101 projects for "python (scikit-learn)" with 2 filters applied:

  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    FastAPI Python

    FastAPI Python

    FastAPI framework, high performance, easy to learn, fast to code

    FastAPI framework, high performance, easy to learn, fast to code, ready for production. FastAPI is a modern, fast (high-performance), web framework for building APIs with Python based on standard Python type hints.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 2
    Learn Claude Code

    Learn Claude Code

    Bash is all you need, write a claude code with only 16 line code

    Learn Claude Code is an educational repository that teaches how modern AI coding agents work by walking learners through a sequence of progressively more complex agent implementations, starting with a minimal Bash-based agent and culminating in agents with explicit planning, subagents, and skills. It emphasizes a hands-on learning path where each version (from v0 to v4) adds conceptual building blocks like the core agent loop, todo planning, task decomposition, and domain knowledge skills,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Playground Cheatsheet for Python

    Playground Cheatsheet for Python

    Playground and cheatsheet for learning Python

    learn-python is another repository by Oleksii Trekhleb that serves as both a playground and an interactive cheatsheet for learning Python. It contains numerous Python scripts organized by topic (lists, dictionaries, loops, functions, classes, modules, etc.), each with code examples, explanations, test assertions, and links to further readings.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Python-Spider

    Python-Spider

    Python3 web crawler practice

    Python-Spider is a repository intended to teach or provide examples for writing web spiders / crawlers in Python — part of a broader learning and resource collection by its author. The code and documentation are oriented toward beginners or intermediate learners who want to learn how to fetch, parse, and extract data from websites programmatically.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 5
    mlforecast

    mlforecast

    Scalable machine learning for time series forecasting

    mlforecast is a time-series forecasting framework built around machine-learning models, designed to make forecasting both efficient and scalable. It lets you apply any regressor that follows the typical scikit-learn API, for example, gradient-boosted trees or linear models, to time-series data by automating much of the messy feature engineering and data preparation. Instead of writing custom code to build lagged features, rolling statistics, and date-based predictors, mlforecast generates...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Agentic Data Scientist

    Agentic Data Scientist

    An end-to-end Data Scientist

    Agentic Data Scientist is an experimental AI-driven research framework that orchestrates data science workflows through autonomous agents that can reason, plan, and execute complex analytics tasks. Unlike traditional scripted pipelines, this project lets AI agents break down high-level research goals into sub-tasks such as data acquisition, cleaning, modeling, evaluation, and reporting, with minimal human direction. Each agent is designed to independently call functions, interact with data...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Python Zero to Hero for DevOps Engineers

    Python Zero to Hero for DevOps Engineers

    Learn Python from DevOps Engineer point of you

    Python Zero to Hero for DevOps Engineers is a structured “Python Zero to Hero for DevOps Engineers” course laid out as a day-by-day learning path. The repository is organized into Day-01 through Day-19 folders plus a small sample app, which makes it very easy to follow in sequence like a bootcamp. The curriculum starts with Python installation, environment setup, and writing your first script, then quickly moves into data types, strings, regular expressions, variables, and functions. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    PyQuil

    PyQuil

    A Python library for quantum programming using Quil

    PyQuil is a Python library for quantum programming using Quil, the quantum instruction language developed at Rigetti Computing. PyQuil serves three main functions. PyQuil has a ton of other features, which you can learn more about in the docs. However, you can also keep reading below to get started with running your first quantum program. Without installing anything, you can quickly get started with quantum programming by exploring our interactive Jupyter Notebook tutorials and examples. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 10
    System Design Primer

    System Design Primer

    Learn how to design large-scale systems

    System Design Primer is a curated, open source collection of resources that helps engineers learn how to design large-scale systems. The project is structured as a comprehensive guide covering core system design concepts, trade-offs, and patterns necessary for building scalable, reliable, and maintainable systems. It offers both theoretical foundations—such as scalability principles, the CAP theorem, and consistency models—and practical exercises, including real-world system design interview...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    TextWorld

    TextWorld

    ​TextWorld is a sandbox learning environment for the training

    TextWorld is a learning environment designed to train reinforcement learning agents to play text-based games, where actions and observations are entirely in natural language. Developed by Microsoft Research, TextWorld focuses on language understanding, planning, and interaction in complex, narrative-driven environments. It generates games procedurally, enabling scalable testing of agents’ natural language processing and decision-making abilities.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 12
    Theseus

    Theseus

    A library for differentiable nonlinear optimization

    Theseus is a library for differentiable nonlinear optimization that lets you embed solvers like Gauss-Newton or Levenberg–Marquardt inside PyTorch models. Problems are expressed as factor graphs with variables on manifolds (e.g., SE(3), SO(3)), so classical robotics and vision tasks—bundle adjustment, pose graph optimization, hand–eye calibration—can be written succinctly and solved efficiently. Because solves are differentiable, you can backpropagate through optimization to learn cost...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Godot RL Agents

    Godot RL Agents

    An Open Source package that allows video game creators

    godot_rl_agents is a reinforcement learning integration for the Godot game engine. It allows AI agents to learn how to interact with and play Godot-based games using RL algorithms. The toolkit bridges Godot with Python-based RL libraries like Stable-Baselines3, making it possible to create complex and visually rich RL environments natively in Godot.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    OSWorld

    OSWorld

    Benchmarking Multimodal Agents for Open-Ended Tasks

    OSWorld is an open-source synthetic world environment designed for embodied AI research and multi-agent learning. It provides a richly simulated 3D world where multiple agents can interact, perform tasks, and learn complex behaviors. OSWorld emphasizes multi-modal interaction, enabling agents to process visual, auditory, and symbolic data for grounded learning in a simulated world.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    The Data Engineering Handbook

    The Data Engineering Handbook

    Links to everything you'd ever want to learn about data engineering

    The Data Engineering Handbook is a comprehensive, community-curated repository that aggregates essential learning resources for anyone interested in becoming a professional data engineer. Rather than being a code project itself, it’s a learning handbook that links to books, articles, tutorials, community groups, boot camps, and real-world project examples that collectively form a roadmap to mastering data engineering skills. It includes beginner and intermediate boot camps, interview guides,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    Agent Reinforcement Trainer

    Agent Reinforcement Trainer

    Train multi-step agents for real-world tasks using GRPO

    Agent Reinforcement Trainer, or ART is an open-source reinforcement learning framework tailored to training large language model agents through experience, making them more reliable and performant on multi-turn, multi-step tasks. Instead of just manually crafting prompts or relying on supervised fine-tuning, ART uses techniques like Group Relative Policy Optimization (GRPO) to let agents learn from environmental feedback and reward signals. The framework is designed to integrate easily with Python applications, abstracting much of the RL infrastructure so developers can train agents without deep RL expertise or heavy infrastructure overhead. ART also supports scalable training patterns, observability tools, and integration with hosted platforms like Weights & Biases, and it provides notebooks that demonstrate training on standard benchmarks and tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    LatentMAS

    LatentMAS

    Latent Collaboration in Multi-Agent Systems

    LatentMAS is an advanced framework for multi-agent reinforcement learning (MARL) that uses latent variable modeling to bridge perception and decision-making in environments where agents must coordinate under uncertainty. It provides mechanisms for agents to learn high-level latent representations of states, which simplifies complex sensory inputs into compact, actionable embeddings that facilitate both individual policy learning and inter-agent coordination. Using this latent space, the...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    dude uncomplicated data extraction

    dude uncomplicated data extraction

    dude uncomplicated data extraction: A simple framework

    Dude is a very simple framework for writing web scrapers using Python decorators. The design, inspired by Flask, was to easily build a web scraper in just a few lines of code. Dude has an easy-to-learn syntax. Dude is currently in Pre-Alpha. Please expect breaking changes. You can run your scraper from terminal/shell/command-line by supplying URLs, the output filename of your choice and the paths to your python scripts to dude scrape command.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Flama

    Flama

    Fire up your models with the flame

    Flama is a python library which establishes a standard framework for development and deployment of APIs with special focus on machine learning (ML). The main aim of the framework is to make ridiculously simple the deployment of ML APIs, simplifying (when possible) the entire process to a single line of code. The library builds on Starlette, and provides an easy-to-learn philosophy to speed up the building of highly performant GraphQL, REST and ML APIs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a benchmark suite focused on offline reinforcement learning — i.e., learning policies from fixed datasets rather than via online interaction with the environment. It contains standardized environments, tasks and datasets (observations, actions, rewards, terminals) aimed at enabling reproducible research in offline RL. Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    ML for Beginners

    ML for Beginners

    12 weeks, 26 lessons, 52 quizzes, classic Machine Learning for all

    ML-For-Beginners is a structured, project-driven curriculum that teaches foundational machine learning concepts with approachable math and lots of code. Organized as a multi-week course, it mixes short lectures with labs in notebooks so learners practice regression, classification, clustering, and recommendation techniques on real datasets. Each lesson aims to connect the algorithm to a relatable scenario, reinforcing intuition before diving into parameters, metrics, and trade-offs. The...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets. The project provides compact ViT variants (Tiny/Small/Base) that achieve excellent...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Courses (Anthropic)

    Courses (Anthropic)

    Anthropic's educational courses

    Anthropic’s courses repository is a growing collection of self-paced learning materials that teach practical AI skills using Claude and the Anthropic API. It’s organized as a sequence of hands-on courses—starting with API fundamentals and prompt engineering—so learners build capability step by step rather than in isolation. Each course mixes short readings with runnable notebooks and exercises, guiding you through concepts like model parameters, streaming, multimodal prompts, structured...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Qwen-Image-Layered

    Qwen-Image-Layered

    Qwen-Image-Layered: Layered Decomposition for Inherent Editablity

    Qwen-Image-Layered is an extension of the Qwen series of multimodal models that introduces layered image understanding, enabling the model to reason about hierarchical visual structures — such as separating foreground, background, objects, and contextual layers within an image. This architecture allows richer semantic interpretation, enabling use cases such as scene decomposition, object-level editing, layered captioning, and more fine-grained multimodal reasoning than with flat image...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next