dista
en calculating co-occurrence (shown in figure 1).

Fig. 1. Txtvz adjustment window

nd apply dimension reduction using lower case, stop wo
g.
cording to frequency or tf-idf where the document is par

rds W by selecting the top N words from the ordered
ult value of 40 but can be adjusted by the user.

rted
t by
ords
each
nifi-
oup
por-

r we
r of
ance

ords

rt of

list

 Txt2vz: A New Tool for Generating Graph Clouds 325

4. Analyse every possible pair of words from W and assign a co-occurrence val-
ue to each pair. For each case where both words occur within a maximum dis-
tance of 20 words (this value can also be adjusted by the user) we add a value
to the co-occurrence metric for the pair determined by: 0.9௪ௗ௦௧

where wordDistance is simply the number of intervening words. Note: a de-
caying function is used such that words occurring closer to each other add
more to the co-occurrence value.

5. Create an ordered list of the word pairs based on the co-occurrence value for
each pair.

6. Generate a graph by selecting the top K word pairs from the sorted list of pairs
where K is a value that can be set by the user, but with a default value of 20.

7. The number of links attached to each node is used as a further indication of the
importance of a particular word.

As an initial example if we use the text taken from the ICCS’13 call for papers
(http://iccs2013.hbcse.tifr.res.in/call-for-papers) and show the top 10 pairs.

Table 1. ICCS’13 CFP co-occurrence values

Word Pair Co-occurrence value

data stem 8.277417941925659

conceptual structure 7.837253642946149

papers conference 6.667569657552907

papers accepted 6.645902314469966

papers called 6.5704478047496115

papers phd 5.7306734434201365

conceptual knowledge 4.425574377763965

data concept 4.275419763354885

called workshops 4.2135456501

dot chair 4.205350186716726

The word pairs are used directly to create the graph shown in figure 4. Each unique
word generates a node and each pair generates an edge.

326 L. Hirsch and D. Tia

3 Examples

We begin by presenting dia
contains 493 words. We co
ated by the Wordle [8] and

Fig.

Fig.

an

agrams generated from the ICCS’13 call for papers wh
ompare the graph produced by Txt2vz with the ones gen
tree cloud [5] approaches.

 2. Wordle word cloud of ICCS’13 CfP

3. Tree cloud diagram for ICCS’13 CfP

hich
ner-

Fig.

The three diagrams show
the presentation is different
a discussion we plan to res
types of information can be
that ‘conceptual’, ‘knowled
diagram whereas it is evide
made clear via the arcs in t
indicate recognizable conn
phasized using large font s
graph. In figure 4 the wor
edge of the window wherea
of the graph. The point we
shows how words link to e
topic words with a high nu
formation as in the tree clo
that ‘conceptual’ is directly
from the other two diagra
txt2vz.appspot.com

Txt2vz: A New Tool for Generating Graph Clouds

4. Txt2vz graph cloud for ICCS’13 CfP

wn in figures 2, 3 and 4 include many common words,
t in a number of respects. Which format is the ‘best’ is
solve in this paper. However, we can identify that cert
e obtained from the different formats. For example the f
dge’ and ‘structures’ are related is not shown on the Wor
ent from the positioning of the words in the tree cloud
the Txt2vz graph. Links between words in a Txt2vz gr
ections and nodes with a higher number of links are e
sizes and by positioning these nodes at the centre of
d ‘chair’ has only one link and appears smaller and to
as ‘iccs’ has 7 links, is larger and placed toward the cen
wish to emphasise here is that the Txt2vz diagram clea

each other and uses that information to highlight import
umber of links, rather than only using word frequency
oud. For example, the Txt2vz diagram makes it easy to
y related to a number of other words and this is not obvi
amming systems. You can test your own documents

327

but
not
tain
fact
rdle
and

raph
em-
the
the

ntre
arly
tant
 in-
see

ious
s at

328 L. Hirsch and D. Tia

4 Large Documen

Txt2vz uses Apache Luce
occurrence values and the P
ation. Lucene scales very
visualized in a short time f
ments. Figure 5 and 6 show
links and 1 link respectively

an

nts and Adjustments

ene for indexing documents and for calculating the
Prefuse (http://prefuse.org/) library is used for graph gen
y well and large documents and collections can easily
frame. Graphs can be significantly varied via user adju
w visualizations for Darwin’s ‘Origins of Species’ using
y.

Fig. 5. Origins with 50 links

Fig. 6. Origins with 1 link

co-
ner-
y be
ust-

g 50

Txt2vz also offers an al
brary[9] and we show the v

Fig

5 Document Colle

We believe that the graphs
who need a visual summa
above, Lucene makes this
generated in less than 10 s
Reuters-21578 [10] ‘crude’

The key topics words ar
‘mln’ and ‘oil’) and are lo
shaded area.

Txt2vz: A New Tool for Generating Graph Clouds

lternate radial graph format which uses the Docuburst
visualization of this paper in radial graph format (figure 7

g. 7. This paper in radial graph format

ections

 produced by Txt2vz might be especially useful to peo
ary of large collections of documents and as mentio
perfectly possible. The example shown in figure 8 w

seconds from 389 documents from the training set for
 category containing news stories concerning crude oil.
re identified as having the largest number of links (‘dl

ocated near the centre of the graph and surrounded wit

329

t li-
7).

ople
ned
was
the

lrs’,
th a

330 L. Hirsch and D. Tia

Fig. 8. T

6 Discussion and F

We have presented a new t
and co-occurrence, as mea
collection. There are many
scale of dimension reductio
number of word pairs used
more time evaluating the u
would also like to investig
engine such that a user coul
of the pages pointed to by th

References

1. Viégas, F.B., Wattenberg
ACM Interactions XV(4)

2. Hassan-Montero, Y., Her
Retrieval Interfaces. In: In

3. Viégas, F.B., Wattenberg
Visualization at Internet S

4. Bateman, S., Gutwin, C.,
Features on Tag Cloud S
and Hypermedia, pp. 193–

an

Txt2vz diagram for Reuters category "crude"

Future Work

tool for generating word graphs, based on word freque
ans of identifying important topics in a document or t
y variables to assign when generating a graph such as
on, the maximum distance for co-occurrence calculatio
and the type of graph presented. We would like to sp

sefulness of the tool as perceived by human subjects.
gate the feasibility of using Txt2vz as part of web sea
ld be presented with a quick visual summary of the cont
he result links.

g, M.: Tag Clouds and the Case for Vernacular Visualizat
(July/August 2008)
rrero-Solana, V.: Improving Tag-Clouds as Visual Informa
nSciT 2006 (2006)
, M., van Ham, F., Kriss, J., McKeon, M.: Many Eyes: A Site

Scale. In: Proc. of IEEE InfoVis 2007 (2007)
Nacenta, M.: Seeing Things in the Clouds: The Effect of Vi

Selections. In: Proc. of the 19th ACM Conference on Hyper
–202. ACM Press, New York (2008)

ency
text
the

ons,
end
We

arch
tent

tion.

ation

e for

isual
rtext

 Txt2vz: A New Tool for Generating Graph Clouds 331

5. Gambette, P., Véronis, J.: Visualising a text with a tree cloud. In: Proceedings of 11th
IFCS Biennial Conference, pp. 561–570 (2009)

6. Lin, D.: Using collocation statistics in information extraction. In: Proceedings of the Se-
venth Message Understanding Conference, MUC-7 (1998)

7. Veling, A., Van der Weerd, P.: Conceptual grouping in word co-occurrence networks. In:
Proceedings of the IJCAI 1999, vol. 2, pp. 694–699 (1999)

8. Viégas, F.B., Wattenberg, M., Feinberg, J.: Participatory Visualization with Wordle. IEEE
Transactions on Visualization and Computer Graphics 15, 1137–1144 (2009)

9. Collins, C., Carpendale, S., Penn, G.: DocuBurst: Visualizing Document Content using
Language Structure. In: Computer Graphics Forum, Proceedings of Eurographics/IEEE-
VGTC Symposium on Visualization (EuroVis 2009), vol. 28(3), pp. 1039–1046 (June
2009)

10. Reuters-21578 at http://www.daviddlewis.com/resources/
testcollections/reuters21578/

Author Index

Amarger, Fabien 75
Andrews, Simon 231
Angelova, Galia 106
Awasthi, Stuti 277

Barlatier, Patrick 135
Ben Mohamed, Khalil 90
Bezzubtseva, Anastasya A. 173
Bonnin, Jean-Marie 44
Bouabdallah, Ahmed 44
Boytcheva, Svetla 106

Dapoigny, Richard 135

Galitsky, Boris A. 153
Gelbukh, Alexander 245

Haemmerlé, Ollivier 75
Hernandez, Nathalie 75
Hirsch, Laurie 322

Ignatov, Dmitry I. 173
Inamdar, Shreya 239

Jensen, Nils 121

Kaminskaya, Alexandra Yu. 173
Keeler, Mary 193
Kent, Robert E. 210
Konstantinov, Andrey V. 173
Kötters, Jens 301
Kuznetsov, Sergei O. 153

Lukose, Dickson 90

Majumdar, Arun K. 22
Mayee, P. Kiran 29
Min Xian, Benjamin Chu 90
Miranda-Jiménez, Sabino 245
Mondal, Prakash 254
Mouromtsev, Dmity I. 289

Nayak, Ashalatha 277
Nikolova, Ivelina 106

Øhrstrøm, Peter 31

Pankin, Andrey 266
Paul, Soma 29
Pfeiffer, Heather D. 58
Ploug, Thomas 31
Poelmans, Jonas 173
Polovina, Simon 231
Pradel, Camille 75
Priss, Uta 121, 193, 311
Pshenichny, Cyril A. 289

Rod, Oliver 121

Sandborg-Petersen, Ulrik 31
Sangal, Rajeev 29
Sidorov, Grigori 245
Sowa, John F. 22
Szczerbak, Micha�l K. 44

Tcharaktchiev, Dimitar 106
Thorvaldsen, Steinar 31
Tian, David 322
Tonkin, Emma L. 58
Tourte, Gregory J.L. 58
Toutain, François 44

Usikov, Daniel 153

Vitol, Alexander 266

Watmough, Martin 231
White, Su 1

Zhukova, Nataly 266

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talks
	Conceptual Structures for STEM Data: Linked, Open, Rich and Personal
	Introduction
	Background
	Linked and Open Data
	Big Data
	Educational Communities Around Linked and Open Data
	Learning Approaches
	Semantic Technologies in Higher Education
	Education in STEM Subjects, Some Scenarios

	Discussion
	References

	Relating Language to Perception, Action, and Feelings
	Language and Brain
	Discrete and Continuous Processing
	Applications
	References

	PurposeNet: A Knowledge Base Organized around Purpose
	Invited Talk Summary
	References

	Accepted Papers
	Classical Syllogisms in Logic Teaching
	Introduction
	DataandMethod
	Results
	Discussion of the Results
	Future Research Agenda
	References

	A Model to Compare and Manipulate Situations Represented as Semantically Labeled Graphs
	Introduction
	Theory of Situation (-Awareness)
	Situation Models
	Situation Model in KRAMER
	Comparing Situations
	Logical Manipulations on Situations
	Situation Operations in KRAMER
	Detecting Situations in KRAMER
	Generalizing Situations in KRAMER

	Conclusions
	References

	Analyzing Clusters and Constellations from Untwisting Shortened Links on Twitter Using Conceptual Graphs
	Introduction
	Method
	Conceptual Graphs in Text Mining
	Agile Development
	Agile Methodologies for Scientific Datasets
	Building and Testing a Conceptual Model to Underlie Research

	Mining a Twitter Corpus
	Infrastructure Underlying Twitter
	Rationale: Construction and Maintenance—Relative Costs?
	Preservation of Shortened URLs
	In Chains: Unwrapping the URL
	Backtracking the Trackers

	Results
	Service Model
	URL Redirection Information Model
	Contextual Representation
	Individual and Chained Utterances
	Evaluation of the CG Representation as an EAD Research Tool

	Conclusion
	References

	Taking SPARQL 1.1 Extensions into Account in the SWIP System
	Introduction
	The SWIP System
	Overview
	From Natural Language Queries to Pivot Queries
	From Pivot to SPARQL

	SPARQL 1.1 Evolutions for Dealing with End-User Queries
	SPARQL 1.1 Update
	Aggregates in End-User Queries

	Evolution of SWIP 1.0 into SWIP 1.1
	Implementation and Experimentation
	Implementation
	Experimentation

	Conclusion and Future Work
	References

	System Architecture to Implement a Conceptual Graphs Storage in an RDF Quad Store
	Introduction
	Preliminaries
	Conceptual Graphs
	RDF/RDFS
	RDF Store and Indexing Techniques

	Proposed CGs Storage and Retrieval Engine
	System Architecture
	Storage and Indexing
	Retrieval Methods
	Heuristics

	Experiments
	Initial Setup
	Experimental Results

	Conclusion
	References

	Medical Archetypes and Information Extraction Templates in Automatic Processing of Clinical Narratives
	Introduction
	Archetypes as Conceptual Structures
	Information Extraction Templates
	Extracting Archetype Items from Clinical Texts
	Examination of Thyroid
	Measurement of Blood Pressure
	Measurement of Body Weight
	Extraction Accuracy and Discussion

	Conclusion
	References

	Using Conceptual Structures in the Design of Computer-Based Assessment Software
	Introduction
	Computer-Based Assessment Software
	A Conceptual Model of Programming Exercises
	How Conceptual Structures Can Help
	Searching and Finding Learning Materials
	Exchanging Exercises
	Creating Exercises
	Evaluating and Improving Exercises

	Conclusion
	References

	Modeling Ontological Structures with Type Classes in Coq
	Introduction
	Motivations for a Type-Theoretical Framework
	K-DTT: The Type-Theoretical Layer
	K-DTT: The Ontological Layer
	Representing Ontological Classes
	Expressing Generalization

	Representing Relations
	Representing Properties
	Concept Instances Properties
	Concept Type Properties

	Constructing Inheritance Hierarchies
	Related Works
	Conclusion
	References

	Parse Thicket Representation for Multi-sentence Search
	Introduction
	Generalizing Portions of Text
	Direct Paragraph-Paragraph Match

	Extending Parse Thickets with Rhetoric Structure-Based Arcs
	Evaluation of Parse Thicket Generalization
	Evaluation of Multi-sentence Search

	Related Work and Conclusions
	References

	FCA-Based Models and a Prototype Data Analysis System for Crowdsourcing Platforms
	Introduction and Related Work
	Witology Crowdsourcing Methodology and Projects
	Mathematical Models and Methods
	Formal Concept Analysis and OA-biclustering
	Triadic FCA and OAC-triclustering
	Socio-semantic Networks for Crowdsourcing
	FCA-Based Models for Crowdsourcing Data
	FCA-Based Recommender Model
	Keywords and Keyphrases Extraction

	Analysis Scheme
	First Experiments Results
	Conclusion
	References

	Toward a Peircean Theory of Human Learning: Revealing the Misconception of {\it Belief Revision}
	Introduction
	Architecture
	Components
	Logical Environment
	Information Systems
	Summary and Future Work
	References
	Appendix
	Functional Base
	Linguistics/Formalism
	Semantics

	Relational Superstructure
	Linguistics/Formalism
	Semantics

	Examples
	Logical Environment
	Transformation to Databases
	Relational Interpretation.
	Relational Logics.

	Designing Learning to Research the Formal Concept Analysis of Transactional Data
	Introduction
	Background
	Method
	Case Study Review
	Discussion
	Conclusion
	References

	Cross-Domain Inference Using Conceptual Graphs in Context of Laws of Science
	Introduction
	Concepts and Definitions
	Conceptual Graphs
	Graph Theory Concepts
	Procedure

	Convert to Common Labels
	Generating the Maximum Common Subgraph
	Generating the Minimum Common Super-Graph
	Relabeling and Validation
	Work So Far and Future Scope
	References

	Summarizing Conceptual Graphs for Automatic Summarization Task
	Introduction
	Related Work
	Approach Using Conceptual Graph
	Conceptual Graphs Formalism
	Construction of Conceptual Graphs
	Weighted Conceptual Graphs
	Ranking Algorithm
	Ranking Algorithm of Conceptual Graphs

	Experimental Results
	Conclusions
	References

	Logical Form vs. Logical Form: How Does the Difference Matter for Semantic Computationality?
	Introduction
	Logical Form in Logic and Logical Form (LF) in Generative Grammar
	Some Parallels between Logical Form and LF
	Of the Differences between Logical Form and LF

	What Does It All Reveal?
	Fodor’s Isomorphy, Logical Form and LF

	What Does It Mean for Semantics to Be Computational?
	Semantic Computationality, Logical Form and LF
	Conclusion
	References

	Model for Knowledge Representation of Multidimensional Measurements Processing Resultsin the Environment of Intelligent GIS
	Introduction
	Measurements and Processing Results Representation Models
	Geospatial Data Representation Models
	Case Study
	Conclusion
	References

	Transformation of SBVR Business Rulesto UML Class Model
	Introduction
	Background
	Related Work
	Methodology
	Experimental Results
	Summary
	References

	Representation of the Event Bush Approach in Terms of Directed Hypergraphs
	Introduction
	Basic Syntax of the Event Bush
	Event Bush Connectives and Inference
	Discussion: Resolved and Unresolved Issues
	Conclusions
	References
	Appendix

	Concept Lattices of a Relational Structure
	Introduction
	Preliminaries
	Windowed Structures
	Tables
	Galois Connection
	Concepts and Lattices
	Construction
	Conclusion
	References

	Representing Median Networks with Concept Lattices
	Introduction
	Median Networks and Phylogenetics
	Modelling with FCA
	Conclusion
	References

	Txt2vz: A New Tool for Generating Graph Clouds
	Introduction
	Description of Txt2vz
	The Overall Methodology
	Significance Measure
	Graph Generation Algorithm

	Examples
	Large Documents and Adjustments
	Document Collections
	Discussion and Future Work
	References

	Author Index

