Browse free open source Python AI Models for Mac and projects below. Use the toggles on the left to filter open source Python AI Models for Mac by OS, license, language, programming language, and project status.

  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 1
    Claude Code Security Review

    Claude Code Security Review

    An AI-powered security review GitHub Action using Claude

    The claude-code-security-review repository implements a GitHub Action that uses Claude (via the Anthropic API) to perform semantic security audits of code changes in pull requests. Rather than relying purely on pattern matching or static analysis, this action feeds diffs and surrounding context to Claude to reason about potential vulnerabilities (e.g. injection, misconfigurations, secrets exposure, etc). When a PR is opened, the action analyzes only the changed files (diff-aware scanning), generates findings (with explanations, severity, and remediation suggestions), filters false positives using custom prompt logic, and posts comments directly on the PR. It supports configuration inputs (which files/directories to skip, model timeout, whether to comment on the PR, etc). The tool is language-agnostic (it doesn’t need language-specific parsers), uses contextual understanding rather than simplistic rules, and aims to reduce noise with smarter filtering.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →