Compare the Top Free Data Lake Solutions as of February 2026

What are Free Data Lake Solutions?

Data lake solutions are platforms designed to store and manage large volumes of structured, semi-structured, and unstructured data in its raw form. Unlike traditional databases, data lakes allow businesses to store data in its native format without the need for preprocessing or schema definition upfront. These solutions provide scalability, flexibility, and high-performance capabilities for handling vast amounts of diverse data, including logs, multimedia, social media posts, sensor data, and more. Data lake solutions typically offer tools for data ingestion, storage, management, analytics, and governance, making them essential for big data analytics, machine learning, and real-time data processing. By consolidating data from various sources, data lakes help organizations gain deeper insights and drive data-driven decision-making. Compare and read user reviews of the best Free Data Lake solutions currently available using the table below. This list is updated regularly.

  • 1
    Narrative

    Narrative

    Narrative

    Create new streams of revenue using the data you already collect with your own branded data shop. Narrative is focused on the fundamental principles that make buying and selling data easier, safer, and more strategic. Ensure that the data you access meets your standards, whatever they may be. Know exactly who you’re working with and how the data was collected. Easily access new supply and demand for a more agile and accessible data strategy. Own your data strategy entirely with end-to-end control of inputs and outputs. Our platform simplifies and automates the most time- and labor-intensive aspects of data acquisition, so you can access new data sources in days, not months. With filters, budget controls, and automatic deduplication, you’ll only ever pay for the data you need, and nothing that you don’t.
    Starting Price: $0
  • 2
    Sprinkle

    Sprinkle

    Sprinkle Data

    Businesses today need to adapt faster with ever evolving customer requirements and preferences. Sprinkle helps you manage these expectations with agile analytics platform that meets changing needs with ease. We started Sprinkle with the goal to simplify end to end data analytics for organisations, so that they don’t worry about integrating data from various sources, changing schemas and managing pipelines. We built a platform that empowers everyone in the organisation to browse and dig deeper into the data without any technical background. Our team has worked extensively with data while building analytics systems for companies like Flipkart, Inmobi, and Yahoo. These companies succeed by maintaining dedicated teams of data scientists, business analyst and engineers churning out reports and insights. We realized that most organizations struggle for simple self-serve reporting and data exploration. So we set out to build solution that will help all companies leverage data.
    Starting Price: $499 per month
  • 3
    iomete

    iomete

    iomete

    Modern lakehouse built on top of Apache Iceberg and Apache Spark. Includes: Serverless lakehouse, Serverless Spark Jobs, SQL editor, Advanced data catalog and built-in BI (or connect 3rd party BI e.g. Tableau, Looker). iomete has an extreme value proposition with compute prices is equal to AWS on-demand pricing. No mark-ups. AWS users get our platform basically for free.
    Starting Price: Free
  • 4
    ELCA Smart Data Lake Builder
    Classical Data Lakes are often reduced to basic but cheap raw data storage, neglecting significant aspects like transformation, data quality and security. These topics are left to data scientists, who end up spending up to 80% of their time acquiring, understanding and cleaning data before they can start using their core competencies. In addition, classical Data Lakes are often implemented by separate departments using different standards and tools, which makes it harder to implement comprehensive analytical use cases. Smart Data Lakes solve these various issues by providing architectural and methodical guidelines, together with an efficient tool to build a strong high-quality data foundation. Smart Data Lakes are at the core of any modern analytics platform. Their structure easily integrates prevalent Data Science tools and open source technologies, as well as AI and ML. Their storage is cheap and scalable, supporting both unstructured data and complex data structures.
    Starting Price: Free
  • 5
    Openbridge

    Openbridge

    Openbridge

    Uncover insights to supercharge sales growth using code-free, fully-automated data pipelines to data lakes or cloud warehouses. A flexible, standards-based platform to unify sales and marketing data for automating insights and smarter growth. Say goodbye to messy, expensive manual data downloads. Always know what you’ll pay and only pay for what you use. Fuel your tools with quick access to analytics-ready data. As certified developers, we only work with secure, official APIs. Get started quickly with data pipelines from popular sources. Pre-built, pre-transformed, and ready-to-go data pipelines. Unlock data from Amazon Vendor Central, Amazon Seller Central, Instagram Stories, Facebook, Amazon Advertising, Google Ads, and many others. Code-free data ingestion and transformation processes allow teams to realize value from their data quickly and cost-effectively. Data is always securely stored directly in a trusted, customer-owned data destination like Databricks, Amazon Redshift, etc.
    Starting Price: $149 per month
  • 6
    Scalytics Connect
    Scalytics Connect enables AI and ML to process and analyze data, makes it easier and more secure to use different data processing platforms at the same time. Built by the inventors of Apache Wayang, Scalytics Connect is the most enhanced data management platform, reducing the complexity of ETL data pipelines dramatically. Scalytics Connect is a data management and ETL platform that helps organizations unlock the power of their data, regardless of where it resides. It empowers businesses to break down data silos, simplify access, and gain valuable insights through a variety of features, including: - AI-powered ETL: Automates tasks like data extraction, transformation, and loading, freeing up your resources for more strategic work. - Unified Data Landscape: Breaks down data silos and provides a holistic view of all your data, regardless of its location or format. - Effortless Scaling: Handles growing data volumes with ease, so you never get bottlenecked by information overload
    Starting Price: $0
  • 7
    DataLakeHouse.io

    DataLakeHouse.io

    DataLakeHouse.io

    DataLakeHouse.io (DLH.io) Data Sync provides replication and synchronization of operational systems (on-premise and cloud-based SaaS) data into destinations of their choosing, primarily Cloud Data Warehouses. Built for marketing teams and really any data team at any size organization, DLH.io enables business cases for building single source of truth data repositories, such as dimensional data warehouses, data vault 2.0, and other machine learning workloads. Use cases are technical and functional including: ELT, ETL, Data Warehouse, Pipeline, Analytics, AI & Machine Learning, Data, Marketing, Sales, Retail, FinTech, Restaurant, Manufacturing, Public Sector, and more. DataLakeHouse.io is on a mission to orchestrate data for every organization particularly those desiring to become data-driven, or those that are continuing their data driven strategy journey. DataLakeHouse.io (aka DLH.io) enables hundreds of companies to managed their cloud data warehousing and analytics solutions.
    Starting Price: $99
  • 8
    Databricks Data Intelligence Platform
    The Databricks Data Intelligence Platform allows your entire organization to use data and AI. It’s built on a lakehouse to provide an open, unified foundation for all data and governance, and is powered by a Data Intelligence Engine that understands the uniqueness of your data. The winners in every industry will be data and AI companies. From ETL to data warehousing to generative AI, Databricks helps you simplify and accelerate your data and AI goals. Databricks combines generative AI with the unification benefits of a lakehouse to power a Data Intelligence Engine that understands the unique semantics of your data. This allows the Databricks Platform to automatically optimize performance and manage infrastructure in ways unique to your business. The Data Intelligence Engine understands your organization’s language, so search and discovery of new data is as easy as asking a question like you would to a coworker.
  • 9
    Upsolver

    Upsolver

    Upsolver

    Upsolver makes it incredibly simple to build a governed data lake and to manage, integrate and prepare streaming data for analysis. Define pipelines using only SQL on auto-generated schema-on-read. Easy visual IDE to accelerate building pipelines. Add Upserts and Deletes to data lake tables. Blend streaming and large-scale batch data. Automated schema evolution and reprocessing from previous state. Automatic orchestration of pipelines (no DAGs). Fully-managed execution at scale. Strong consistency guarantee over object storage. Near-zero maintenance overhead for analytics-ready data. Built-in hygiene for data lake tables including columnar formats, partitioning, compaction and vacuuming. 100,000 events per second (billions daily) at low cost. Continuous lock-free compaction to avoid “small files” problem. Parquet-based tables for fast queries.
  • 10
    Qubole

    Qubole

    Qubole

    Qubole is a simple, open, and secure Data Lake Platform for machine learning, streaming, and ad-hoc analytics. Our platform provides end-to-end services that reduce the time and effort required to run Data pipelines, Streaming Analytics, and Machine Learning workloads on any cloud. No other platform offers the openness and data workload flexibility of Qubole while lowering cloud data lake costs by over 50 percent. Qubole delivers faster access to petabytes of secure, reliable and trusted datasets of structured and unstructured data for Analytics and Machine Learning. Users conduct ETL, analytics, and AI/ML workloads efficiently in end-to-end fashion across best-of-breed open source engines, multiple formats, libraries, and languages adapted to data volume, variety, SLAs and organizational policies.
  • 11
    Hadoop

    Hadoop

    Apache Software Foundation

    The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage. Rather than rely on hardware to deliver high-availability, the library itself is designed to detect and handle failures at the application layer, so delivering a highly-available service on top of a cluster of computers, each of which may be prone to failures. A wide variety of companies and organizations use Hadoop for both research and production. Users are encouraged to add themselves to the Hadoop PoweredBy wiki page. Apache Hadoop 3.3.4 incorporates a number of significant enhancements over the previous major release line (hadoop-3.2).
  • 12
    Cribl Lake
    Storage that doesn’t lock data in. Get up and running fast with a managed data lake. Easily store, access, and retrieve data, without being a data expert. Cribl Lake keeps you from drowning in data. Easily store, manage, enforce policy on, and access data when you need. Dive into the future with open formats and unified retention, security, and access control policies. Let Cribl handle the heavy lifting so data can be usable and valuable to the teams and tools that need it. Minutes, not months to get up and running with Cribl Lake. Zero configuration with automated provisioning and out-of-the-box integrations. Streamline workflows with Stream and Edge for powerful data ingestion and routing. Cribl Search unifies queries no matter where data is stored, so you can get value from data without delays. Take an easy path to collect and store data for long-term retention. Comply with legal and business requirements for data retention by defining specific retention periods.
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB