Showing 3 open source projects for "deep learning"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    DeepSpeech

    DeepSpeech

    Open source embedded speech-to-text engine

    DeepSpeech is an open source embedded (offline, on-device) speech-to-text engine which can run in real time on devices ranging from a Raspberry Pi 4 to high power GPU servers. DeepSpeech is an open-source Speech-To-Text engine, using a model trained by machine learning techniques based on Baidu's Deep Speech research paper. Project DeepSpeech uses Google's TensorFlow to make the implementation easier. A pre-trained English model is available for use and can be downloaded following the instructions in the usage docs. If you want to use the pre-trained English model for performing speech-to-text, you can download it (along with other important inference material) from the DeepSpeech releases page.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 2
    jieba

    jieba

    Stuttering Chinese word segmentation

    ...The search engine mode, on the basis of the precise mode, divides the long words again to improve the recall rate, which is suitable for word segmentation in search engines. The paddle mode uses the PaddlePaddle deep learning framework to train the sequence labeling (bidirectional GRU) network model to achieve word segmentation. Also supports part-of-speech tagging. To use paddle mode, you need to install paddlepaddle-tiny, pip install paddlepaddle-tiny==1.6.1. Currently paddle mode supports jieba v0.40 and above. For versions below jieba v0.40, please upgrade jieba, pip install jieba --upgrade.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    ArabicDiacritizer

    ArabicDiacritizer

    An automatic restoration of Arabic diacritic marks

    This is a software of Arabic diacritical marks restoration. It is based mainly on deep architectures using deep neural network. The algorithm generates diacritized text with determined end case. The algorithm is described in detail in: Ilyes Rebai, and Yassine BenAyed 'Text-to-speech synthesis system with Arabic diacritic recognition system', Computer Speech & Language, 2015. We appreciate it very much if you can cite our related work. ************** Installation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next