Open Source Python Computer Vision Libraries

Python Computer Vision Libraries

View 190 business solutions

Browse free open source Python Computer Vision Libraries and projects below. Use the toggles on the left to filter open source Python Computer Vision Libraries by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    The Open Source Computer Vision Library has >2500 algorithms, extensive documentation and sample code for real-time computer vision. It works on Windows, Linux, Mac OS X, Android, iOS in your browser through JavaScript. Languages: C++, Python, Julia, Javascript Homepage: https://opencv.org Q&A forum: https://forum.opencv.org/ Documentation: https://docs.opencv.org Source code: https://github.com/opencv Please pay special attention to our tutorials! https://docs.opencv.org/master Books about the OpenCV are described here: https://opencv.org/books.html
    Leader badge
    Downloads: 2,323 This Week
    Last Update:
    See Project
  • 2
    MESHROOM

    MESHROOM

    3D reconstruction software

    Photogrammetry is the science of making measurements from photographs. It infers the geometry of a scene from a set of unordered photographies or videos. Photography is the projection of a 3D scene onto a 2D plane, losing depth information. The goal of photogrammetry is to reverse this process. The dense modeling of the scene is the result yielded by chaining two computer vision-based pipelines, “Structure-from-Motion” (SfM) and “Multi View Stereo” (MVS). Fusion of Multi-bracketing LDR images into HDR. Alignment of panorama images. Support for fisheye optics. Automatically estimate fisheye circle or manually edit it. Take advantage of motorized-head file. Easy to integrate in your Renderfarm System. Add specific rules to select the most suitable machines regarding CPU, RAM, GPU requirements of each Node.
    Downloads: 114 This Week
    Last Update:
    See Project
  • 3
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 4
    ImageAI

    ImageAI

    A python library built to empower developers

    ImageAI is an easy-to-use Computer Vision Python library that empowers developers to easily integrate state-of-the-art Artificial Intelligence features into their new and existing applications and systems. It is used by thousands of developers, students, researchers, tutors and experts in corporate organizations around the world. You will find features supported, links to official documentation as well as articles on ImageAI. ImageAI is widely used around the world by professionals, students, research groups and businesses. ImageAI provides API to recognize 1000 different objects in a picture using pre-trained models that were trained on the ImageNet-1000 dataset. The model implementations provided are SqueezeNet, ResNet, InceptionV3 and DenseNet. ImageAI provides API to detect, locate and identify 80 most common objects in everyday life in a picture using pre-trained models that were trained on the COCO Dataset.
    Downloads: 16 This Week
    Last Update:
    See Project
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 5
    DensePose

    DensePose

    A real-time approach for mapping all human pixels of 2D RGB images

    DensePose is a computer vision system that maps all human pixels in an RGB image to the 3D surface of a human body model. It extends human pose estimation from predicting joint keypoints to providing dense correspondences between 2D images and a canonical 3D mesh (such as the SMPL model). This enables detailed understanding of human shape, motion, and surface appearance directly from images or videos. The repository includes the DensePose network architecture, training code, pretrained models, and dataset tools for annotation and visualization. DensePose is widely used in augmented reality, motion capture, virtual try-on, and visual effects applications because it enables real-time 3D human mapping from 2D inputs. The model architecture builds on Mask R-CNN, using additional regression heads to predict UV coordinates that map image pixels to 3D surfaces.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 6
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images such as edge detection and color clustering have also been added. GIMP-ML relies on standard Python packages such as numpy, scikit-image, pillow, pytorch, open-cv, scipy. In addition, GIMP-ML also aims to bring the benefits of using deep learning networks used for computer vision tasks to routine image processing workflows.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 7
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to boost the performance of your model. FiftyOne provides the building blocks for optimizing your dataset analysis pipeline. Use it to get hands-on with your data, including visualizing complex labels, evaluating your models, exploring scenarios of interest, identifying failure modes, finding annotation mistakes, and much more! Surveys show that machine learning engineers spend over half of their time wrangling data, but it doesn't have to be that way.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 9
    PIFuHD

    PIFuHD

    High-Resolution 3D Human Digitization from A Single Image

    PIFuHD (Pixel-Aligned Implicit Function for 3D human reconstruction at high resolution) is a method and codebase to reconstruct high-fidelity 3D human meshes from a single image. It extends prior PIFu work by increasing resolution and detail, enabling fine geometry in cloth folds, hair, and subtle surface features. The method operates by learning an implicit occupancy / surface function conditioned on the image and camera projection; at inference time it queries dense points to reconstruct a mesh via marching cubes. It also uses a two-stage architecture: a coarse global model followed by local refinement patches to capture fine detail, balancing global consistency and local detail. The repo includes training pipelines, dataset loaders (for Multi-POP, etc.), and inference scripts for mesh output including depth maps for postprocessing. To help practical use, there are utilities for normal estimation, texture back-projection, mesh cleanup, and integration with rendering pipelines.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    Hiera

    Hiera

    A fast, powerful, and simple hierarchical vision transformer

    Hiera is a hierarchical vision transformer designed to be fast, simple, and strong across image and video recognition tasks. The core idea is to use straightforward hierarchical attention with a minimal set of architectural “bells and whistles,” achieving competitive or superior accuracy while being markedly faster at inference and often faster to train. The repository provides installation options (from source or Torch Hub), a model zoo with pre-trained checkpoints, and code for evaluation and fine-tuning on standard benchmarks. Documentation emphasizes that model weights may have separate licensing and that the code targets practical experimentation for both research and downstream tasks. Community discussions cover topics like dataset pretrains, integration in other frameworks, and comparisons with related implementations. Security and contribution guidelines follow Meta’s open-source practices, and activity shows ongoing interest and usage across the community.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors. With Kornia we fill the gap between classical and deep computer vision that implements standard and advanced vision algorithms for AI. Our libraries and initiatives are always according to the community needs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major challenge in surveillance applications. Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    SAM2 is a next-generation version of the Segment Anything Model (SAM), designed to improve performance, generalization, and efficiency in promptable image segmentation tasks. It retains the core promptable interface—accepting points, boxes, or masks—but incorporates architectural and training enhancements to produce higher-fidelity masks, better boundary adherence, and robustness to complex scenes. The updated model is optimized for faster inference and lower memory use, enabling real-time interactivity even on larger images or constrained hardware. SAM2 comes with pretrained weights and easy-to-use APIs, enabling developers and researchers to integrate promptable segmentation into annotation tools, vision pipelines, or downstream tasks. The project also includes scripts and notebooks to compare SAM2 against SAM on edge cases, benchmarks showing improvements, and evaluation suites to measure mask quality metrics like IoU and boundary error.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    VGGT

    VGGT

    [CVPR 2025 Best Paper Award] VGGT

    VGGT is a transformer-based framework aimed at unifying classic visual geometry tasks—such as depth estimation, camera pose recovery, point tracking, and correspondence—under a single model. Rather than training separate networks per task, it shares an encoder and leverages geometric heads/decoders to infer structure and motion from images or short clips. The design emphasizes consistent geometric reasoning: outputs from one head (e.g., correspondences or tracks) reinforce others (e.g., pose or depth), making the system more robust to challenging viewpoints and textures. The repo provides inference pipelines to estimate geometry from monocular inputs, stereo pairs, or brief sequences, together with evaluation harnesses for common geometry benchmarks. Training utilities highlight data curation and augmentations that preserve geometric cues while improving generalization across scenes and cameras.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    Vision Transformer Pytorch

    Vision Transformer Pytorch

    Implementation of Vision Transformer, a simple way to achieve SOTA

    This repository provides a from-scratch, minimalist implementation of the Vision Transformer (ViT) in PyTorch, focusing on the core architectural pieces needed for image classification. It breaks down the model into patch embedding, positional encoding, multi-head self-attention, feed-forward blocks, and a classification head so you can understand each component in isolation. The code is intentionally compact and modular, which makes it easy to tinker with hyperparameters, depth, width, and attention dimensions. Because it stays close to vanilla PyTorch, you can integrate custom datasets and training loops without framework lock-in. It’s widely used as an educational reference for people learning transformers in vision and as a lightweight baseline for research prototypes. The project encourages experimentation—swap optimizers, change augmentations, or plug the transformer backbone into downstream tasks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. Albumentations supports different computer vision tasks such as classification, semantic segmentation, instance segmentation, object detection, and pose estimation. Albumentations works well with data from different domains: photos, medical images, satellite imagery, manufacturing and industrial applications, Generative Adversarial Networks. Albumentations can work with various deep learning frameworks such as PyTorch and Keras.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment. However, distributed training, especially model parallelism, often requires domain expertise in computer systems and architecture. It remains a challenge for AI researchers to implement complex distributed training solutions for their models. Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    DETR

    DETR

    End-to-end object detection with transformers

    PyTorch training code and pretrained models for DETR (DEtection TRansformer). We replace the full complex hand-crafted object detection pipeline with a Transformer, and match Faster R-CNN with a ResNet-50, obtaining 42 AP on COCO using half the computation power (FLOPs) and the same number of parameters. Inference in 50 lines of PyTorch. What it is. Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. Due to this parallel nature, DETR is very fast and efficient.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    MMF

    MMF

    A modular framework for vision & language multimodal research

    MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-the-art vision and language models and has powered multiple research projects at Facebook AI Research. MMF is designed from ground up to let you focus on what matters, your model, by providing boilerplate code for distributed training, common datasets and state-of-the-art pre-trained baselines out-of-the-box. MMF is built on top of PyTorch that brings all of its power in your hands. MMF is not strongly opinionated. So you can use all of your PyTorch knowledge here. MMF is created to be easily extensible and composable. Through our modular design, you can use specific components from MMF that you care about. Our configuration system allows MMF to easily adapt to your needs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation across base and target domains to measure how well the model retains its general knowledge while specializing as needed. It includes utilities to fine-tune vision-language embeddings, compute prompt or adapter updates, and benchmark across transfer and retention metrics. MetaCLIP is especially suited for real-world settings where a model must continuously incorporate new visual categories or domains over time.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    TorchIO is an open-source Python library for efficient loading, preprocessing, augmentation and patch-based sampling of 3D medical images in deep learning, following the design of PyTorch. It includes multiple intensity and spatial transforms for data augmentation and preprocessing. These transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity (bias) or k-space motion artifacts. TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    qiji-font

    qiji-font

    Typeface from Ming Dynasty woodblock printed books

    Typeface from Ming Dynasty woodblock printed books. A Ming typeface. Extracted from Ming Dynasty woodblock printed books (凌閔刻本). Using semi-automatic computer vision and OCR. Open-source. A work in progress. Named in honor of 閔齊伋, a 16th-century printer. Intended to be used with Kenyan-lang, the Classical Chinese programming language. Download high-resolution PDFs and split pages into images. Manually lay a grid on top of each page to generate bounding boxes for characters (potentially replaceable by an automatic corner-detection algorithm). Generate a low-poly mask for each character on the grid, and save the thumbnails (using OpenCV). First, red channel is subtracted from the grayscale, in order to clean the annotations printed in red ink. Next, the image is thresholded and fed into the contour-tracing algorithm. A metric is then used to discard shapes that are unlikely to be part of the character in interest.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI - AI Open Field Test Tracker

    OpenFieldAI is an AI based Open Field Test Rodent Tracker

    OpenFieldAI use AI-CNN to track rodents movement with pretrained OFAI models , or user could create their own model with YOLOv8 for inferencing. The software generates Centroid graph, Heat map and Line path and a spreadsheet containing all calculated parameters like - Speed - Time in and out of ROI - Distance - Entries/Exits for single/multiple pre-recorded videos or live webcam video. The ROI is assigned automatically in multiple video input , and can be manually given in single input. - For Queries/ Reporting Bugs, contact: kabeermuzammil614@gmail.com - Available on WIndows OS - Software Authorship - Muzammil Kabier and Shamili Mariya Varghese ( Sole Authors )
    Downloads: 14 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next