Using SQLite to Speed Up Pollen Renders

THURSDAY, JUNE 21ST, 2018

| use a system written in Pollen and Racket'-* to generate this blog. It renders the HTML

file for most individual pages in less than half a second per page —not blazing, certainly,
but serviceable. However, when rendering pages that combine multiple posts, my code
has been interminably slow—40 seconds to render the home page, for example, and 50

seconds to render the RSS feed.

By creating my own cache system using a SQLite database, | was able to drop those
times to less than a second each.

My old approach, which used only Pollen’s functions for retrieving docs and metas, had
some pretty glaring inefficiencies®*—so glaring, in fact, that | probably could have cut my
render times for these “problem pages” down to 3-6 seconds just by addressing them.
But | thought | could get even further by making my own cache system.

Pollen’s cache system” is optimized for fetching individual docs and metas one by one,
not for grabbing and dynamically sorting a whole bunch of them at once. Also, Pollen’s
cache doesn’t store the rendered HTML of each page. There are good reasons for both of
these things; Pollen is optimized for making books, not blogs, and the content of a book
doesn’t often change. But Pollen was also designed to be infinitely flexible, which allows
us to extend it with whatever facilities we need.

Here is the gist of the new approach:

1. Create an® SQLite database

2. Inthe template code for individual posts (i.e. at the same time the post is being
rendered to HTML) save the post’s title, date and a copy of the rendered HTML in
the database.

1. http://pollenpub.com

2. This post assumes some familiarity with Pollen and SQL.

3. For example, in the code for my RSS feed, | was fetching the docs and metas from every document in the
entire pagetree (that is, every post | had ever written) into a list of structs, even though | would only use
the five most recent posts in the feed itself.

4. http://docs.racket-lang.org/pollen/Cache.html

5. After hearing SQLite’s author on this podcast (https://changelog.com/podcast/201) I fell into the habit of
pronouncing it the way he does: S-Q-L-ite, as though it were a mineral. Hence, “an”.

http://pollenpub.com
http://docs.racket-lang.org/pollen/Cache.html
https://changelog.com/podcast/201

3. Inthe “combination pages” (such as index.html and feed.xml), query the
SQLite database for the HTML and spit that out.

By doing this, | was able to make the renders 50-80 times faster. To illustrate, here are
some typical render times using my old approach®:

joel@macbook$ raco pollen render feed.xml
rendering feed.xml

rendering: /feed.xml.pp as /feed.xml

cpu time: 51819 real time: 52189 gc time: 13419

joel@macbook$ raco pollen render index.html
rendering index.html

rendering: /index.html.pp as /index.html

cpu time: 39621 real time: 39695 gc time: 7960

And here are the render times for the same pages after adding the SQLite cache:

joel@macbook$ raco pollen render feed.xml
rendering feed.xml

rendering: /feed.xml.pp as /feed.xml

cpu time: 659 real time: 660 gc time: 132

joel@macbook$ raco pollen render index.html
rendering index.html

rendering: /index.html.pp as /index.html
cpu time: 824 real time: 825 gc time: 188

This still isn’t nearly as fast as some static site generators’. But it’s plenty good enough
for my needs.

Creating the cache

I made a new file, util-db.rkt®to hold all the database functionality and to provide
functions that save and retrieve posts. My pollen.rkt re-provides all these functions,
which ensures that they are available for use in my templates and . pp files.

6. https://github.com/otherjoel/thenotepad/blob/2fd5c69b126f8695929a2c12b68b437afdc48416/index.
html.pp

7. Hugo (https://gohugo.io) has been benchmarked (https://youtu.be/CdiDYZ51a20) building a complete
5,000 post site in less than six seconds total.

8. You can browse the source code for this blog (https://github.com/otherjoel/thenotepad) on its public
repository.

https://github.com/otherjoel/thenotepad/blob/2fd5c69b126f8695929a2c12b68b437afdc48416/index.html.pp
https://github.com/otherjoel/thenotepad/blob/2fd5c69b126f8695929a2c12b68b437afdc48416/index.html.pp
https://gohugo.io
https://youtu.be/CdiDYZ51a2o
https://github.com/otherjoel/thenotepad

The database itself is created and maintained by the template.html.p file used to
render the HTML for indivdual posts. Here is the top portion of that file:

@ template.html.p

coo®

(init-db)¢

(define-values (doc-body comments) (split-body-comments doc))¢
(define doc-body-html (->html (cdr doc-body)))¢

(define doc-header (->html (post-header here metas)))¢
(save-post here metas doc-header doc-body-html)

<!DOCTYPE html>

<html lang="en"> ...

The expression init—-db ensures the database file exists, and runs some CREATE TABLE
IF NOT EXISTS queries to ensure the tables are set up correctly. The save-post ex-
pression saves the post’s metas and rendered HTML into the database.

Some more notes on the code above: The split-body-comments and post-header
functions come from another module | wrote, util-template.rkt. The first separates
any comments (that is, any ¢comment tags in the Pollen source) from the body of the
post, which lets me save just the body HTML in the database. The second provides an
X-expression for the post’s header, which includes or omits various things depending on
the post’s metas.

Database design

Internally, util-db.rkt has some very basic functions that generate and execute the
SQL queries | need.

If you watch the console while rendering a single post, you’ll see these queries being
logged (indented for clarity):

CREATE TABLE IF NOT EXISTS ‘posts®
(‘pagenode‘,
‘published‘,
‘updated‘,
‘title®,
‘header_html"‘,
‘html®,
PRIMARY KEY (‘pagenode‘))

CREATE TABLE IF NOT EXISTS ‘posts-topics‘
(‘pagenode‘,

‘topic',
PRIMARY KEY (‘pagenode‘, ‘topic‘'))

INSERT OR REPLACE INTO ‘posts®
(‘rowid‘, ‘pagenode‘, ‘published‘, ‘updated‘, ‘title‘, ‘header_html‘, ‘html‘)
values ((SELECT ‘rowid‘ FROM ‘posts‘ WHERE ‘pagenode‘= ?1), ?1, ?2, ?3, ?4, ?5, ?76)

DELETE FROM ‘posts-topics‘' WHERE ‘pagenode‘=?1
INSERT INTO ‘posts-topics‘' (‘pagenode‘, ‘topic‘')
VALUES ("posts/pollen-and-sqlite.html", "SQLite"),
("posts/pollen-and-sqlite.html", "Pollen"),
("posts/pollen-and-sqlite.html", "Racket"),
("posts/pollen-and-sqlite.html", "programming")

The schema and queries are designed to be idempotent, meaning | can safely run them
over and over again and end up with same set of records every time. So, no matter what
state things are in, | don’t have to worry about ending up with duplicate records or other
out-of-whacknesses when | render the site.

The database is also designed to need as few queries as possible, both when saving and
when fetching data: for example, using a single query to either create something if it
doesn’t exist, or to replace it if it does exist. Also, where applicable, creating multiple
records in a single query (as in the last example above).

Finally, in the interests of keeping things “simple”, | have tried to keep the database
disposable: that is, no part of the site’s content has its origin or permanent residence

in the database itself. | can delete it at any point and quickly rebuild it. That way my use
of it remains limited to my original plan for it: a speed enhancement, and nothing more.

Building the site: order of operations

Since home page, RSS feed, and other aggregation pages are now getting all their con-
tent from the SQLite database, it’s important that the database be up to date before
those pages are rendered.

| already use a makefile® to make sure that when things change, only the parts that need
updating are rebuilt, and only in a certain order. | won’t go into detail about how the
makefile works (a topic for another post, perhaps), but, in short, when I runmake all,
it does things in roughly the following order:

1. If any of the “core files” have changed, force a re-render of all individual posts.

9. https://en.wikipedia.org/wiki/Makefile

https://en.wikipedia.org/wiki/Makefile

2. Ifany individual posts have been changed or added, render just those to HTML.
(This step is automatically skipped if step 1 was run, because that step will al-
ready have brought all the posts up to date.)

3. Ifany posts or core files have been changed or added, force a re-render of the
“aggregation pages”, such as the home page, the Topics page, and the RSS feed.

This way, the pages that update the cache database are rendered before the pages that
draw from the database, and everything is hunky-dory.

The Topics system

This blog makes use of “topics”, which are basically like tags. A post can have zero or
more topics, and a topic can have or more posts.

This many-to-many relationship is another good fit for the database. You’ll have noticed
above that | store the topic/post relationships in a separate table. With each topic-post
pair stored in its own row, it is fast and easy to fetch them all out of the database at once.
Theutil-db.rkt module provides a function, topic-1list, which does this. Here’s
what you see if you call it from DrRacket:

> (topic-list)
"SELECT ‘topic‘, p.pagenode, p.title FROM ‘posts—topics‘' t INNER JOIN ‘posts‘' p ON t.pagenode = p.
pagenode ORDER BY ‘topic' ASC"
"(("Active Directory" ("posts/laptop-user-not-—authenticating-in-nt.html" "Laptop User Not
Authenticating in an NT Domain After Changing Password"))
("Apple" ("posts/siri-slow-unreliable-and-maybe-not.html" "Siri: Slow, unreliable, and maybe not a
priority at Apple"))
("audio"
("posts/how-to-convert-mp3-files-for-use-as-on-hold-music.html" "How to convert mp3 files for use
as on-hold music")
("posts/how-to-record-with-a-yeti.html" "How to Record With a Yeti and Audacity (and eliminate
background noise)"))

The SQL query uses INNER JOIN to link the posts in the posts-topics table with their

titles in the posts table, resulting in a list of rows with three columns each: topic, pagen-
ode (the relative path to the HTML file), and title. The topic-1ist function then groups

these rows by the topic name and returns the resulting list.

The topics.html.pp file can make use of this nested list with some help from Pollen’s
new for/splice function'® (Thanks Matthew!):

10. /posts/a-quick-pollen-macro.html

/posts/a-quick-pollen-macro.html

<table>{
for/s[topic (topic-list)]{
<tr>
<td><a name(="#(car topic)¢">(car topic)</td>
<td>¢
for/s[post (cdr topic)]{
<a href¢="/(list-ref post 0)¢">(list-ref post 1)
F</td>
</tr>
¥
</table> ...

Removing a post

One last consideration: removing a post is no longer as simple as deleting its Pollen
source document. | have to remove it from the SQLite database as well, otherwise it will
continue to appear on the home page, RSS feed, etc.

There are a few ways | could do this. The simplest would be to delete the database file
and rebuild the site from scratch. Or | could open the database in a program like DB
Browser for SQLite'" and delete the rows manually. Or | could write a script to automate
this. 1 don’t often need to delete posts, so I'll probably put off writing any scripts for
now.

11. http://sqlitebrowser.org

http://sqlitebrowser.org

