Amazon S3 Vectors
Amazon S3 Vectors is the first cloud object store with native support for storing and querying vector embeddings at scale, delivering purpose-built, cost-optimized vector storage for semantic search, AI agents, retrieval-augmented generation, and similarity-search applications. It introduces a new “vector bucket” type in S3, where users can organize vectors into “vector indexes,” store high-dimensional embeddings (representing text, images, audio, or other unstructured data), and run similarity queries via dedicated APIs, all without provisioning infrastructure. Each vector may carry metadata (e.g., tags, timestamps, categories), enabling filtered queries by attributes. S3 Vectors offers massive scale; now generally available, it supports up to 2 billion vectors per index and up to 10,000 vector indexes per bucket, with elastic, durable storage and server-side encryption (SSE-S3 or optionally KMS).
Learn more
Azure AI Search
Deliver high-quality responses with a vector database built for advanced retrieval augmented generation (RAG) and modern search. Focus on exponential growth with an enterprise-ready vector database that comes with security, compliance, and responsible AI practices built in. Build better applications with sophisticated retrieval strategies backed by decades of research and customer validation. Quickly deploy your generative AI app with seamless platform and data integrations for data sources, AI models, and frameworks. Automatically upload data from a wide range of supported Azure and third-party sources. Streamline vector data processing with built-in extraction, chunking, enrichment, and vectorization, all in one flow. Support for multivector, hybrid, multilingual, and metadata filtering. Move beyond vector-only search with keyword match scoring, reranking, geospatial search, and autocomplete.
Learn more
Pinecone
The AI Knowledge Platform.
The Pinecone Database, Inference, and Assistant make building high-performance vector search apps easy. Developer-friendly, fully managed, and easily scalable without infrastructure hassles.
Once you have vector embeddings, manage and search through them in Pinecone to power semantic search, recommenders, and other applications that rely on relevant information retrieval.
Ultra-low query latency, even with billions of items. Give users a great experience. Live index updates when you add, edit, or delete data. Your data is ready right away. Combine vector search with metadata filters for more relevant and faster results.
Launch, use, and scale your vector search service with our easy API, without worrying about infrastructure or algorithms. We'll keep it running smoothly and securely.
Learn more
Qdrant
Qdrant is a vector similarity engine & vector database. It deploys as an API service providing search for the nearest high-dimensional vectors. With Qdrant, embeddings or neural network encoders can be turned into full-fledged applications for matching, searching, recommending, and much more!
Provides the OpenAPI v3 specification to generate a client library in almost any programming language. Alternatively utilise ready-made client for Python or other programming languages with additional functionality.
Implement a unique custom modification of the HNSW algorithm for Approximate Nearest Neighbor Search. Search with a State-of-the-Art speed and apply search filters without compromising on results.
Support additional payload associated with vectors. Not only stores payload but also allows filter results based on payload values.
Learn more