APPFL (Advanced Privacy-Preserving Federated Learning) is a Python framework enabling researchers to easily build and benchmark privacy-aware federated learning solutions. It supports flexible algorithm development, differential privacy, secure communications, and runs efficiently on HPC and multi-GPU setups.
Features
- Implements differential privacy and client authentication
- Modular plug-and-play aggregation, scheduling, trainers
- Supports synchronous and asynchronous FL algorithms
- Multi-GPU training via PyTorch DDP
- Integrates with MONAI for healthcare workflows
- Scalable on HPC using MPI/gRPC-based client-server setup
Categories
Federated Learning FrameworksLicense
MIT LicenseFollow Appfl
Other Useful Business Software
$300 in Free Credit for Your Google Cloud Projects
Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
Rate This Project
Login To Rate This Project
User Reviews
Be the first to post a review of Appfl!