
Pollen Footnotes: An Approach
SUNDAY, JANUARY 21ST, 2018

¹ One of the things you get for free with Markdown that you have to cook from scratch
with Pollen (or HTML for that matter) is footnotes. But this is fine, since it gives youmore
control over the results. Here is what I cooked up for use on the upcoming redesign of
The Local Yarnweblog/book project.

The Pollen discussion group has a thread on this post² that is well worth reading.
Matthew Butterick showed you can get mostly the same results with clearer andmore
concise code using normal tag functions as opposed to doing everything top-down
starting with root.

An aside: on the web, footnotes are something of an oddity. HTML doesn’t have any se-
mantic notion of a footnote, so we typically make them up using superscripted links to
an ordered list at the end of the article. I’m sympathetic to arguments that this makes
for a poor reading experience, and am convinced that they are probably overused.
Nonetheless, I’m converting a lot of old content that uses footnotes, and I know I’ll be
resorting to them in the future. Some newer treatments³ of web footnotes use clever
CSS to sprinkle them in the margins, which is nice, but comes with downsides: it isn’t ac-
cessible, it’s not intuitive to use and read on a phone, it renders the footnotes inline with
the text in CSS-less environments (Lynx, e.g.) and the markup is screwy⁴. So I’m sticking
with the old ordered-list-at-the-end approach (for this project, and for now, at least).

So I get to design my own footnote markup. Here’s what’s on my wishlist:

1. I want each footnote’s contents to be defined in a separate place from the foot-
note references. This will keep the prose from getting too cluttered.

2. I want to be able to define the footnote contents anywhere in the document, in
any order, and have them properly collected and ordered at the end.

3. I want to be able to use any mix of strings, symbols or numbers to reference foot-
notes, and have these all be converted to ordinal reference numbers.

1. This article assumes you are familiar with Pollen (http://pollenpub.com) and the concept of tagged X-
expressions.

2. https://groups.google.com/forum/#!topic/pollenpub/laWL4SWx0Zc
3. https://edwardtufte.github.io/tufte-css/#sidenotes
4. These reasons are listed in decreasing order of importance for the particular application I have in mind.

1

http://pollenpub.com
https://groups.google.com/forum/#!topic/pollenpub/laWL4SWx0Zc
https://edwardtufte.github.io/tufte-css/#sidenotes

4. I want to be able to refer to the same footnote more than once.⁵ (Rare, but useful
in some cases).

5. If I should happen to refer to a footnote that is never defined, I want a blank foot-
note to appear in the list in its place. (On the other hand if I define a footnote that
isn’t referenced anywhere, I’m content to let it disappear from the output.)

6. I want the footnote links not to interfere with each other whenmore than one
footnote-using article is displayed on the same page. In other words, the URL for
footnote #3 on article (A) should never be the same as the URL for footnote #3 on
article (B).

In other words, I want to be able to do this:

1 Here is some ◊textfn[1]. Later on the paragraph continues.
2
3 In another paragraph, I ◊mayfn[2] refer to another footnote.◊
4
5 fndef[1]{’Heres the contents of the first footnote.}◊
6 fndef[2]{And here are the contents of the second one.}

But I also want to be able to do this:

1 ◊
2 fndef["doodle"]{And here are the contents of the second one.}
3
4 Here is some ◊textfn["wipers"]. Later on the paragraph continues.◊
5 fndef["wipers"]{’Heres the contents of the first footnote.}
6
7 In another paragraph, I ◊mayfn["doodle"] refer to another footnote.

And both of these should render identically to:

1 <p>Here is some text^{1}. Later on the paragraph
continues.</p>

2
3 <p>In another paragraph, I may ^{2} refer to another

footnote.</p>
4
5 <section class="footnotes"><hr />

5. It was this requirement in particular that steeredme away from using the otherwise-excellent pollen-
count (https://github.com/malcolmstill/pollen-count) package.

2

https://github.com/malcolmstill/pollen-count

6
7 <li id="550b35-1">’Heres the contents of the first footnote.
8 <li id="550b35-2">And here are the contents of the second one.
9

10 </section>

⁶

This style of markup is a little more work to code in pollen.rkt, but it lets me be flexi-
ble and even a bit careless when writing the prose.

The output for footnotes (given my requirements) can’t very well be handled within
individual tag functions; it demands a top-down approach. [Again, this turns out not to
be true! see the Pollen group discussion⁷.] So I will be leaving my ◊fn and ◊fndef tag
functions undefined, and instead create a single function do-footnotes (and several
helper functions nested inside it) that will transform everything at once. I’ll call it from
my root tag like so:

 pollen.rkt

1 (require txexpr
2 sugar/coerce
3 openssl/md5
4 pollen/decode
5 pollen/template) ; ’Thats everything we need for this project
6
7 (define (root . elements)
8 (define footnoted
9 (do-footnotes `(root ,@elements)

10 (fingerprint (first elements)))))

The do-footnotes function takes a tagged X-expression (the body of the article) and a
prefix to use in all the relative links and backlinks. ⁸ Here are the general stages we’ll go
through inside this function:

1. Go through the footnote references. Transform them into reference links, giving
each an incrementally higher reference number (or, if the footnote has been ref-

6. Youmay be wondering, where did the 550b35 come from? Well, it’s an automatically generated identifier
that’s (mostly, usually) unique to the current article. By using it as a prefix on our footnote links and back-
links, we prevent collisions with other footnote-using articles that may be visible on the same page. I’ll
explain where it comes from at the end of this article.

7. https://groups.google.com/forum/#!topic/pollenpub/laWL4SWx0Zc
8. Youmay have surmised that the fingerprint function call above is where the 550b35 prefix came from.
Again, more on that later.

3

https://groups.google.com/forum/#!topic/pollenpub/laWL4SWx0Zc

erenced before, using the existing number). For later use, keep a list of all refer-
ences and in the order in which they’re found.

2. Split out all the footnote definitions from the rest of the article. Get rid of the ones
that aren’t referenced anywhere. Add empty ones to stand in for footnotes that
are referenced but not defined.

3. Sort the footnote definitions according to the order that they are first referenced
in the article.

4. Transform the footnote definitions into an ordered list with backlinks, and ap-
pend them back on to the end of the article.

Here is the code for do-footnotes that implements the first stage:

 pollen.rkt

1 (define (do-footnotes tx prefix)
2 (define fnrefs '())
3
4 (define (fn-reference tx)
5 (cond
6 [(and (eq? 'fn (get-tag tx))
7 (not (empty? (get-elements tx))))
8 (define ref (->string (first (get-elements tx))))
9 (set! fnrefs (append fnrefs (list ref)))

10 (let* ([ref-uri (string-append "#" prefix "-" ref)]
11 [ref-sequence (number->string (count (curry string=? ref) fnrefs))]
12 [ref-backlink-id (string-append prefix "-" ref "_" ref-sequence)]
13 [ref-ordinal (number->string (+ 1 (index-of fnrefs ref)))]
14 [ref-str (string-append "(" ref-ordinal ")")])
15 `(sup (a [[href ,ref-uri] [id ,ref-backlink-id]] ,ref-str)))]
16 [else tx]))
17
18 (define tx-with-fnrefs (decode tx #:txexpr-proc fn-reference))…
19)

Looking at the last line in this example will help you understand the flow of control here:
we can call decode⁹ and, using the #:txexpr-proc keyword argument, pass it a func-
tion to apply to every X-expression tag in the article. In this case, it’s a helper function
we’ve just defined, fn-reference. The upshot: the body of fn-reference is going to
be executed once for each ◊fn tag in the article.

9. http://docs.racket-lang.org/pollen/Decode.html

4

http://docs.racket-lang.org/pollen/Decode.html

By defining fn-reference inside the do-foonotes function, it has access to identifiers
outside its scope, such as the prefix string but most importantly the fnrefs list. This
means that every call to fn-referencewill be able to check up on the results of all the
other times it’s been called so far. And other helper functions we’ll be creating inside
do-footnotes later on will also have easy access to the results of those calls.

So let’s examine the steps taken by fn-definition in more detail.

1. First, using cond it checks to see if the current X-expression tx is a fn tag and has
at least one element (the reference ID). This is necessary because decode is going
to call fn-reference for every X-expression in the article, and we only want to
operate on the ◊fn tags.

2. Every time fn-reference finds a footnote reference, it has the side-effect of
appending its reference ID (in string form) to the fnrefs list (the set! function
call). Again, that list is the crucial piece that allows all the function calls happen-
ing inside do-footnotes to coordinate with each other.

3. The function uses let* to set up a bunch of values for use in outputting the foot-
note reference link:

(a) ref-uri, the relative link to the footnote at the end of the article.

(b) ref-sequence, will be “1” if this is the first reference to this footnote,
“2” if the second reference, etc. We get this by simply counting howmany
times ref appears in the fnrefs list so far.

(c) ref-backlink-id uses ref-sequence to make an id that will be the
target of a � back-link in the footnote definition.

(d) ref-ordinal is the footnote number as it will appear to the reader. To
find it, we remove all duplicates from the fnrefs list, find the index of the
current ref in that list, and add one (since we want footnote numbers to
start with 1, not 0).

(e) ref-str is the text of the footnoote reference that the reader sees. It’s only
used because I wanted to put parentheses around the footnote number.

4. Then, in the body of the let* expression, the function outputs the new footnote
reference link as an X-expression that will transform neatly to HTML when the
document is rendered.

5

So after the call to decode, we have an X-expression, tx-with-fnrefs, that has all the
footnote references (◊fn tags) properly transformed, and a list fnrefs containing all
the footnote reference IDs in the order in which they are found in the text.

Let’s take a closer look at that list. In our first simple example above, it would end up
looking like this: ‘(“1” “2”). In the second example, it would end up as ‘(“wipers”
“doodle”). In a very complicated and sloppy document, it could end up looking like
‘(“foo” “1” “7” “foo” “cite1” “1”). So when processing ◊fndef[“foo”], for
example, we can see by looking at that list that this should be the first footnote in the
list, and that there are two references to it in the article.

All that said, we’re ready to move on to phase two through four.

 pollen.rkt

1 (define (do-footnotes tx)
2 ; …stage 1 above …
3
4 (define (is-fndef? x) (and (txexpr? x) (equal? 'fndef (get-tag x))))
5
6 ; Collect ◊fndef tags, filter out any that ’arent actually referenced
7 (define-values (body fn-defs) (splitf-txexpr tx-with-fnrefs is-fndef?))
8 (define fn-defs-filtered
9 (filter λ((f)

10 (cond
11 [(member (->string (first (get-elements f))) fnrefs) #t]
12 [else #f]))
13 fn-defs))
14
15 ; Get a list of all the IDs of the footnote *definitions*
16 (define fn-def-ids
17 (for/list ([f (in-list fn-defs-filtered)]) (->string (first (get-elements f)))))
18
19 ; Pad the footnote definitions to include empty ones for any that ’werent defined
20 (define fn-defs-padded
21 (cond [(set=? fnrefs fn-def-ids) fn-defs-filtered]
22 [else (append fn-defs-filtered
23 (map λ((x) `(fndef ,x (i "Missing footnote definition")))
24 (set-subtract fnrefs fn-def-ids)))]))
25 ; …stage 3 and 4 …
26)

We define a helper function is-fndef? and use it with splitf-txexpr to extract all
the ◊fndef tags out of the article and put them in a separate list. Then we use filter,
passing it an anonymous function that returns #f for any fndefwhose ID doesn’t ap-
pear in fndefs.

Now we need to deal with the case where the ◊fn tags in a document reference a foot-
note that is never defined with an ◊fndef tag. To test for this, we just need a list of the

6

reference IDs used by the footnote definitions. The definition of fn-def-ids provides
this for us, using for/list to loop through all the footnote definitions and grab out
a stringified copy of the first element of each. We can then check if (set=? fnrefs

fn-def-ids)—that is, do these two lists contain all the same elements (regardless of
duplicates)? If not, we use set-subtract to get a list of which IDs are missing from
fn-def-ids and for each one, append another fndef to the filtered list of footnote
definitions.

 pollen.rkt

1 (define (do-footnotes tx)
2 ; …stages 1 and 2 above …
3
4 (define (footnote<? a b)
5 (< (index-of (remove-duplicates fnrefs) (->string (first (get-elements a))))
6 (index-of (remove-duplicates fnrefs) (->string (first (get-elements b))))))
7
8 (define fn-defs-sorted (sort fn-defs-padded footnote<?))
9

10 ; …stage 4 …

The helper function footnote<? compares two footnote definitions to see which one
should come first in the footnote list: it compares them to see which one has the ID that
appears first in fndefs. We pass that function to sort, which uses it to sort the whole
list of footnote definitions.

We are almost done. We just have to transform the now-ordered list of footnote defini-
tions and append it back onto the end of the article:

 pollen.rkt

1 (define (do-footnotes tx)
2 ; …stages 1 to 3 above …
3
4 (define (fn-definition tx)
5 (let* ([ref (->string (first (get-elements tx)))]
6 [fn-id (string-append "#" prefix "-" ref)]
7 [fn-elems (rest (get-elements tx))]
8 [fn-backlinks
9 (for/list ([r-seq (in-range (count (curry string=? ref) fnrefs))])

10 `(a [[href ,(string-append "#" prefix "-" ref "_"
11 (number->string (+ 1 r-seq)))]] �""))])
12 `(li [[id ,fn-id]] ,@fn-elems ,@fn-backlinks)))
13
14 (define footnotes-section
15 `(section [[class "footnotes"]] (hr) (ol ,@(map fn-definition fn-defs-sorted))))
16

7

17 (txexpr (get-tag body)
18 (get-attrs body)
19 (append (get-elements body)
20 (list footnotes-section)))
21 ; Finis!
22)

We need onemore helper function, fn-definition, to transform an individual
◊fndef tag into a list itemwith the footnote’s contents and backlinks to its references.
This helper uses let* in a way similar to fn-reference above, constructing each
part of the list item and then pulling them all together at the end. Of these parts,
fn-backlinks is worth examining. The expression (curry string=? ref) returns
a function that compares any string to whater ref currently is.¹⁰ That function gets
passed to count to count howmany times the current footnote is found in fnrefs. The
list comprehension for/list can then use that range to make a � backlink for each of
them.

In defining the footnotes-sectionwe map the helper function fn-definition onto
each ◊fndef tag in our sorted list, and drop them inside an X-expression matching the
HTMLmarkup we want for the footnotes section. The last statement adds this section
to the end of body (which was the other value given to us by splitf-txexprway up in
stage 2), and we’re done.

All that remains now is to show you where I got that 550b35 prefix from.

Ensuring unique footnote IDs
As mentioned before, I wanted to be able to give all the footnotes in an article some
unique marker for use in their id attribute, to make sure the links for footnotes in differ-
ent articles never collide with each other.

When the topic of “ensuring uniqueness” comes up it’s not long before we start talking
about hashes.

I could generate a random hash once for each article, but then the footnote’s URI would
change every time I rebuild the article, which would break any deep links people may
have made to those footnotes. How often will people be deep-linking into my footnotes?
Possibly never. But I would say, if you’re going to put a link to some text on the web,
don’t make it fundamentally unstable.

10. curry is basically a clever way of temporarily “pre-filling” some of a function’s arguments.

8

So we need something unique (and stable) from each article that I can use to determinis-
tically create a unique hash for that article. An obvious candidate would be the article’s
title, but many of the articles on the site I’mmaking will not have titles.

Instead I decided to use an MD5 hash of the text of the article’s first element (in practice,
this will usually mean its first paragraph):

 pollen.rkt

1 ; Concatentate all the elements of a tagged x-expression into a single string
2 ; (ignores attributes)
3 (define (txexpr->elements-string tx)
4 (cond [(string? tx) tx]
5 [(stringish? tx) (->string tx)]
6 [(txexpr? tx)
7 (apply string-append (map txexpr->elements-string (get-elements tx)))]))
8
9 (define (fingerprint tx)

10 (let ([hash-str (md5 (open-input-string (txexpr->elements-string tx)))])
11 (substring hash-str (- (string-length hash-str) 6))))

The helper function txexpr->elements-stringwill recursively drill through all the
nested expressions in an X-expression, pulling out all the strings found in the elements
of each and appending them into a single string. The fingerprint function then takes
the MD5 hash of this string and returns just the last six characters, which are unique
enough for our purposes.

If you paste the above into DrRacket (along with the requires at the beginnning of this
post) and then run it as below, you’ll see

1 > (fingerprint (txexpr->elements-string '(p "Here is some text" (fn 1) ". Later on the paragraph
continues.")))

2 "550b35"

This now explains where we were getting the prefix argument in do-footnotes:

 pollen.rkt

1 (define (root . elements)
2 (define footnoted
3 (do-footnotes `(root ,@elements)
4 (fingerprint (first elements)))))

9

Under this scheme, things could still break if I have two articles with exactly the same
text in the first element. Also, if I ever edit the text in the first element in an article, the
prefix will change (breaking any deep links that may have beenmade by other peo-
ple). But I figure that’s the place where I’m least likely to make any edits. This approach
brings the risk of footnote link collision and breakage down to a very low level, wasn’t
difficult to implement and won’t be any work to maintain.

Summary and parting thoughts
When designing the markup you’ll be using, Pollen gives you unlimited flexibility. You
can decide to adhere pretty closely to HTML structures in your markup (allowing your
underlying code to remain simple), or you can write clever code to enable your markup
domore work for you later on.

One area where I could have gotten more clever would have been error checking. For
instance, I could throw an error if a footnote is defined but never referenced. I could also
domore work to validate the contents of my ◊fn and ◊fndef tags. If I were especially
error-prone and forgetful, this could save me a bit of time when adding new content
to my site. For now, on this project, I’ve opted instead for marginally faster code…and
more cryptic error messages.

I will probably use a similar approach to allow URLs in hyperlinks to be specified sepa-
rately from the links themselves. Something like this:

 chapter.html.pm

1 #lang pollen
2
3 For more information, see ◊a[1]{About the Author}. You can also
4 see ◊a[2]{his current favorite TV show}.◊
5
6 hrefs{
7 [1]: http://joeldueck.com
8 [2]: http://www.imdb.com/title/tt5834198/
9 }

10

