IBM Watson Discovery
Find specific answers and trends from documents and websites using search powered by AI. Watson Discovery is AI-powered search and text-analytics that uses innovative, market-leading natural language processing to understand your industry’s unique language. It finds answers in your content fast and uncovers meaningful business insights from your documents, webpages and big data, cutting research time by more than 75%. Semantic search is much more than keyword search. Unlike traditional search engines, when you ask a question, Watson Discovery adds context to the answer. It quickly combs through content in your connected data sources, pinpoints the most relevant passage and provides the source documents or webpage. A next-level search experience with natural language processing that makes all necessary information easily accessible. Use machine learning to visually label text, tables and images, while surfacing the most relevant results.
Learn more
Gensim
Gensim is a free, open source Python library designed for unsupervised topic modeling and natural language processing, focusing on large-scale semantic modeling. It enables the training of models like Word2Vec, FastText, Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation (LDA), facilitating the representation of documents as semantic vectors and the discovery of semantically related documents. Gensim is optimized for performance with highly efficient implementations in Python and Cython, allowing it to process arbitrarily large corpora using data streaming and incremental algorithms without loading the entire dataset into RAM. It is platform-independent, running on Linux, Windows, and macOS, and is licensed under the GNU LGPL, promoting both personal and commercial use. The library is widely adopted, with thousands of companies utilizing it daily, over 2,600 academic citations, and more than 1 million downloads per week.
Learn more
Google Cloud Natural Language API
Get insightful text analysis with machine learning that extracts, analyzes, and stores text. Train high-quality machine learning custom models without a single line of code with AutoML. Apply natural language understanding (NLU) to apps with Natural Language API. Use entity analysis to find and label fields within a document, including emails, chat, and social media, and then sentiment analysis to understand customer opinions to find actionable product and UX insights. Natural Language with speech-to-text API extracts insights from audio. Vision API adds optical character recognition (OCR) for scanned docs. Translation API understands sentiments in multiple languages. Use custom entity extraction to identify domain-specific entities within documents, many of which don’t appear in standard language models, without having to spend time or money on manual analysis. Train your own high-quality machine learning custom models to classify, extract, and detect sentiment.
Learn more
word2vec
Word2Vec is a neural network-based technique for learning word embeddings, developed by researchers at Google. It transforms words into continuous vector representations in a multi-dimensional space, capturing semantic relationships based on context. Word2Vec uses two main architectures: Skip-gram, which predicts surrounding words given a target word, and Continuous Bag-of-Words (CBOW), which predicts a target word based on surrounding words. By training on large text corpora, Word2Vec generates word embeddings where similar words are positioned closely, enabling tasks like semantic similarity, analogy solving, and text clustering. The model was influential in advancing NLP by introducing efficient training techniques such as hierarchical softmax and negative sampling. Though newer embedding models like BERT and Transformer-based methods have surpassed it in complexity and performance, Word2Vec remains a foundational method in natural language processing and machine learning research.
Learn more