Search Results for "machine learning workloads"

Showing 1917 open source projects for "machine learning workloads"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Machine Learning Octave

    Machine Learning Octave

    MatLab/Octave examples of popular machine learning algorithms

    This repository contains MATLAB / Octave implementations of popular machine learning algorithms, along with explanatory code and mathematical derivations, intended as educational material rather than production code. Implementations of supervised learning algorithms (linear regression, logistic regression, neural nets). The author’s goal is to help users understand how each algorithm works “from scratch,” avoiding black-box library calls.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Ray

    Ray

    A unified framework for scalable computing

    ...Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    ...If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning frameworks.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Kubeflow Training Operator

    Kubeflow Training Operator

    Distributed ML Training and Fine-Tuning on Kubernetes

    Kubeflow Training Operator is a Kubernetes-native project for fine-tuning and scalable distributed training of machine learning (ML) models created with various ML frameworks such as PyTorch, TensorFlow, XGBoost, MPI, Paddle, and others.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    Data Annotator for Machine Learning

    Data Annotator for Machine Learning

    Data annotator for machine learning

    Data annotator for machine learning allows you to centrally create, manage and administer annotation projects for machine learning. Data Annotator for Machine Learning (DAML) is an application that helps machine learning teams facilitate the creation and management of annotations. Active learning with uncertain sampling to query unlabeled data. Project tracking with real-time data aggregation and review process. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Awesome production machine learning

    Awesome production machine learning

    Curated list of awesome open source libraries

    This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, version, scale, and secure your production machine learning. Open-source frameworks, tutorials, and articles curated by machine learning professionals. Open-source bias audit toolkits for data scientists, machine learning researchers, and policymakers to audit machine learning models for discrimination and bias, and to make informed and equitable decisions around developing and deploying predictive risk-assessment tools.
    Downloads: 2 This Week
    Last Update:
    See Project
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • 10
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    Learning Interpretability Tool

    Learning Interpretability Tool

    Interactively analyze ML models to understand their behavior

    The Learning Interpretability Tool (LIT, formerly known as the Language Interpretability Tool) is a visual, interactive ML model-understanding tool that supports text, image, and tabular data. It can be run as a standalone server, or inside of notebook environments such as Colab, Jupyter, and Google Cloud Vertex AI notebooks.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    Bytewax

    Bytewax

    Python Stream Processing

    ...Bytewax is a Python framework and Rust distributed processing engine that uses a dataflow computational model to provide parallelizable stream processing and event processing capabilities similar to Flink, Spark, and Kafka Streams. You can use Bytewax for a variety of workloads from moving data à la Kafka Connect style all the way to advanced online machine learning workloads. Bytewax is not limited to streaming applications but excels anywhere that data can be distributed at the input and output.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    dstack

    dstack

    Open-source tool designed to enhance the efficiency of workloads

    dstack is an open-source tool designed to enhance the efficiency of running ML workloads in any cloud (AWS, GCP, Azure, Lambda, etc). It streamlines development and deployment, reduces cloud costs, and frees users from vendor lock-in.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    ...NVIDIA FLARE is built on a componentized architecture that allows you to take federated learning workloads from research and simulation to real-world production deployment.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    JDF.jl

    JDF.jl

    Julia DataFrames serialization format

    JDF is a DataFrames serialization format with the following goals, fast save and load times, compressed storage on disk, enabled disk-based data manipulation (not yet achieved), and support for machine learning workloads, e.g. mini-batch, sampling (not yet achieved). JDF stores a DataFrame in a folder with each column stored as a separate file. There is also a metadata.jls file that stores metadata about the original DataFrame. Collectively, the column files, the metadata file, and the folder is called a JDF "file". JDF.jl is a pure-Julia solution and there are a lot of ways to do nifty things like compression and encapsulating the underlying struture of the arrays that's hard to do in R and Python. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Zerox OCR

    Zerox OCR

    PDF to Markdown with vision models

    A dead simple way of OCR-ing a document for AI ingestion. Documents are meant to be a visual representation after all. With weird layouts, tables, charts, etc. The vision models just make sense. ZeroX is an open-source machine learning framework designed for fast experimentation and production deployment, optimized for speed and ease of use.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 17
    elasticsearch-learning-to-rank

    elasticsearch-learning-to-rank

    Plugin to integrate Learning to Rank

    The Elasticsearch Learning to Rank plugin uses machine learning to improve search relevance ranking. It's powering search at places like Wikimedia Foundation and Snagajob.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    ML.NET

    ML.NET

    Open source and cross-platform machine learning framework for .NET

    With ML.NET, you can create custom ML models using C# or F# without having to leave the .NET ecosystem. ML.NET lets you re-use all the knowledge, skills, code, and libraries you already have as a .NET developer so that you can easily integrate machine learning into your web, mobile, desktop, games, and IoT apps. ML.NET offers Model Builder (a simple UI tool) and ML.NET CLI to make it super easy to build custom ML Models. These tools use Automated ML (AutoML), a cutting edge technology that automates the process of building best performing models for your Machine Learning scenario. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    ...The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference, transforms etc. They've been tested for machine learning workloads on Amazon EC2, Amazon ECS and Amazon EKS services as well. This project is licensed under the Apache-2.0 License. Ensure you have access to an AWS account i.e. setup your environment such that awscli can access your account via either an IAM user or an IAM role.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    plexe

    plexe

    Build a machine learning model from a prompt

    plexe lets you build machine-learning systems from natural-language prompts, turning plain English goals into working pipelines. You describe what you want—a predictor, a classifier, a forecaster—and the tool plans data ingestion, feature preparation, model training, and evaluation automatically. Under the hood an agent executes the plan step by step, surfacing intermediate results and artifacts so you can inspect or override choices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MinIO

    MinIO

    High performance object storage server compatible with Amazon S3 APIs

    MinIO is a high performance object storage server that is API compatible with Amazon S3 cloud storage service. MinIO makes it easy to build high performance, cloud native data infrastructure for machine learning, analytics and application data workloads. It is incredibly fast, enabling object storage to operate as the primary storage tier for a diverse set of workloads. It is also built to be cloud native and enterprise ready. MinIO is being used worldwide in various production deployments, and is leading the way as the most downloaded object storage server in the industry.
    Downloads: 20 This Week
    Last Update:
    See Project
  • 23
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. ...
    Downloads: 63 This Week
    Last Update:
    See Project
  • 24
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 25
    PyTorch

    PyTorch

    Open source machine learning framework

    PyTorch is a Python package that offers Tensor computation (like NumPy) with strong GPU acceleration and deep neural networks built on tape-based autograd system. This project allows for fast, flexible experimentation and efficient production. PyTorch consists of torch (Tensor library), torch.autograd (tape-based automatic differentiation library), torch.jit (a compilation stack [TorchScript]), torch.nn (neural networks library), torch.multiprocessing (Python multiprocessing), and...
    Downloads: 75 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next