Browse free open source AI Models and projects for Mac and Linux below. Use the toggles on the left to filter open source AI Models by OS, license, language, programming language, and project status.

  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 1
    Stable Diffusion Web UI Extensions

    Stable Diffusion Web UI Extensions

    Extension index for stable-diffusion-webui

    This repository serves as the official index used by the Stable Diffusion Web UI to discover and install extensions. It aggregates metadata for hundreds of community plugins—image utilities, ControlNet tools, upscalers, prompt helpers, animation suites—so users can browse and add capabilities directly from the UI. The index maintains short descriptions, tags, and repository links, enabling quick filtering by purpose or workflow. It also standardizes submission format so extension authors can contribute entries that the Web UI can parse reliably. For end users, this turns the Web UI into a modular platform where new features appear without manual cloning or guesswork. The project effectively coordinates a thriving plugin ecosystem, keeping discovery and updates lightweight and centralized.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    CO3D (Common Objects in 3D)

    CO3D (Common Objects in 3D)

    Tooling for the Common Objects In 3D dataset

    CO3Dv2 (Common Objects in 3D, version 2) is a large-scale 3D computer vision dataset and toolkit from Facebook Research designed for training and evaluating category-level 3D reconstruction methods using real-world data. It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction. CO3Dv2 enables research in multi-view 3D reconstruction, novel view synthesis, and geometry-aware representation learning. Each of the thousands of sequences in CO3Dv2 captures a common object (from categories like cars, chairs, or plants) from multiple real-world viewpoints. The dataset includes RGB images, depth maps, masks, and camera poses for each frame, along with pre-defined training, validation, and testing splits for both few-view and many-view reconstruction tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    FlashMLA

    FlashMLA

    FlashMLA: Efficient Multi-head Latent Attention Kernels

    FlashMLA is a high-performance decoding kernel library designed especially for Multi-Head Latent Attention (MLA) workloads, targeting NVIDIA Hopper GPU architectures. It provides optimized kernels for MLA decoding, including support for variable-length sequences, helping reduce latency and increase throughput in model inference systems using that attention style. The library supports both BF16 and FP16 data types, and includes a paged KV cache implementation with a block size of 64 to efficiently manage memory during decoding. On very compute-bound settings, it can reach up to ~660 TFLOPS on H800 SXM5 hardware, while in memory-bound configurations it can push memory throughput to ~3000 GB/s. The team regularly updates it with performance improvements; for example, a 2025 update claims 5 % to 15 % gains on compute-bound workloads while maintaining API compatibility.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →