APPFL (Advanced Privacy-Preserving Federated Learning) is a Python framework enabling researchers to easily build and benchmark privacy-aware federated learning solutions. It supports flexible algorithm development, differential privacy, secure communications, and runs efficiently on HPC and multi-GPU setups.

Features

  • Implements differential privacy and client authentication
  • Modular plug-and-play aggregation, scheduling, trainers
  • Supports synchronous and asynchronous FL algorithms
  • Multi-GPU training via PyTorch DDP
  • Integrates with MONAI for healthcare workflows
  • Scalable on HPC using MPI/gRPC-based client-server setup

Project Samples

Project Activity

See All Activity >

License

MIT License

Follow Appfl

Appfl Web Site

Other Useful Business Software
$300 in Free Credit for Your Google Cloud Projects Icon
$300 in Free Credit for Your Google Cloud Projects

Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
Start Free Trial
Rate This Project
Login To Rate This Project

User Reviews

Be the first to post a review of Appfl!

Additional Project Details

Operating Systems

Linux, Mac, Windows

Programming Language

Python

Related Categories

Python Federated Learning Frameworks

Registered

2025-07-15